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ABSTRACT. This paper is a mini-course of lectures delivered by the first author at 1IAS
and prepared for publication by the others. We tried to follow closely the notes of the
lectures not yielding the temptation of giving more examples and names. The focus is
on the equivalence of the affine Knizhnik-Zamolodchikov equations and quantum many-
body problems. In fact the course is an introduction to the new theory of spherical
and hypergeometric functions based on affine and double affine Hecke algebras. It can
be considered as a difference generalization of the Harish-Chandra theory as well as an
important special case of the conformal field theory and the theory of quantum groups.
Here mathematics and physics are closer to each other than Siamese twins. We did not
try to separate them, but the course turned out to be mainly about the mathematical
issues. However we hope that the paper will be understandable for both physicists and
mathematicians, for those who want to master the new Hecke algebra technigue.
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1. Introduction : Hecke algebras in representation theory

Before a systematic exposition, I will try to outline the main directions of the repre-
sentation theory and harmonic analysis connected with the Macdonald theory.

A couple of remarks about the growth of Matheratics. It can be illustrated (with all
buts and ifs) by the following diagram.

Imaginary axis (conceptual mathematics)

Real axis (special functions, numbers)

FIGURE .1. Real and Imaginary

It is extremely fast in the imaginary (conceptual) direction but very slow in the real
direction. Mainly I mean modern mathematics, but it may be more general. For in-
stance, ancient Greeks created a highly conceptual axiomatic geometry with a modest
‘real output’. I do not think that the ratio Real/Imaginary is much higher now. There
are many theories and a very limited number of functions which are really special. Let
us try to project the representation theory on the real axis (Fig.1). We focus on Lie
groups(algebras) and Kac-Moody algebras, ignoring the arithmetic direction (adéles and
automorphic forms). Look at Fig.2.

1): By this I mean the zonal spherical functions on K\G/K for maximal compact
K in a semi-simple Lie group G. The theory was started by Gelfand et al. in
the early 50’s and completed by Harish-Chandra and many others. It generalized
quite a few classical special functions. Lie groups helped a lot to elaborate a
systematic approach, although much can be done without them, as we will see
below.

2): The characters of Kac-Moody algebras can also be introduced without any
representation theory (Looijenga, Saito). They are not too far from the products
of classical one-dimensional §-functions. However it is a new and very important
class of special functions with various applications. The representation theory
explains well some of their properties (but not all).

3): This construction gives a lot of remarkable combinatorial formulas, and gen-
erating functions. Decomposing tensor products of finite dimensional represen-
tations of compact Lie groups was in the focus of representation theory in the
70’s and early 80’s, as well as various restriction problems. This direction is still
very important, but the representation theory moved towards infinite-dimensional
objects.



Im Representation theory of Lie groups, Lie algebras, and Kac-Moody algebras \—_J

Re

1 Spherical functions 2 Charactersof KM 3 1, gy, :vy) 1 EMA Ly
algebras (irreps of dim < o0) induced: irrreps)

FIGURE .2. Representation Theory

4): Here the problem is to calculate the multiplicities of irreducible representations
of Lie algebras in the Verma modules or other induced representations. It is
complicated. It took time to realize that these multiplicities are ‘real’.

Let us update the picture adding the results which were obtained in the 80’s and 90’s.

Im Representation theory

Re

@Spherica.l fns @ KM characters @ VeV, W) @ [My: L]

Generalized @ Conformal @Verlinde

' Modular
hyper.geom. blocks algebras . reos
functions P

FIGURE .3. New Vintage

1): These functions will be the subject of my mini-course. We will study them in
the differential and difference cases. It was an old question of how to introduce
and generalize them using the representation theory. Now we have an answer.

): Actually conformal blocks belong to the imaginary axis (conceptual mathemat-
ics). Only some of them can be considered as ‘real’ functions. Mostly it happens
in the case of KZ-Bernard equation (a sort of elliptic KZ).
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3): By Verlinde algebras, we mean the category of integrable representations of
Kac-Moody algebras of given level with the fusion instead of tensoring. They can
be also defined using quantum groups at roots of unity (Kazhdan-Lusztig).

4): Whatever you think about the ‘reality’ of [My : L,], these multiplicities are
connected with modular representations including the representations of the sym-
metric group over fields of finite characteristic. Nothing can be more real.

CONJECTURE. The real projection of the representation theory goes through Hecke-type
algebras.

As to the examples under discussion the picture is as follows:

Representation theory
Im

Representation theory of Hecke algebras

Kazhdan-Lusztig
Macdonald theary, double Hecke algebras polynomials

=

NI e
a i N N -
a b gt N7 . d d
1 \ EEEEN
N N
¥ \ . Re
! N
@ Spherical {ns @ KM-characters ! @[V,\ ICAPRRCY AN @[Ah t L)
// \\
’, N
- N
@ Hypergeom. @ Conformal @ Verlinde @ Modular
fns blocks algebras reps

FIGURE .4. Hecke Algebras

a): This arrow seems the most recognized now. Several questions in the Harish-
Chandra theory (the zonal case) were covered by the representation theory of the
degenerate (graded) affine Hecke algebras defined by Lusztig [33". For instance,
the operators from [8, 13] give a very simple approach to the radial parts of
Laplace operators on symmetric spaces and the Harish-Chandra isomorphism.
The hypergeometric functions (the arrow (d)) appear naturally in this way.
Here the main expectations are connected with the difference theory. It was
demonstrated in [14] that the difference Fourier transform is self-dual (it is not
in the differential case). At least it holds for certain classes of functions. Tt
must simplify and generalize the Harish-Chandra theory. The same program
was started in the p-adic representation theory (see [15, 18}). The coincidence
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of some difference spherical functions with proper Macdonald polynomials can
be established using quantum groups (Noumi and others- see[38]). However at
the moment the Hecke algebra technique is more efficient to deal with these
polynomials (especially for arbitrary root systems).

b): The double Hecke algebras lead to a certain elliptic generalization of the Mac-
donald polynomials [16, 17, 18]. In the differential case there is also the so-called
parabolic operator {see {21] and [16]). Still it is not what one could expect. As
to (5)7 the conformal blocks of type GL, (i.e. over the products of curves with
the action of the symmetric group) are much more general than the characters.
Obviously Hecke algebras are not enough to get all of them. On the other hand,
there is almost no theory of the conformal blocks for the configuration spaces
connected with other root systems. Double affine Hecke algebras work well for
all root systems.

¢): Here one can rediscover the same combinatorial formulas (mostly based on the

so-called Kostant partition function). I do not expect anything brand new. How-
ever if you switch to the spherical functions (instead of the characters) then the
new theory results in the formulas for the products of spherical functions, which
cannot be obtained in the classical theory (they require the difference setting).
The multiplicities [Vi ® ¥, : V] govern the products of the characters, which are
the same in the differential and difference theory.
Concerning (&), the Macdonald theory at roots of unity gave a simple approach
to the Verlinde algebras. All the resultss about the inner product and the action
of SLy(Z) were generalized a lot. I mean [28], and my two papers [14, 15]. A.
Kirillov Jr, was the first to find a one-parametric deformation of the Verlinde
algebra in the case of GL,. He used quantum groups at roots of unity. My
technique is applicable to all root systems. The proofs are much simpler than
those based on Kac-Moody algebras or quantum groups. It works even better for
the non-symmetric Macdonald polynomials (the conformal blocks and Kac-Moody
characters are symmetric in contrast to the main classical elliptic functions).

d): This arrow is the Kazhdan-Lusztig conjecture proved by Brylinski-Kashiwara
and Beilinson-Bernstein and then generalized to the Kac-Moody case by Ka-
shiwara-Tanisaki. By (b), I mean the modular Lusztig conjecture (partially)
proved by Anderson, Jantzen, and Soergel. The arrow from the Macdonald the-
ory to modular representations is marked by ‘I'. It seems the most challenging
now. I hope to continue my results on the Macdonald polynomials at roots of
unity from the restricted case {alcove) to arbitrary weights (parallelogram). If
might give a one-parametric generalization of the classic theory, formulas for the
modular characters (not only those for the multiplicities), and a description of

modular representations of arbitrary Weyl groups. However now it looks very
difficult.

To conclude, let me say a little something about the Verlinde algebras. I think now it
is the most convincing demonstration of new methods based on double Hecke algebras.
I also have certain personal reasons to be very interested in them. The conformal fu-
sion procedure appeared in my paper ‘Functional realization of basic representations of
factorizable groups and Lie algebras’ (Funct. Anal. Appl., 19 (1985), 36-52). Given an
integrable representation of the n-th power of a Kac-Moody algebra and two sets of points
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on a Riemann surface (n and m points), I constructed an integrable representation of the
m-th power of the same Kac-Moody algebra. The central charge here remains fixed. [
missed that in the special case when n = 2, m = 1 the multiplicities of irreducibles in the
resulting representation are structural constants of a certain commutative algebra, the
Verlinde algebra. It was nice to know that these multiplicities (and much more) can be
extracted from the simplest representation of the double affine Hecke algebra at roots of
unity.

I should add one more remark. In fact I borrowed the ‘fusion procedure’ from arith-
metics. | had known lhara’s papers ‘On congruence monodromy problem’ very well. A
similar procedure was the key stone of his theory. Of course I changed something and
added something (central charge), but the procedure is basically the same. Can we go
back and define Verlinde algebras in arithmetics?



2. The affine Knizhnik-Zamolodchikov equation

We introduce the degenerate affine Hecke algebra and the corresponding affine Knizhnik-
Zamolodchikov equation. We show how the former appear as the consistency and invari-
ance conditions for the latter.

2.1. The algebra H/,, and the hypergeometric equation. In this section, we
introduce the affine Knizhnik-Zamolodchikov (AKZ) equation associated with the root
system of type A,. It is a first-order differential equation for ®, where & depends on a
single variable u and takes values in an infinite-dimensional algebra called the degenerate
affine Hecke algebra

The equation is as follows:

oo 8
B ( et —1

Ou

Here & € C is a parameter, and s and z are operators acting on a vector space where ®
takes its value. We impose the following two relations.

=1, (2.2)
sz+zs=k. (2.3)

2 :c) 8. (2.1)

These relations make (2.1) invariant. Namely, if @ solves (2.1), then
®(u) = sB(—u) (2.4)

also is a solution of (2.1). We claim that (2.1) is integrable in terms of the classical
hypergeometric functions. At least, this statement is valid under a certain irreducibility
condition.

The AKZ is the equation (2.1) with values in the degenerate afiine Hecke algebra My,
of type A generated by the elements s and z satisfying the defining relations (2.2) and
(2.3):

My, = (s,2)/{(2.2),(2.3)}. (23)

Let ®(u) be a function of u with values in M/, . Note that one can multiply ${u} by an
a.rbltrary constant element on the right, i.e. 1f ®(u) is a solution, then ®(u)a (a € H,,)
is also a solution. Let us check the invariance of AKZ (see (2.4)).

We plug in
b (u)
. = s(k _1+1:> O(—u)
= ( + sxs) &(u)
e —1
and use
! S +1
l—e™  ev—1 "
Finally,
9%(u) = (k L ks szs) &(u)
du ev—1

where ks — sus = x.



Now we will integrate (2.1). More generally, let us first consider the equation

09 A B
= =(t=+3)e (26)
It is (2.1) for 2 = e, A = —ks, and B = —x. The equation (2.6) is much more

complicated than the AKZ. However, if A, B are 2 x 2 matrices acting on the 2-component
vector @, this equation is nothing but the hypergeometric differential equation. It readily
gives the formulas when & takes values in irreducible representations of H; , because the
latter exist only in dimensions 1 or 2.

Indeed, a generic 2-dimensional representation p of ), is given by

= %) wo=k(3+ (¢ 5)) 1)

Because of the gauge transformation { — ¢(, £ — ¢71¢, it is characterized by (¢, or by
1 1/2
y= (cg + Z) . (2.8)

Then a solution ¢ = (:;) for A = —kp(s), B = —p(z) is given in terms of the Gauss
hypergeometric function. The first component is

®By(u) = 271 — 2)*F(k(1 = 2p), k, 1 — 2kp; 2), (2.9)
where z = ¢ ™ and Fla, 8,7;2) = Yo E&%‘%ﬁz" with (z), = z(z+1)---(x+n —1).

If (¢ = 0, then the representation p (2.7) is reducible. In this case, solutions are in terms
of elementary functions. We note that the parameters «, 3,7 in (2.9) are not arbitrary
but obey the constraint e+ 1 = F+~. )

2.2. The AKZ equation for GL,. In this section, we ntroduce the AKZ equation of
type GL,. It can be obtained as a specialization of the standard Knizhnik-Zamolodchikov
(KZ) equation from the conformal field theory. The consistency and invariance conditions
give rise to the defining relations of the degenerate affine Hecke algebra My, introduced
by Drinfeld.

Recall that the KZ equation reads

0% L .
=k{ > ——1% (0<i<n). (2.10)
Jz; 05 B 7
T

In the less sophisticated case §;; are the permutation matrices {30]. Let us assume that €;;
arc any constant elements (operators) and €;; = ;. We consider ®(2) (z ={z0,... ,2))
taking values in the abstract algebra generated by the elements §2;;. The self-consistency
of the system of equations (2.10) means that

9A; B4 .
—_— L= (A AL, 2.11
Ba 05 - , Al (2.11)
where
Q'J -
A=k —4— (2.12)
”h-Z,—Z]'
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It holds for all values of the complex parameter k if and only if

[Qijﬂn“] =0, (213)
[, Qux + Q] =0, {2.14)

where the indices i, 7, k, [ are pairwise distinct. The K7 in this form is due to Aomoto [1]
(it was also studied by Kohno [31]).

The trigonometric KZ (and the elliptic ones} where introduced for the first time in [4].
To be more exact, in this paper the equations which [ called the r-matriz K7 were defined,
the connections with Kac-Moody algebras were established, and the reduction procedure
was applied to the monodromy (see below). The equations corresponding to the simplest
trigonometric r-matrces (there are many of them due to Belavin and Drinfeld) are closely
connected with the AKZ. There were doubts about the importance of my trigonometric
KZ in physics when they appeared. Now they are quite common for both mathematicians
and physicists.

Consider the group algebra C[S,] of the permutation group S, of the set {1,... ,n}.
We denote by s;; the transposition of : and j. If we set Qi; = 8 (0 <¢,5 < »n), the
relations (2.13)-(2.14) are satisfied.

Setting
2z =0, (2.]5)
Qj=s; (1,7 #0), (2.16)
Qoi = k71, (2.17)

the equation (2.10) turns into

(9@ 845 Q,’ .
— = — —_— << .
dz; [k<]§" A z,-) + Z-J ¢ (Isisn) (218)

43
and the relations (2.13),(2.14) read as follows:

[s5, 4 + Q] = 0, (2.19)
[bsi; + Q. Q4] = 0, 2.20)
[Sija Ql] = 07 (221)
where the indices ¢, j, ! are pairwise distinct.
Substituting
z; = e", (2.22)
we come to
0% s
— = kY —— 10| . 2.23
e =
J#
Using the elements
Y = Qi + kz Sijy (224)
7>i
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o9 _ 8ij 84y
B (kZ prrem ) Dl y) 9. (2.25)

>t <t
The elements {y} are convenient since in the limit
vy P Uy D Uy,

we get the system

gg; =yd. (2.26)
The consistency of these equations is equivalent to the commutativity
[vi, ;] = 0. (2.27)
We claim that (2.27), a ‘limiting self-consistency’, together with the relations
[s6,95] =0 ifj #4141, (2.28)
SYi — Yir18i = k; (2.29)

where s; = 8;i+1 (1 <1 < n — 1), ensure (2.19)-(2.21).

It can be put in the following way. Let us introduce the degenerate affine Hecke algebra
of type GL, as an algebraic span of C[S,] and y; (1 <1 < n) with the relations (2.27),
(2.28) and (2.29), denoting it by Hyy, , or simply by H,. We call the system (2.25) with
the values in M., the AKZ of type GL,. It is well-defined, i.e. self-consistent.

2.3. The §,-invariance. In this section, we discuss the §,-symmetry of the AKZ
equation introduced in the previous section and clarify in full the definition of H.,.
The group S, acts on C* naturally by

v=(v1,...,0) € C" > w(v) = (v;,...,v,) € C"

for w™ = (¢1,4,... ,1,) € Sp. Given a function ®(v) of v € C™ with values in H,, we

define the action of w € C[S,,] on ®(v) by

(w(®)) (v) = w- @(w-l(v)). (2.30)

Here the dot means the product in Hj. It follows from (2.28) and (2.29) that if ¢
solves (2.25), then so does w(®). Just conjugate the equations by {s;}. Moreover, the
invariance is exactly equivalent to the relations (2.28) and (2.29). Thus the invariance
and the limiting self-consistency (2.27) give the self-consistency of our system for all &.

2.4. Degenerate affine Hecke algebras. In this section, we fix notations for root
systems and define the degenerate affine Hecke algebra for an arbitrary root system.

Let ¥ be a root system in R™ with the inner product (, ). Choose a system of simple
roots ¢y, ... ,a, of & and denote by £, the set of positive roots. For aroot « € £, define
the coroot a¥ by

and the reflection s, by



We will denote s, simply by s;. The fundamental coweights b; are as follows:
(b‘-,a]-) = 5,‘]'.
We also use the notation a; = of. For u € R”, the coordinates will be u; = (u,0;). We
also set u, = (u,a) for @ € L. Check that
Bu,
Bu,v

Let W be the Weyl group of £: W = (8aya € B) = (sq,... ,3a). Define the action of
W on functions on R* by

= v} = (b;,a) = the multiplicity of & in

Yfu) = flwTH(w)) (uweRM). {2.31)
Then we have
Yy = (w7 u), @) = tu(a)-

Now we can define the degenerate affine Hecke algebra MY associated with T, This
definition is due to Lusztig [33] (he calls it the graded affine Hecke algebra, considering &
as a formal parameter). Drinfeld introduced this algebra in the G L,-case in [19] prior to
Lusztig. These algebras are natural degenerations of the corresponding p-adic ones.

DEFINITION 2.1. Let Hg be the associative algebra generated by C[W] and zy,... ,zn
with the following relations

[zi,2;) =0, ¥i,j, (2.32)
[siz;] =0, if i#j, {2.33)
8$; T — .’EA,'S,' =k. (234)
Here k is a complex number and
fi=1zi— (af a,)z;. (2.35)
=1

Introducing

oy =Y (boi)ri =S ki for b= kb, (2.36)
i=1 =1
we can express the right hand side of (2.35) as z,,(s,) = 23, — z,,. More generally,
8Ty — z,'.(b)s(- = Tp8; — Sizs.(b) = k(b, C!“). (237)

Later we will use the following partial derivatives

Os(ua) = (a,b). (2.38)
For instance,
a
e 0; = 8,
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2.5. The AKZ equation associated with Hj. In this section we introduce the
AKZ equation associated with the root system ¥, and give several examples.
Let us consider the following system of partial differential equations

Be(rx e

+ 1‘,) L (1 <i<n). (2.39)
a€l

Here k is a complex number. We denote the right hand side of (2.39) as A;®. First we

assume that @ takes values in an associative algebra generated by C[W] and z4,..., z,.
We say that the system (2.39) is self-consistent provided that
[ — A — A =0 (2.40)
B VR il=0. .

It is called invariant if, for any solution @ of (2.39) and any element w of W, w(®) (see
2.30) is again a solution of (2.39).

THEOREM 2.1. The system (2.39) s self-consistent and invariant if and only if 51, ...,
Sy, T1, ..., T, satisfy the relations (2.32), (2.33), (2.34) defining M.

We introduce the AKZ equation associated with £ to be the system (2.39) for functions
® with values in Hg.

Using the notation z, and J, from (2.36) and (2.38), the system (2.39) can be expressed
as

e = (k 3 (ba)—2— P +:c;,> 3. (2.41)

€Ly

REMARK 2.1. The parameter k& may depend on the lengths of roots. Generally speaking
the AKZ equation is as follows:

0% ; _Sa
. = ( Z k‘aIV;;;:_—l + I,) o, (2.42)

x€L 4
Let us write down the explicit forms of the AKZ equation in the simplest cases.

EXAMPLE 2.1. When ¥ = Ay, the AKZ equation is exactly (2.1).

EXAMPLE 2.2. For A;, the AKZ equation is
o S12 $13
2 oo
Ouy { evr — 1 + vty — o

L] 823 S13 ) }
o2 _ 1 o
Ju,y {k (e“7 -1 * ewitur ] tap

where s;; denotes the transposition of ¢ and j. In this case &; = 2y — 2y, & = 2y — T2




EXAMPLE 2.3. The root system B, is realized in the following way. Let ¢; and ¢, form
an orthonormal basis of R2. Then the set of positive roots consists of the following vectors:
) = € — €,
Qg = €3,
oy + oy = €,
a1 + 2a; = € + €.
Let s = s, and t = s;. Then s and t satisfy tsts = stst (the Coxeter relation for

Ws, = Wg,) and s° =1, t? = 1. In this case &, = 2 — z1, 3 = 22, — 2. The AKZ
equation reads as follows:

o0 {k( s n sts n tst )+ }qﬁ
Buy et —1 @ emtur ] eutlw _ ] o

L] t sts tst

Jug {k (e“?—l T 11 +26”1+2"7—-1>+22}¢"

Note the appearance of the coefficient 2 in the latter. In the case of Eg the coefficients
are from 1 to 6 (otherwise they are less than 6).

2.6. The 4, _; case. [n this section, we will show that the AKZ equation of type GL,
discussed in §2.2 reduces to the AKZ equation for the root system & € R™1 of type A,_;.
First note that

=yt (2.43)
is central in the algebra H,,. By setting

2
:v,=y1+...+y.-—;z, (2.44)
we have an embedding of Hy, where £ is the root system of type A,_1, into H.. We put
Uy = ¥ — Uiy (1 S : S n— 1) (245)
The space R"~* is identified with the quotient space of R = {T%, vie; | v; € R}
R ~ @7 Re;/Re
where {€;}1<icx is the orthonormal basis and ¢ = ¢; 4+ ... + ¢,. From (2.25) we have
Z — =zd.
=1 v
Therefore, the function
B'(v) = emm R p(y)

is well-defined on the quotient space R*~!. Now it is straightforward to see that {2.25)
reduces to the AKZ equation of type A,_; for ' (v)

%' 351 ’ .
m:(k‘glm—Fl,')Q (1€i<n-1).
I8

15



3. Isomorphism theorems for the AKZ equation

We introduce the affine Hecke algebra H: and connect them with the degenerate affine
Hecke algebra Hy using the monodromy of the AKZ equation. We also establish an
isomorphism between the solution space of the AKZ equation and that of a quantum
many body problem.

3.1. Representations of Hy. In this section we define induced representations of
HE.

For A == (Ay,...,A,) € C", the character of Clzy,... ,z,] (i.e. a ring homomorphism
Clz1,... ,24] = C) is an assignment z; — X;. We denote it by A.

DEFINITION 3.1. We define an Hy-module I, as the representation induced from A :

H
L= IndC[ih-.-,Zn](A) = H;J &Clzy . /2n] Cu (31)
Here C, is endowed with the C[zy,... ,z,]-module structure by the character A.

We have the Poincaré-Birkhoff-Witt type theorem for Hy. Namely any A € Hy is
expressed uniquely in either of the following ways:

h= z pul(z)w = Z way(z) (3.2)
weWw weW
with pu,qw € Clzy,... ,7,]. The existence results from the relations (2.32)-(2.34) in Hs.
Hence

I = C[W)] = @ypewCuw. (3.3)

Thus I, is C[W] as a W-module, where the action of z; is determined by z;(e) = Xe for
the identity e € W. The action of z; on other elements of C[W] have to be determined
using the defining relation (similar to the calculations in the Fock representation).

We also need another construction. Let J be induced from the trivial character 4 :
W — C, w — 1. Then

J = Indggin(+), (3.4)

is isomorphic to C[zy,... ,z,] as a vector space and moreover as a Clzy,... , T,]-module.
To get finite-dimensional representations from J, we use the coincidence of the center of

% with the algebra of W-invariant polynomials in z;. This theorem is due to Bernstein.
The procedure is as follows. Let us fix an element A = (A1,... ,A;) € C* and introduce
the ideal Ly in Clzy,... ,z.] generated by p(x) — p(A) for all W-invariant polynomials
p. Set Jy = J/L,. Then J) has a structure of Hg-module by virtue of the Bernstein
theorem.

We will also use the anti-involution ° on HMy:

g;:.’ = ri, s? = 3, (ab)° = b“(lc7 k= k. (35)

Since the relations of Hy, are self-dual it is well-defined. For an Hg-module V, we consider
its dual Homg(V,C). The dual has an anti-action (a right action) of Hg. Composing it
with the anti-automorphism °, we get a natural (left) action of Hy. We denote the
resulting module by V°.

We write /\b = Z k,’/\g for b= z k,’b".



THEOREM 3.1, (a) I, is irreducible if and only if Ayv # k for any a € 2.
(b) There ezists a permutation X of A (i.e. M = w(}) forw € W) such that X, # —k
foranya e L. Then
J,\ o I,\l. (36)

{c) For the longest element wy in W,

I = Ly (3.7
A key lemma in proving Theorem 3.1 is

LEMMA 3.2. To... o) is irreducible.

The proof from [14] is based on the intertwining operators of degenerate affine Hecke
algebras (to be defined below). See also [29, 27, 41] and the references therein (the non-
degenerate case).

DEFINITION 3.2. For 1 <i < n we set

k
fi=fo=8i——. (3.8)
T,
For w € W with a reduced decomposition w = s8;, -+ 84y, fiyy = fir -+ fi,-
elements f,, intertwiners.

We call the

The elements f,, belong to the localization of the degenerate affine Hecke algebra Hg
by the W-invariant polynomials. They give a certain ‘baxterization’ of w, and are closely
related to the Yang’s R-matrix. Let us show that f,, does not depend on the choice of
the reduced decomposition of w.

We have

fa.‘xb = x.s.'(b)fa.a (39)
foe = Ty fu (3.10)

k k
(3; - x—a‘) Iy = 173.(6) (S,’ - zal) s (311)

which can be rewritten as follows:

Indeed,

__k%.(b) — Iy

SiTp — Ty, (b)8i = z
a

(3.12)

Using the definition of z; (2.36), the right hand side of (3.12) is k(b, ;). So we come
to (2.37). The relations (3.10) fix f,, uniquely up to the multiplication on the right
by functions in z. The leading terms of f,, being w, they coincide for any reduced
decompositions.

To demonstrate the role of intertwiners, let us check the irreducibility of I, for generic
A. First note that the vectors {f,(e) € I,} are common eigenvectors of z;., because

zofule) = futumrpy(e) = Aumigy fule),

For a generic A the cigenvalues are simple, hence these vectors are linearly independent.
Now, any nonzero Hy-submodule 4 of I, contains at least one eigenvector of z;,. By the
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simplicity of eigenvalues, such an eigenvector must be in the form f,.(e) for some w € W.
On the other hand, £, are invertible elements. Indeed,

k2
Z4,

finl = (1 -

2)—1fi-

Therefore € € A. Since I, is generated by e, we conclude that A = I,.

Actually this very reasoning leads to the proof of the Theorem (a),(b). However if A
is arbitrary one must operate with the intertwiners much more carefully. It is necessary
to multiply them by the denominators and remember that the invertibility does not hold
for special A.

REMARK 3.1. The H'-quotients A of J¢ will be interpreted below as certain quotients
of the D-module representing the quantum many-body eigenvalue problem. A solution
of the AKZ in Jj induces solutions in any of its H'-quotients (if I is reducible). It gives
a one-to-one correspondence between the H’-submodules {quotients, constituents) of J
and those of the D-modules representing the quantum many-body eigenvalue problem.
The description of the latter is an analytical problem. The classification of the former
is a difficult question in the representation theory of Hecke algebras. For instance, the
multiplicities of the irreducible constituents are described in terms of the Kazhdan-Lusztig
polynomials. It is very interesting to combine the two approaches together.

3.2. The monodromy of the AKZ equation. In this section we discuss the mon-
odromy of the AKZ equation, which is a key ingredient in establishing the isomorphism
between the AKZ equation in the representation J§ and the quantum many-body problem
(QMBP) with the eigenvalue A.

Let U’ be the open subset of C" given by

U'={ueC IJ (e* ~1)#0} (3.13)

Q€4
The lattice generated by by,...,b, will be denoted by B. It is isomorphic to Z*. and
acts on C" by translations. Namely, b(u) = u + 27+/—1b, where b € B. The semi-direct

product W = W x B is the so-called extended affine Weyl group, acting on C" and leaving
U’ invariant. Picking u® € U7, we set

m = m (U)W, u).

The group structure of 7 is described as follows. Given an element w € W, let 7, be
a path from u® to w™¥(u®) in U’. For elements w;, w; € W, we define the composition
Yz © Vuy Of Yu; a0d 7, as the path composed of 7, and the path ~,, mapped by wi’
(see Fig.5). The class of v will be denoted by 7. The map %, — w is a homomorphism
onto W.

It is convenient to choose u® and the generators of m; as follows. Set ® = Re, ¥ = Im,

C=(V-1R)"\ {u € (+/-1R)*|0 < Su, < 27 for every o € £, }.

Then C" \ C is a simply connected open subset of U’. Let us take v € C® such that
Ru® > 0 for o € T,. For any element w € W, we denote a path from u® to w™(u®)
in C*\ C by 7,. This condition simply means that whenever u, € 1R intersects the
imaginary axis it must go through the ‘window’ 0 < Su, < 2.
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wi ey (uf)

u\ Yur wi— 1 (UO)

FIGURE .5. Composition of paths

For any element w € W we define an element #w of my to be the image of ,. Since
C"\ C is simply connected, %, depends only on w. We set 7; = s, and choose x; to
be a path from u® to the point u' with the same coordinates ui = u} for j # i and
u; = u 4 2my/=1. The structure of 7, is described in the following theorem from [32].

THEOREM 3.3.

T =T Ty Ky X (3.14)
7; satisfy the Cozeter relations, (3.13)
b_(u 5(1] = [7—'5, )_(]} =0 (z#j]), (3'16)
7_—;'_1)—117'1‘_1 = >_<s.(b.‘]' (3'17)
Here for b= 3", k;b; we put
% =[x (3.18)

B

il
-

Fig.6 proves the relation (3.17). It showes the w-coordinate only, which is sufficient for
this relation.

Let us introduce the affine Hecke algebra Mi associated with a root system T as a
quotient of the group algebra of 7y by the quadratic relations.

DEFINITION 3.3. The affine Hecke algebra associated with a root system ¥ is an asso-
ciative C-algebra generated by 1, T1,....,T,,, X1,....X,, with the following relations:
T; satisfy the Coxeter relations, (
[‘Yi’Xj] = [Ti:‘XPJ'] =0 ¢ #], (3'20
XTI = D GHTHN (
(Ti=t)(Ti+t7") =0. (
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i(u0) + 27/ =1 0+ 27/ 1h
si(u®) + 27 ) ory/ T ul + 27

Xsi(be)

FIGTRE .6. Proof of the relation (3.17)
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The monomials X, are defined as in (3.18), ¢ € C*. Here and above we mean the ho-
mogeneous Coxeter relations: T;T;T;... = T;T;Tj..., my; factors on each side, where
my; = 2,3,4 whenever the corresponding vertices in the Dynkin diagram are connected
by 0,1,2 laces.

Let ® be an invertible solution of the AKZ equation associated with £, defined in a
neighborhood of w°. Then for w € W, w™(®) is defined near w=*(u?) (see (2.30)). Let
¥ be a path in U’ from u° to w~(u°). Denote by (w =1(®)),, the analytic continuation of
w~(®) back to u° along the path 7, where 5 denotes the class of v in the fundamental
group m1. We will also use the projection homomorphism W — W sending w = ®b to @
for b € B,w € W. Using this homomorphism we can extend the action of W from {2.30)
to W, multiplying ® on the left by w.

Let us define the monodromy T to be the ratio

T, = (27(2))]' @ = (B(w();' - @ 2. (3.23)

Here dot means the product in Hg. Since ® and w=!(®) both satisfy the same AKZ
equation T does not depend on u. So it is an invariant of the homotopy class of 4 and
is always mvertlble If we choose u® and the paths +, in C*\ C as above, then T,, for
w € W are well-defined. The monodromy is a homomorphism from ; (but not from W),
which readily results from the definition.

As a preparation for an explicit computation of {7} in the next section, we shall
introduce a special class of solutions .

PROPOSITION 3.4. For generic A, there exists a unique solution ®,,(u) of the AKZ
equation such that

I
H
=

It

B(u)elimi v for (3.24)
Bu) = 1+ 3 B e Loia ™ (3.25)

m=(my,..., ma),mi >0,m#0

where Ru — 00, and B, are independent of u.

We call the solution in the proposition the asymptotically free solution. To be more
exact, we need either to complete My, or restrict ourselves with finite-dimensional repre-
sentations of this algebra. Then establishing the the (local) convergence is easy. In these
notes we will follow the second way. We give general formulas, which are quite rigorous
in finite-dimensional representations (say, in the induced representations).

Let us examine the condition necessary for the existence of the asymptotically free
solutions in the case of 4;. A general consideration follows the same lines. In this case,

Po(u) = (1 +> @me‘"‘“> e = Blu)e". (3.26)
m>0
The equation (2.39) leads to
8@(11,) _ s s 2 -
o ke—u_—l—q’(u) + [z, ®(u)]. (3.27)
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Comparing the coefficients of e=™;
—-m®,, = [z, 8] + (terms with ®;,5 < m). (3.28)

Given a representation of Hy, we find $,, assuming that m + ad(z) is invertible for
any m > 0 in this representation. Therefore, setting Spec(z) = {u,}, the conditions
m+p—p; #0, m=1,2,..., ensure the existence of the asymptotically free solutions.
The convergence estimates are straightforward. These conditions are fulfilled in generic
induced representations.
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3.3. Lusztig’s isomorphisms via the monodromy. In this section we establish an
isomorphism between My, and My, using the monodromy of the AKZ equation.

Let us fix an invertible solution ®(u) of the AKZ system in a neighborhood of u° €
U* = C"\C C U'. The functions ®(w(u)) will be extended to u° through U*. Since Hy is
infinite-dimensional, we have to consider all formulas in finite dimensional representations.
Once we get the final expressions it is not difficult to find a proper completion of the
degenerate Hecke algebra for them.

THEOREM 3.5 ([7]). There ezists a homomorphism from H to My given by
Li—T, X—X,
where
T] = ®(s;(w))'s;@(u),  X] = ®(u~ 27v/=1b;)"'®(u).

Ift = exp(nv/—1k) is sufficiently general (say, not a root of unity), then it is an isomor-
phism at the level of finite dimensional representations or after a proper completion.

Under the notation (3.23), 7} = 75, and X} = Tg,. Hence the relations (3.19)-(3.21)
result from Theorem 3.3, and only the quadratic relations (3.22) need to be proved. We
skip a simple direct proof since these relations follow from the exact formulas below.

Let us find the formulas for T} and X} for the asymptotically free solution D,q(u).
Given b € B, we set

n

Xo=T1X7  forb=3 kb,

7=1 =1
and define Xj analogously.
THEOREM 3.6 ([6]). Let us choose the asymptotically free solution ®,,(u) as B(u).
Then
(a) X! = exp(2n/~11;),

k . t—gl
() 5= 2 =ate) (11 + —X——_—1>
where the function g(v) is defined by
I'(1+4v)?
T+k+o)(1—k+e)

and (b) is in fact a formula for T! in terms of {s,z}.

g(v) = I

We will give a sketch of the proof of Theorem 3.6. The statement (a) is immediate,
since

B, (u ~ 27/ <1b,) = &’(u)ez szl B, (u)e 2 V1

To prove the statement (b), we reduce the problem to the A, case. Let us fix the index ¢
(1 <i<n). Set E(u) = e2=1%% 50 that @o(u) = O(u)F(u). Let us define ®6)(u) as
follows:

&M (u) = ®°°(‘)(ui)E(u),
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where ®°()(u;) = limgy .4 oo(ji) &(u). The AKZ system for &) (u) reads:

§i1: 4] .
Yl ( e..,_1+m.') 2, (3.29)
890) )

= 2,60 7 #1). 3.30
auj J ( ) ( )

Reduction procedure. Since the monodromy 77 does not depend on u, the point u°
and the path connecting u® and s;(u°) may be replaced by any deformations in U’ or their
limits. Provided the existence, the resulting monodromy coincides with T}. For instance,
T; equals
T = (89(s:(u))) 2 w).

Indeed, the latter is the limiting monodromy for a path with Ru;(j # i) approaching
the infinity. We note that Ru;{s;(u°)) = +oo if Ru;(u®) does.

In the reduced equations (3.29) and (3. 30) we may diminish the values, considering

the subalgebra of Hy, generated by z; (1 < j < n), and s;. In this algebra, the following
elements are central:

L, 1
x](] ;él), Ty — Eza,w

Hence, if we define E()(v) by
E(u)(u) = ez:.lu,z_,—uira,ﬁ’
it enjoys the following properties:
(i) E(‘j)(u) commutes with s,
(it) EO(s;(u)) = ED ().
The second property can be verified directly:
1 1
2 (si(w)); 2~ 5 (silu));ze, = Y (v = (@i, o )u) 25 + FUila, = Zu z; - u iTa-
i 3
We have used that (si(u}); = (o, 8;(v)) and ¥;(a;,05)z; = 2,. Setting
89(u) = 80(u) BOu) ",

the system of equations (3.29),(3.30) becomes precisely the AKZ equation for $()(v) in
the A; case:

6&)(‘)(”) 84 1 0

du, (ke“- -1t 21“'> o (u), (3.31)
8 (w) o

B, = 0 U (3.32)

Because of the above properties of E()(u), the monodromy of ®()(u) coincides with T!.
However ) (u) can be expressed in terms of the hy pergeometric function, which conclude
the proof up to a straightforward calculation.
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To explain the structure of the formula for 7", let us involve the intertwiners of Hk,.
They are defind similar to those in the degenerate case:

-1

k
~ for Hy, F =T+ —— X —— for Hi-

LEMMA 3.7. F.X, = Xa.(b)Fi~

It readily results from the definition of HE (cf. 3.10).

The image F} of F; in My with respect to the homomorphism constructed in Theorem
3.5 can be represented as F{ = g;(x)f; for a function g; of z. Indeed, f; X} = X,y iy which
gives the proportionality. Recall that X} = exp(27v/=1z:). Here g;(z) must be of the form

g(z4;) for a function g in one variable, and can be calculated using the hypergeometric
equation (3.31). We omit the details (see [6]).

We note, that the quadratic relations for T can be made quite obvious using the same
reduction (the exact formulas above are not necessary). Set 1 =1 to simplify the indices.
We switch from (3.31) to (2.18) with two variables z;,z; and a parameter zy:

0%’ [k( 5 ) %
Bz_, z; — 2k zZ; — Zp

When zp = 0 the substitutions are as follows

211 = Ql - Qg <+ ksl, Uy = log(zl/zz), ¢l = (D(l)('Ul)(2122)_1/2(n1+na+k91).

fi=si—

& (j=1,2k=3-j) (3.33)

The monodromy corresponding to the transposition of z and z; for 20 = 0 coincides
with T{. It does not depend on zp up to a conjugation (the same reduction argument
applied to the KZ-equation with three variables). Sending z; to infinity we eliminate the
Q-terms. The monodromy of the resulting equation can be calculated immediately. Since
it is conjugated to Ty we get the desired quadratic relations.

Heckman in [25] used a similar reduction approach when calculating the monodromy
of the quantum many-body problem (also called the Heckman-Opdam system). Our
next aim is establishing an isomorphism of AKZ and the latter. Combining Heckman’s
formulas and mine for the AKZ, which coincide since the representation of H' is the same,
we readily conclude that these equations are isomorphic for generic A. This will be made
much more constructive below. We will also consider any A.

REMARK 3.2. Let us apply Theorem 3.6 to the standard rational KZ equation in the
GL, case. We calculated the monodromy of

8% - 8i;
O TR

1>t J<t

1+m)® (1<i<n).

e'uj—v. —

Taking special y; = kzj__H_l si; and substituting z; = e, we come to

52, =k Z

i z-7

(1<i<n).

It corresponds to the simplest ;; = 0 in (2.18). By the way, these {y} induce a homomor-
phism from H,, to €841 due to Drinfeld. Diagonalizing the commuting elements ¥, si;
we recover the monodromy computed by Tsuchiya-Kanie [45]. It also gives an explict
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example of the general results on the monodromy of the rational KZ over Lie algebras
due to Drinfeld and Kohno (see [31]).

REMARK 3.3. In Theorems 3.5 and 3.6, we established the isomorphism
'H;_Z'H'E, X]»-—»t?zj,

where ¢ = ™™ and represented it as a relation between the intertwiners of the degen-
erate and non-degenerate afline Hecke algebras:
t—t! k
Fi =T 4+ 0 r—g(z s;——|.
i J+X;J1_1 g( ﬂ;)(J %,)
This construction can be naturally generalized. In fact we need only a very mild restriction
on g(z) to get such a homomorphism. Normalizing the intertwiners to make them ‘unitary’
(f* =1 = F?), we come to the simplest possible map:
k

X S5 = 7.
X. $2%; FJ ’ Tay
& 7t+ t—2—1 1__/c_'
X.,‘]i—l Taj

Actually here we have four formulas in one since we can put the denominators on the
right and on the left. One of them was found by Lusztig in [33].

3.4. The isomorphism of AKZ and QMBP. Here we present the isomorphism
between the AKZ equation and the quantum many-body problem (QMBP). The latter
will appear as a ‘trace’ of the first.

We will need a variant of the general notion of monodromy by A. Grothendieck. Let
us fix the notations:

“P(u) = ®(w ' (v)), w=wbe W =W x B,ue C"

Given a finite union C of affine real closed half-hyperplanes, we set U = C"\C assuming
that
(i) U does not contain ‘bad hyperplanes’ [[ ez, (e** — 1) =0,
(i1) U is simply connected,
(iii) ((C"\ e w(C)) /W is connected.

We shall refer to such C as a system of cutoffs. In §3.2, a special system of cutoffs (U*)
has been already used in order to compute the monodromy. _

Let us fix a system of cutoffs C and U. Then for each w € W there is a path 7,
{unique up to homotopy) joining u® and w™*(u®). So the choice of C implies a choice of
representatives 7, in the fundamental group 7(U'/W ,u°). Here U’ is the complement of
the union of ‘bad hyperplanes’ (3.13).

We pick a solution @ of the AKZ equation in U and define the monodromy function 7,,
(we W)

W =""0.-T, w=uwbe W (3.34)

Here ® is invertible at least at one point and is extended analitically to the whole U. The
values are in the endomorphisms of any finite-dimensional represenation of Hy, {we will
apply the construction to the induced representations).

The monodromy {7}, . satisfies the following:

26



(a) (1-cocycle condition) ¥ (T,)T,=7T,, Vuw,ve W,
(b) -(-977'", =0, and hence T, is locally constant.

The property (b) holds since both & and w(®) = ©“® satisfy the same differential
equation of the first order (the AKZ equation). It readily results in the invertibility of
T, onCr— U,eww(C). The latter set is not connected, so 7 is not just a constant.

Next let us introduce the operators o, 0, (w € W) acting on functions F on U:
(euF)(w) = (*7 F)(u) = F(w(v)), o =0,
(L F)(w) = (" F))Ty, of =0,
The relations for the operators ¢/, are the same as for the permutations o,:
b)  dLus = uymp00, (3.35)
c) a8 = B0y, Ob(uy) = (b,a).
Note that the property a) follows from the 1-cocycle condition for {7w}, e Indeed,
(0,0)(F) = o, (0}(F))
=, (" FT,)
=7 (7 FT,T,
=R T )T,
= T pT,,
= 0, (F).

Let Solyxz be the space of solutions of the AKZ equation with values in H:. When
we consider the AKZ equation on a finite-dimensional Hy-module V| we will denote the
space of its solutions by Solyxz(V). Starting with AK7Z let us go to QMBP. In what
follows, ® € Solsxz or © € Solygz(End(V)). In the latter case all operators act on
End(V')-valued functions.

(1) Using s.® = o!_®, we rewrite the AKZ equation:

: 8
@ = kY e
zi® <3’ug E Vae“”‘ ~ 1) ¢

|
7
|
|
Eed
=
I
)
[=4
o
}
—
~
S
&
~—
=]
_
A
A
2

Let us denote:
D: = 297‘ —k Z u:;(eua — 1)‘10'10.
aELy
The local invertibility of & and the relations Di® = z,® result in the commutativity
(D, D) =0 Vij.
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Here one can use that the commutators do not contain the derivatives, which
readily results from the relations for ¢/. Moreover, the commutativity follows trom
these relations algebraically. It was proved in [10] (see [13] for a more conceptual
proof based on the induced representations). It also follows from the correspond-
ing difference theory, where this and similar statements are much simpler {and
completely conceptual).

(2) Since the multiplication by x; commutes with D}, we get

P(xl"" ,:E,J‘I) =p('D’17--A aDI)q)

n

for any polynomial p € Clzq,... ,z,).
(3) For A = (A},...,A,;) € C" let us take an Hg-module V; with the following prop-

erties: .
G) p(z1,---20) = p(A1y--- yAn) on Vy for any p € Clzy,... , 2,7 [3.36)
(ii) there exists a linear map tr : V) — C satisfying
tr(wa) =tr(a) Vw € W,a e Vi, (3.37)
Let p(x1,...,2,) be a polynomial. Using the commutation relations (3.35), we can

write
P, D) = 3 D,
weW
where D'ff) are differential operators (they do not contain ¢'). They are scalar and
commute with H%. Thus

o mje = T Do~ T pPue.

weW weW
Now, we assume that p is W-invariant. Applying tr (see (3.36) and (3.37)), we come to
PO, A = Ly for Ly = 3 D',
weW
where
P(u) = tr($(u))
is a C-valued function. The differential operators L, are W-invariant, which follows from
the same construction (we will reprove this algebraically helow).
Let us introduce the trigonometrie Dunkl operators D; (1 < i < n) replacing ¢’ by o:

a )
Di=———k 3 vi(e* —1)7"0,,.
au* €Ly

Répeating the above construction, define D for a W-invariant polynomial p by
2(Dy,...Dy) = E ’ij’)au,.
weWw

Since in the construction of L, and L, we use only the commutation relations (3.35) for
!, and o, these operators just coincide. The trigonometric Dunkl operators are from [8].
Dunkl introduced their rational counterparts (see also [13] and references therein). When
defining my operators I also used [26]. Heckman’s ‘global Dunkl operators’ are sufficient
to introduce QMBP, but do not commute.
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We are now in a position to introduce the QMBP with the eigenvalue = (A, 0 €
C". 1t is the following system of differential equations for a C-valued function 1.

Lp"b:p()‘h-'- 7An)w (PGC[IH--- 7xn}w)-

It is known [24] (and easy to see by looking at the leading terms of L,) that the dimension
of the space of solutions ¢ is |W|.
Summarizing, we come to the theorem.

THEOREM 3.8. Applying tr we get a homomorphism
tr: SOlez(V)‘) — SOIQMBP()\).
Here Solgapp()) denotes the space of solutions to QMBP with the eigenvalue X,

We can say more for concrete represenatations, especially for the induced representa-
tions J5 (see (3.4)). We define the ‘trace’ :

tr:Jy — C
as the map dual to the embedding
C —_ J,\ = C[Il,. .. ,:En]/L)\

sending 1 to'l € C[ry,... ,2,]. Here L, denotes the ideal generated by p(z) — p(}),
p € Clzy,... ,z,]"W. One easily checks that tr satisfies the conditions (3.37).

THEOREM 3.9 ([7]). For any A € C*, tr gives an isomorphism
tr: Solaxz(J3) = Solgmpp(}).
PROOF. The key observation:
for any Hy- submodule 0 # M C J, we have tr |5 # 0. (3.38)

Indeed, if 0 # f € M, then there exists a polynomial p(z) € Clzy,. .. ,2,) such that
f(p) # 0. However f(p) = tr(p(f)) € tr(M).

To prove Theorem 3.9, it is enough to show the injectivity of tr, since the surjectivity
will then follow by comparing the dimensions of the solution spaces (both of them are
{W1). So let us suppose that for ¢(u) € Solxz(J3) identically

tr{e) = 0. (3.39)
We will show that
tr (Hgp) = 0. (3.40)
Differentiating (3.39),
— 850 — i Sor ) .
O—tr(au‘)—k 3 uatr<eua*1<p + tr{zip).

t a€ly
By the W-invariance of tr, tr(sa¢) = tr(e) = 0. Hence
tr{zyp) = 0. (3.41)
Differentiating this equation by u; we have

0=k > vitr (w,» j" ltp) + tr{ziz;p).

u,
€D €
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Using the commutation relations of z; and s,, we deduce from (3.39), (3.41) that
tr(z;z;0) = 0.
Proceeding in the same way, we establish that
tr(zi, - xyp0) =0

for any 45,... ,4;. Combining this with the W-invariance of tr, we get (3.40).

For each u®, consider the submodule M = Hgp(u®) C J5. Then tr iy = 0, and from
the key observation above, we deduce that M = 0. This completes the proof of Theorem
39. O

The map from Theorem 3.9 was found by Matsuo [37] for induced representations 7). He
proved his theoremn algebraically (without the passage through the trigonometric Dunkl
operators discussed above) using an explicit presentation for AKZ in I,. The isomorphism
for J§ (or for I, with properly ordered X - (3.6)) was established independently and
simultaneously by Matsuo and the author in [13]. He proved that a certain determinant
is non-zero for properly ordered A. I used the modules J. Matsuo was the first to
conjecture that the QMBP (the Heckman-Opdam system) and a certain specialization of
the trigonometric KZ from [4] are isomorphic. The affine KZ were defined in full generality
a bit later (in [6]).

Let us give the formula for the simplest L,.

EXAMPLE 3.1. Let py(21,...,2,) = ¥.0o; %o, 2;. Then we have

k(1 — k)

m + const.

L, = LP; = ZB',,,B.- -+ Z (a,a)
i=1

a€X4

It was studied in [39].

REMARK 3.4. More generally, let A be a C[W]-module and
MY \°®
Vis = IndqW](A)/LA) .
As before, L, is the ideal generated by p(z)~p(A), p € Clzy,... ,z,]". Then the following
holds

Solaxz(Vans) = Solguep, (M)

where now the right hand side means a matrix version of QMBP (sometimes it is called
spin-QMBP). It was introduced in [13] for the first time. It is a ceratin unification of the
Haldane-Shastry model and that by Calogero-Sutherland.
For example, the L-operator corresponding to p; above reads
Z k(st —k
Ly=3 3.8+ Y (a,a)—(s—a—) + const,
i=1

- (eua — e‘“0)2
where by s, we mean the image of s, in Aut(A).
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3.5. The GL, case. Let us describe AKZ and QMBP in the GL, case.
In §2.4, we introduced the degenerate affine Hecke algebra of type GL,. It is the algebra

H:z ={C8,,n,... +Yn)
subject to the following relations:
sy —Yimsi =k,  sy;=yis ((#£5,7+1),
viy; =y (1<4,5 < nj.
As in §2.4, we will use the coordinates v;.

To prepare the passage to the difference case, we conjugate the AKZ for GL, by the
function A* for A = [Tic;(e” — €). The equation becomes as follows:

9e _ sij — 1 31‘1_1) ; ( n+l
avi*(k(zeu,_u,_l Zev,_ui_l +yi+ ki - 5 ) ®.  (342)

i(>) i(<i)

Only in this form it can be quantized (see §4.2). The system is consistent and S,-invariant.
The corresponding Dunk! operators are given by the formula

D= §- —k (Z(e’*‘”’ ~DTH e =) = 3 (e =1 oy~ 1) i - ";1) '

> J(<i)

Here 0y; stands for the transpositions of the coordinates:
OV = 0;0;;5.

Similary, 0., means the permutation of the coordinates corresponding to w1,
The main point of the theory is that they satisfy the relations from the degenerate
Hecke algebra:

[DhDj] =0= ‘:D;,yj], : ?éj, i1 D — D:‘+10'ii+l =k

It holds for any root systems. This statement is from [13]. In these notes we will deduce
these relations from the difference theory (where they are almost obvious). These relations
readily give that p(D1,...,D,) and the corresponding L, are W-invariant for the W-
invariant polynomilas. Use the description of the center of H' to see this.

In the case of GL,, given symmetric p € Clxy,... ,z,)%,
p(D1,..., D)= ¥ DPs,,
wESn

where D are scalar differential operators,

Ly, =p(Dy,...,D,)

= (p)
aymm.poly._ Z Dw ’

wes,
Let us take the elementary symmetric polynomials:
Em(at) = Z Liy w0 Tipyy
i <K
as p, setting L,, = L, . Clearly
n
a

i=1 B,

L
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The next operator is:

a2 k v — U; 8 8 B+l
Lz—zaviavj_EZCOth( 2 )(a_t)‘-”é;])_:l—( 3 )

i<y i<

When we replace e; by p = 3,27, the corresponding L-operator is conjugated (by
A¥) to the original Sutherland operator up to a constant term [44]. For special values
of the parameter k, these operators are the radial parts of the Laplace operators on
the symmetric spaces. A particular case was considered by Koornwinder. The rational
counterpart is due to Calogero. It is equivalent to a rational variant of the AKZ (an
extension of the rational W-valued KZ from [4] by the z-s). Here the Jy-modules cannot
be represented as I, the theorem holds in terms of J only (see [13]). See also [24] and
[40] where the algebraic and analytic theory was developed systematically.
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4. Isomorphism theorems for the QAKZ equation

Let us now turn to the g-deformations. We introduce the quantum affine Knizhnik—
Zamolodchikov (QAKZ) equation, and show that there is an isomorphism between so-
lutions of the QAKZ equation and solutions of the generalized Macdonald eigenvalue
problem.

4.1. Affine Hecke algebras and intertwiners. In this section we recall the defini-
tion of the affine Hecke algebra A, in the case of GL,.

Let ¢ € C* be a parameter. Then M., is the algebra defined over C by the following set
of generators and relations:

generators : Ty,...,T,.,,¥,... Y,

relations : (T;=t)(Ti+t71) =0, (1<i<n—1) (4.1)
T = T Ty, (1<i<n~2) (4.2)
L =171, (li-jl>1) (4.3)
YY, =YY, (1<4ij<n) (4.4)
NI =TY. (#ii-1), (&.5)
T7WYI ' =Y. (1<i<n—1) (4.6)

The relations (4.1) are called the quadratic relations, (4.2)-(4.3) the Coxeter relations,
(4.4) the commutativity, and (4.5),(4.6) the cross relations.
Set

P=T7 . T,V T
It follows from the defining relations (4.1)-(4.6) that the right hand side is independent
of ¢ (1 £1 < n) and therefore equals to

P=T T, ,Y, = KT T, (4.7)

LEMMA 4.1. The algebra HY can be presented as
H:\=(Tlv 7Tn-17P)/ ~y (4.8)

where the quotient is by the quadratic relations (4.1), the Cozeter relations (4.2)-{4.3) and
the following:

{a) Pl,.; =TiP (1 <i<n),

(b) P" is central.

PROOF. Notice that in terms of ¥;’s we have P* = Y ---Y,. The relations (a) and (b)
readily follow from (4.7) and the defining relations (4.1)-(4.6). For instance,

PL P! = Y;Tx_l(Tz_lTlTﬁTlYl_] = Y1T1_1(Tszqu—l)TlYf1 =T

To establish {4.8), we start with 7},...,T,_,, P and introduce the elements ¥,....Y,

by
Yi=Plhy Ty, Ya=T7'MT7Y ...

We must check the commutativity ;¥; = Y31, T;Y; = YiT; (5 > 1), etc. using (a), (b).
The first reads
NTTI T = TP T,
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We plug in the above formula for ¥; and move P to the left. The commuativity with
‘distant’ T is obvious. The other relations formaly follows from these ones. We leave the
verifications to the reader as an exercise. [

4.2. The QAKZ equation. In this section, we introduce the QAKZ equation.

DEFINITION 4.1. For u € C, we define the intertwiners by

_ 4t
14
Fiw) = — %7 (4.9)
t+ ev —1
They satisfy
F(uw)F(-u) =1, (4.10)
F(u)Frp(u + 0)Fi(v) = Fi (V) Fi(u + v)Figa(u). (4.11)

The second relation can be deduced from Lemma 3.7 as we did for the degenerate Hecke
algebra.
The guantum affine Knizhnik-Zamolodchikov (QAKZ) equation is the following system
of difference equations for a function ®(v) that takes values in ., (or any H}-module).
@(1)1,... ,’U,‘+h,... ,'L}n)
=Fialvi—vip +h). Rl —o+ AT TiaY
XTIt T Faca(vi = o) - - Filvi = viga)
X®(vy,. ot Uiy ytm) (E=1,...,0). (4.12)

Here A is a new parameter.

THEOREM 4.2. The QAKZ system (4.12) is self-consistent. It is invariant in the fol-
lowing sense: if ®(v) is a solution, then so is

Fi(vigr — 03} 5 ®@(v) = * (Fi(vi ~ vip1)@(v)) -
This follows from (4.10), (4.11). Later we will make it quite obvious.
Let us discuss the quasi-classical limit of the QAKZ system. Setting

t = ekh/2

= qu q = eh7
let h — 0. The generators T}, ¥; are supposed to have the form

kh

T, = s,-+?+~- (s2=1),
Y, = 1+hyi+--,
where by --- we mean terms of order A?. The relations of the degenerate affine Hecke
algebra for s;,y; can be readily verified. Using the formula
kh

R = 14 s D4

et —
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we find that
RO .. ity ) =8 v )

$i;—1 85— 1 . on+1l
=Sy, +k 2 - H - (.. v )+
{y‘+ (]E evi—vi — 1 Z evs—vi _1 +Z 2 )} ( » Uiy )+

(>1) J(<i)

Hence the AKZ equation (3.42) is a semi-classical limit (k — 0) of the QAKZ equation.
To make the QAKZ equations more transparent, let us discuss the action of the affine
Weyl group. The affine Weyl group of type GL, is the semi-direct product

S, =8, x 2",
where
n
= @Z‘)’,
i=1
is a free abelian group of rank n. Define the action of §, on a vector v = (v1y... ,v5) ER"
by
3V = (V1,00 0y, Vis e, V) = 850, 1< 7,

v = (v, v+ Ry, o), () = v — A6
We also introduce
T =781 8a-1 = 81" 8p-1Yn-

Its action on R” and the coordinates reads as

o= (v + hyv1,. .. yVnc1), "o =0y — R, Tvy = v,

LEMMA 4.3. §, can be presented as
Sn = (Sla' . 73n—1)7r>/ ~

where the relations are

2 =1 6. — a.q. P — it 1 Y . = g g:

si=1, sis;=s;8 (li—j1>1), sisyrs= Si418:i8i+1,
and

(a) ms,ymr=5; (1 <4< n),
(b) 7™ is central.

It is convenient to represent the elements v;, v graphically.
Fig.7 showes a reduced decomposition of 4;:

Vi = Siey 81 MSpay 0 S
For a function ¥(v) with values in H¢, let

55(‘1’) = F,'('U,‘+1—‘U1')"\I/, (4.13)
#(¥) = PTU. (4.14)

THEOREM 4.4 ([9]). The formulas (4.13), (4.14) can be extended to an action of S,.
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FIGURE .7. Graphs for v,w

We denote this action by §, 5 w : ¥ + @(T). For instance,
F()(v1,. .., vn)
= Fioy(vieg — o)™ - Fi(vr — ) T PFyo1(vi — vn = A) -+ Fi(v; — vi41 — B)
X\I’(Ul,... , V5 —h, ,‘l)n).

Hence the QAKZ equation simply means the invariance of ®(v) with respect to the pair-
wise commuting elements +;:

QAKZ &= #(®) =0 (i=1,...,n). (4.15)

Let us connect QAKZ with the q-KZ introduced by Smirnov and Frenkel-Reshetikhin
[43, 23]. We fix an N-dimensional complex vector space V and introduce T' € End(V & V)
by

N
T=(-t")Y Ei®E;;+3Y E;®E;i+tY E;® E,
<) By i=1
due to Baxter and Jimbo. The algebra H! acts on V" by
T{a1 @ ®a)=a:1 @+ ®T(ai ® ai41) ® -+ R ay, (4.16)
Plai® - 8)=Ctn®4® R an_, (4.17)

where a; € V and C = diag()y,..., An). One can check that this action is well-defined
by a direct calculation.
For N =n, let

(V®")0 = span{e,1) @ @ eym) | w € Sa}

be the 0-weight subspace. Here e;,... e, denote the standard basis of V. It is easy to
see that this subspace is closed under the action of H.. We state the next proposition
without proof.

PROPOSITION 4.5. [f N =n and A = (A,...,A,) is generic, then the 0-weight space
(V®)q is isomorphic to [, = Indg[sz,,m,y,,]()‘)-
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Writing down AQKZ in (V®"), we get the q-KZ (for GL, and in the fundamental
representation). Combining this observation with the isomorphism with the Macdonald
eigenvalue problem (our next aim) we can explain why the Macdonald polynormials appear
in many calculations involving the vertex operators.

4.3, The monodromy cocycle. Let ® be a solution of the QAKZ equation. Thanks
to (4.15), W(®) is also a solution of the QAKZ equation for any w € §,. We define
T, € H;, by

“T, = 07 '9(®) forwe§,
and call it the monodromy cocycle. It follows From (4.13) and (4.14) that

Fi(vi — vig1)® = %07, (4.18)
and
P =""0T,. (4.19)
Here 7; stands for 7.
LEMMA 4.6.
“’2_1(’]',“1)7',,,2 = Topw, forwy,w, € §,.
Indeed,

¢w“‘m']‘wlula = m(q)) =1y (12}2@) =1 (q)wzlzlm) = QWILUWLMTW:'

The QAKZ equation implies that 7, = 1. Hence T, depends only on the image @ of
win §,.

Let F(C*, Hy,) be the set of HY-valued function on C*. Next we define two anti-actions
of gn:

0,(T) = ¥y, (4.20)
ol (¥) = 7T, (4.21)

w

where w € §, and ¥ € F(C", H!). Lemma 4.6 means exactly that ¢/ is an anti-action
(ie. 04,4, = 0y,0,,). For instance, 0., (v;) = v + b = o/, (v;).

We note that in the difference theory the monodromy can be always made trivial.
Indeed, the 1-cocycle {T,,,w € W} is always a co-boundary because of the Hilbert 90
theorem. Hence conjugating solutions of AQKZ we can always get rid of the monodromy.
So the above actions ¢, o’ are not too much different in contrast to the differential theory.

This argument can be applied to the AQKZ itself, although the group Z" is infinite.
We can formally solve the QAKZ equation as follows. Let ¥ & F(C*, H:). Then the
infinite sum

> (W), (4.22)
beB
where B = @, Zv, C §,, satisfies the AQKZ, provided the convergence. For example, if
¥ is rapidly decreasing, then one can check that Tyep i)(\I/) is convergent.
We see, that constructing End(V)-valued solution ® to QAKZ for finite-dimensional
H:-modules V poses no problem. What is more difficult is to ensure a proper asymptotical
behavior.
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4.4. Isomorphism of QAKZ and the Macdonald eigenvalue problem. In this
subsection, we introduce the Macdonald eigenvalue problem and prove its equivalence
to the QAKZ equation. This is a g-analogue of the refation between AKZ and QMBP
discussed in §3.4.

Let @ be a solution of the QAKZ equation with values in End(V) for a H}-module V.
We assume that it is invertible for sufficiently general v. Setting o} = o}, we get from
(4.18) and (4.9):

Fifor = vi4)@ = (@),

' t—t! ;
18 = (to} + syl = 1)) @

Let us introduce the operator 7/ (1 <i<n)by
t—t7!

evi—vitl — 1

1) = to} + (ot~ 1). (4.23)

Then T,'® = T;® and o' ® = P® (see (4.19)). The operators T,-/ and-o!, commute with
the left multiplication by T, P and any elements from ;. Using all these:
Y0 =Ty 17 PTocy - TinTi®
=T T Py - TinT/®
=TT, T PTaoy -+ T ®

= Ti’ o Té—la;(T{)_l T (Til—l)‘lg
We come to the following definition:
A=T T e (@) (T 1SS (4.24)
Since Y;® = A'® and ¥; commute with each other,
[AL Al =0.

By the construction, the operators A} act in End(V)-valued functions. However if we
understand them formaly the commutativity can be deduced from the relations

olv; = Vg0l (4.25)
oi0y, = U’v.-no';' (4.26)
o, =0 (4.27)

The latter means that 7,, = 1.
Let Q be a polynomial in n variables. Then

QUi , V)8 = Q(AY,... ,AL)®
and we can represent

QAL AN = 3 D, (4.28)

weS,

where D{? are pure difference operators, which do not contain o), {(w € S,).
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For symmetric @, we introduce a difference operator of Macdonald type Mg by

Mg= 3 D@
wESn

Let © be a C-valued function on C*. The system

Mow = Q(A,.-. ) ). (4.29)

will be called the Macdonald eigenvalue problem. The operators Mg can be calculated
for o instead of 6. As in the differential case, the result will be the same.

Fix A = (A,...,A,) € C". We take a left H-module V} with the following properties:

(1) for any symmetric polynomial @ in n variables and all a € W,
QMY ... , Yoa=Q(,. .. , An)a,
{2) there exists a C-linear map tr : ¥, — C such that
tr((T: — t)a) = 0

for all i and a € V).

As always, we fix a (local) invertible solution ®(v) of the QAKZ equation with values
in End(V3). Note that all Vy-valued solutions of the QAKZ equation can be written in
the form ¢(v) = ®(v)a(v) for B-periodic V;-valued function a(v):

al..., vy +hk,...)=a(v)fori=1,... ,n.
THEOREM 4.7. Let V), be an H! -module with the above properties, Solgaxz(V5) be the

space of solutions of the QAKZ equation with values in V, and Solpac(A) the space of
solutions of the Macdonald eigenvalue problem (4.29). Then

Solgarz(Vy) <5 Solaac(N).
PROOF. Let ¢(v) = ®(v)a € Solgaxz(V3). Then

t—t71 \7?
(i -1)® = (i+m—_—1) (1; — t)9.

For a reduced decomposition w = s, - - si, of w € §,,

’ — /_..I_
c,—1l=0 o, — 1



Since o] commutes with the left action of {T'}, we have
(o, - 1O = Z”u 0, (05, — D2

= Z i, - - of,,, (a scalar function)(T;, —1)®
=1

'k-H

i
= (a scalar function)(T}, — t)o), +-- o]
k=t

Using the commutativity of D{?) with T; —t we represent D\® (¢!, —1)® as a sum (7} —
t)¥; for some H,-valued functions ¥;. Finally

Q-1 2a)® = Q(A),... ,AL)D

- ¥ p¥as
weSy

- 5 DPe+ 5 DO - 1)e

w€Sy, w€Sy
= Mq® + Y (T; — t)¥,.
Applying this relation to a € V), and taking tr, we conclude:
QA1 ..., Aa) tr{p) = Mg tr(p).
]

Let us now consider V) = J3. The definition is quite similar to the differential case.
We start with

Jy = Indp (+)/ L.

Here H: = (Th,... ,Tu1) C HY, + : HY — C is the one-dimensional representation
sending T; to t, and L) is the ideal generated by p(¥3,... , ¥)—p(}) (p € Clzy,- .. ,z,]%).
As in §3.1, J? stands for the dual module defined via the anti-involution o of H}:

=Y, T=T.
The main result of this subsection is the following theorem from [10, 12].
THEOREM 4.8. If V), = J3, then the map from Solgaxz(V5) to Solara.(A) is injective.
The theorem results from the following two lemmas.
LEMMA 4.9. Let K be a H! -submodule of J3. Then tr{K) = 0 implies K = 0.
The proof repeats that in the differential case (see ((3.38))).

LEMMA 4.10. Let ¢ be a Vi-valued solution of the QAKZ equation. Assume tr(p) = 0.
Then tr(HLy) = 0.
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PRroOF. First
tr(Tip) = ttr(p) = 0

for all 7. Then 7 = 8397+ -+ 8,_17,

' . ¢ o
on—l_a’vnan 1770 “1

= Oy (E a o'k-H )) +oy, -1,

and tr(a,,¢) = tr() = 0. Therefore, representing ¢ = a (a € V1), we have
tr(Py) — tr(p) = tr ({0} — 1)®a)

n—1
=tr (U'Vn(z Tnoy O (0h — I)Q)“)
k=1

n—1
= ,‘Z tr (0.,"0:,_1 o Oy filo)(Ti — t)@a)

=1

n-1

=3 tr ((Tk = )00y -+ Oy fi(v)B0)
k=
=0,
where f;(v) are C-valued function. Hence tr(Py) = 0 and

tr(Yap) = tr(T2, - T7 ' Py)
= 17" tr(Py)
=0.

Now we shall prove that tr(Yjp) = 0 for all ; by induction. Assume that tr(¥e) =
Ofor k+1 <7 < n Since Y = T ITWPTy - T it is enough to see that
tr{PTh_y - The) = 0. Since ¢ is a solution of the QAKZ equation we have

te(Fly - Y PE,_y - Fyp) = tr(’y"_ ®)
=" tr(cp)
=0.
On the other hand,
Fi(v) = ci(e)(Ti + fi(»))
where ¢;(v) and f;(v) are some scalar functions. Therefore
O0=te(PF 1 Fop) = tr(cas - P (Tacy + froa(v) - (Tx + fulv))e)

= 3 t(a(W)PT, - Tyo)
I=(ty,...0p)

where | = (41,... 1) is a sequence of integers such that ¥ < 1) <ip < - <4, <n— 1,
and cr(v) is some scalar function. I # I = (k,k+1,... ,n—1) then there are the
following possibilities:

() ir#n-1,
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(2) 1y = n — 1 and there exists an m {1 < m < I) such that 7; — i;_, = 1 for any

j=m+1,m+2,... land i, — tq > 1,
(3) otherwise.
case (1): As 4y < n—1, we have
tr(PTy - To) = 4Ty -+ Ty Pop)
=t tr(Pyp)
=0.
case (2): SincelT;,T;] = 0 for [{ ~ j| > 1,
a(P(Ts - T )Ty - T )e) = 0(P(Tipyy - Ty )T+ T )9)
= tl'(T.‘m_1+1 e ]}1+1P:’1ﬁ e Tim‘P)
= " NPT, - Typp).
By the induction hypothesis, tr(PT;, - - - T; ) = 0. Hence
tI’(PT,“ e fo‘P) =0..

m—t

case (3): In this case I = (;,... ,%) must beof the form ¢, = n—1, -y =n-2,...,4

n —{ > k. By induction, t1(PT;, --- T}, ) = 0. So tr(Yip) = 0 for all i.

Because of the relations between T' and Y, it remains to check that tr(¥;, - Y;p) =0

for any {. One can show this by induction on {. O
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4.5. Macdonald operators. We set

A t—t1! .
T, = tU;-}-m(o’;—'l), (1< <n-1), (4.30)
t—¢1 .
Gy = t+ o opd-og), (1<45<n), (4.31)
A = T By Bt B (4.32)

Here ¢, are from (4.20), 0;; = o
Switching from {T'} to {G}:

Tio; = Giyr,

85"

t—t!
P U

Ai = Gigr Ginon G-+ Gy,
Let e, be the m-th elementary symmetric polynomial in n variables. We represent

em(B1,. .., A:) = 3 DM, (4.33)
wESy

-1 _ -1
Gi' =t~

for difference operators D{™), and define
My =M, =3 Dm.
wES,
All these operators are W-invariant, which results from the following lemmas.

LEMMA 4.11. Consider the algebra H generated by T l1<i<n —1) A;j (1< <n).
Then T; — T}, Y; — Aj extends to an algebra isomorphism M, 5. Mareover, zfQ is a
symmetric polynomial in n variables, then Q(Aq,... ,A,) is a central element in H.

Actually this observation is the key point (it can be checked directly or with some
representation theory). We note that the formulas for T' generalize the so-called Demazure
operations and the Bernstein-Gelfand-Gelfand operations. They were also studied by
Lusztig and in a paper by Kostant-Kumar.

Form now on we identify H with Y.

LEMMA 4.12. Let f(uvi,... ,vs) be a function on C*. Then f is symmetric if and only
if (T = )f =0 for all ;.

LEMMA 4.13. Let Q be a symmetric polynomial in n variables. Then Q(A,..
acts on the space of the symmetric polynomials in € (1 < i < n).

- YAﬂ)

Proor. This follows immediately from Lemma 4.11 and 4.12. [J

Let us calculate M;. Since M; is symmetric, it is enough to find the coefficient of Oy
Using the G-representation it is easy to see that o, does not appear in A,,... ,A,. The
o -factor of A; is equal to []L %j;‘—‘l_louﬂ
After the symmetrization we get the formula:

M, = Z H

=1 j5#1

te¥ — ¢~ 1 evi

————,.
eV —evr T

i
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Similarly,
lei — tlet

evi — ¥

M, =
T=(i e im) 1€1 @I
where I = (4,... ,45) is a sequence of integers such that 1 <4y < --- < i, < n.
To recapltulate, let us consider the classical limit of the Macdonald operators. Setting
g=¢c"and t =¢*? h — 0, we have

A
Ml—n

Oy " Oy,

1+hD + O(R?),
hZ——+O k?),

Mo — (n — )M, + L"Z"—-l-) = hL, + O(K®).
4.6. Comments.

REMARK 4.1. Take a solution & = $(v) of the QAKZ equation in an H!-module V,
assuming that @ has the trivial monodromy. Then, for any polynomial p € Clzy,. .- zn],
we have

PV, Ya)® = p(As,... , A0, (4.34)

where A; are the difference Dunkl operators defined before. Note that A} can be replaced
by A, because the monodromy of ® is trivial. We also need a linear functional pr: Vy — C
for a vector A = (Ay,...,A,) € C" such that

pr(¥ib) = Xpr(d) (i=1,...,n) (4.35)

for any b € V. Given any element a € V', let us define a scalar-valued function ¢ = ¢(v)
setting

@(v) = pr(®(v)a) € C. (4.36)
Then the formula (4.34) implies
P(Ase -y A e = p(Ar, ... AL)e. (4.37)
Thus, the scalar-valued function ¢ = @(v) solves the Dunk! eigenvalue problem.

REMARK 4.2. Arbitrary root systems. Let T = {a} € R" be any reduced root system
of rank n (of type A, B,C, D, E, F or G), and
H = {T,... ., T, Xay o, Xn) (4.38)

the corresponding affine Hecke algebra. The bazterization (a parametric deformation
satisfying the Yang-Baxter relations) of 7; will be given by

-1

t —
E = Tz‘ -+ 1 with U; = (u, (1,') (439)
eu —
for each i = 1,... ;n. We also have to use the element
To = XpT;! (4.40)
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corresponding to the simple affine root ag = 6 — 8 for @ being the highest root. Its
baxterization is quite similar:

-1
F0=To+m, (4.41)
where uy = (u,0). The functions Fp, £, ... » F, satisfy the Yang-Baxter equations as-

sociated with the extended Dynkin diagram. For example, in the case of o = o?, we
have
F(0)B(u + 0)F (2u+ v)F(u) = F(u)F(2u + v)Fy(u + v)Fy(v). (4.42)

The arguments of F; can also be determined graphically by means of the equivalent
pictures of the reflection of two particles (see [9]).
Using 7y, the affine Hecke algebra H! has an alternative representation

H o= (T, Th,... , T 1), (4.43)

where II is a certain finite abelian group. The group II is isomorphic to P¥/QV. 1t is the
set of all elements of the extended affine Weyl group .

W =W B, B =@z, {4.44)
=1
preserving the set {ag,c,... ,a,} of the simple affine roots. It gives the embedding of

I into the automorphism group of the extended Dynkin diagram. The action of W on
R" @ R6 is by the affine reflections and the corresponding shifts in the é-direction for B:

Mz4+¢8) =2+ (¢ - (b 2))6
LEMMA 4.24. W = (80,81, .« y su; T1)  with 34 = (8Y) - sp.

The group II can be embedded into the affine Hecke algebra. The images P, of the
elements 7 € IT permute {T;} in the same way as 7 do in W with {s:}. The baxterization
of the elements in I is trivial: F, = P, for each 7 € IL

Keeping the notations of the previous sections, we have the following theorem.

THEOREM 4.15. Given any M'-valued function ¥ = U(u), the formulas
$i(¥) = "(F¥) (4.45)
foralli=0,1,... ,a, and
F¥)=P, ¥ (4.46)
for all 7 € Tl induce a representation of W.

The QAKZ equation for ¥ is the invariance condition E(q)) = ® forall b€ B. It can be
shown that this equation is equivalent to the difference QMBP associated with the root
system % defined via similar Dunkl operators. A conceptual proof of this isomorphism
theorem is given by means of the intertwiners of double affine Hecke algebras (see [10, 12]}.
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5. Double affine Hecke algebras and Macdonald polynomials

5.1. Macdonald polynomials : the 4; case. The subject of this section is to show
how the Hecke algebra technique is applied to the Macdonald polynomials. We will
concentrate on the duality and the recurrence relations. The key notion will be the
double affine Hecke. Let us start with 4;.

The corresponding L-operator in the differential case reads as follows
AP Ll

€ —e ™ du

ou?
where k is a complex parameter. There are two special values of k when the operator L)
is very simple. For k =0 we have L(® = 9?/0u?, When k = 1,

J AL + &2, (5.1)

5
(1) — d—l : — el et
L —Buzd’ with d=e*—e™. (5.2)
Similarly, we can conjugate by d* for any k:
2 —
gerwgk = & Ak(k—1) (5.3)

A (eu — e—u)?'
Sometimes L is more convenient to deal with in this form.
Let us now consider the eigenvalue problem for the operator L)

L®p = 22, (5.4)
If £ = 1, the solution of this equation is immediate:
yy __ sinh{u})
#(uA) = sinh(u)sinh(X)’ (5:5)

In this normalization it is symmetric with respect to u and A. Without sinh(}) it gener-
alizes the characters of finite-dimensional representations of SLy(C) (k=1).

If k = 1/2, this operator is the radial part of the Casimir operator for the symmetric
space SL,(R)/SO2(R). It is the restriction of the Casimir operator C on the double coset
space SO\5L,/SO; wich is identified with a domain in R*/Sz. If & = 1,2, then L&)
corresponds in the same way to SL,(C)/SU(2) and SLy(K)/SUs(K) for the quaternions
X.

For any k, one can find a family of even (u — —u) solutions of the form

pr. = €** + 7™ + lower integral exponents, (5.6)
such that
L, = (n+ kP, (5.7)
for n = 0,1,2,.... This family of hyperbolic polynomials satisfy the orthogonality rela-
tions
Constant Term (prpmd®) = cnbum. (5.8)

They are called the ultraspherical polynomials.
We can also consider the rational limit
& 2%

du? + u u (5.9)



of the operator L"), switching from the Sutherland model to the Calogero model. The
solutions of the rational eigenvalue problem are expressed in terms of the Bessel function.
In this case, the solutions can be normalized to ensure the symmetry between the variable
and the eigenvalue. In the trigonometric case it is possible only for two special values
k=0, 1. It is one of the main demerits of the harmonic analysis on the syminetric spaces.

In the difference theory, this symmetry holds for any root systems. This discovery
is expected to renew the Harish-Chandra theory. The so-called group case (k=1)is an
intersection point of the differential (classical) and difference (new) theories.

We now turn to the difference version. We set z = ¢* and introduce the ‘multiplicative
difference’ T'; acting as I',(f(z) = f(qz) and satisfying the commutation relation Pz =
gzT,. The Macdonald operator L is expressed as follows:

_tz—t7lg™? tr~l -tz
- q

L

L {5.10)

r—z! =l -2z

The parameter £ in the difference setup is determined from the relation t = ¢*. When
g =t (or k = 1), the operator L is simple:

L=

Co+ Tz —27). (5.11)

z— 1

Compare this formula with (5.2) in the differential case and notice that (3.11) is easier to
check than (5.2).
The eigenvalue problem

Lo=(A+A Yy (5.12)

always has a self-dual family of solutions. When n = 0,1,2,. .., there exists a unique
family of the so-called g, t-ultraspherical (or Roger-Askey-Ismail) Laurent polynomials

Pn=2" 4+ 27" + lower terms, (5.13)
which are symmetric with respect to the transformation z — z7', and satisfy the equation
Lpn = (tq" + 17 ¢7")p.. (5.14)

The following duality theorem is proved in the next section by using the double affine
Hecke algebra.

THEOREM 5.1 (DUALITY). pu(1¢™)pm(t) = pm(tq™)pa(t) for any m,n =0,1,2,.. ..

If we set

() = , (5.15)

the duality can be rewritten as follows:
(™) = T (tg") (myn =0,1,2,...). (5.16)

The Askey-Ismail polynomials are nothing but the Macdonald polynomials of type A;.
There are three main Macdonald’s conjectures for the Macdonald polynomials associated
with root systerns (see (34, 35)):

(1) the scalar product conjecture,

(2) the evaluation conjecture,
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(3) the duality conjecture.
One may also add the Pieri rules to the list. These conjectures were justified recently
using the double affine Hecke algebras in [11, 14].

5.2. A modern approach to g,t-ultraspherical polynomials. The duality from
Theorem 5.1 can be rephrased as the symmetry of a certain scalar product. Actually this
product is a diffence counterpart of the spherical Fourier transform. For any symmetric
Laurent polynomials f,g € Clz + 271}, we set

{f,9} = (a(L)g)(2), (5.17)
where a is a polynomial such that f(z) = a(z + 7). So we apply the operator a(L) to
¢ and then evaluate the result at = = ¢.

THEOREM 5.2. {f,g} = {g,f} for any f,g € Clz +z77}.

Theorem 5.1 follows from Theorem 5.2. Indeed, if f = m,, and g = 7,,, we can compute
the scalar product as follows:

{TmyTn} = (a(L)Tn)(t) = a(tg" + i_lq—n)nn(t) = Tm(gt"). (5‘18)

Use Lw, = {tq" +t~'¢™")m, and the normalization x,(t) = 1. Hence Theorem 5.2 implies
Tm{gt™) = T,{qt™). Actually the theorems are equivalent, since p, form a basis in the
space of all symmetric Laurent polynomials.

DEFINITION 5.1. The double affine Hecke algebra M1?* of type A, is the quotient
W = (XY, T)/ ~, (5.19)
by the relations for the generators X, Y, T

TXT = X1, YT '=Y"}, (5.20)
YIXWWXT =g, (T-8)(T+¢t ") =0. (5.21)
Here we consider ¢,¢ as numbers or parameters. The first point of the theory is the

following statement of PBW type.
Any element of H € HH can be uniquely expressed in the form

H= Y ¢ X'TY! (¢, €C). (5.22)
4,J€Z
e=0,1

The second imortant fact is the symmetry of %" with respect to X and Y.
THEOREM 5.3. There ezists an anti-involution ¢ : M{ — PH such that $(X) = Y1,
V=X and H(T)=T.

Indeed, ¢ transposes the first two relations and leaves the remaining invariant.
Next, we introduce the expectation value {H}q € C of an element H € 7%’ by

{HYo= Y ct™tt, (5.23)
25k
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using the expression (5.22). The definitions of ¢ and { }, give that
{6(H)}o ={H}o for any H € M. (5.24)

Now we can introduce the operator counterpart of the pairing {f,9} ={g, f} on 1" x
M setting

{A, B}o = {¢(A)B}o (5.25)
for any A, B € 1.

The ¢-invariance of the expectation value (5.24) ensures that it is symmetric
{4,B}o = {B, A}o.

We also remark that this pairing is non-degenerate for generic q,t.
Theorem 5.2 readily follows from

LEMMA 5.4. For any symmetric Laurent polynomials f(z),g(z)€ Clz + 71,
{(f(X),9(X)}o = {f.9}.

To prove the lemma we need to introduce the basic representation of the double affine
Hecke algebra 7H%‘. Consider the one-dimensional representation of the Hecke algebra
Hy = (T.Y) sending T — t and Y = t. We denote this representation simply by +.
Then take the induced representation

V = IndJFH(+) = Mt/ {H(T = t) + BUY — )} = Clz, 2], (5.26)

where the last isomorphism is " « X" mod BT —t) + MH(Y —t). Under this iden-
tification of V with the ring C[z,z~!] of Laurent polynomials, the element X acts on
Clz, 2] as the multiplication by z, while T and Y act by the operators

t-—l

~ t—

T=ts+ p—

respectively. Here s(f)(z) = f(z7'), the equality H f(z) = g(z) in V means that HI(X)-

9(X) € W(T —t) + HH(Y — t). The latter readily gives the desired formulas for T,Y.
The expectation value is the composition

(s—1) and ¥ =sI,T, (5.27)

2LV 2z, s (5.28)

where a is a residue mod 7H(7" — )+ HH(Y — 1) and B(f) = f(t™!) is the evaluation map
at t=1. Take any f, ¢ € C[X, X~1]. Then

{F(X),9(X)}o = {$(F(XNg(X)}o = {F (¥ )g(X)}o = F¥)(g)(t™). (5.29)

The last equality follows from (5.28). If f and g are symmetric and flX)=a(X+ XY,
then

{F(X),9(X)}o = a(L)g)(t) = {f, g}, (5.30)

since the operator ¥ + ¥~ acts on symmetric Laurent polynomials as L. It is straight-
forward. The duality is established.

This method of proving of the duality theorem can be generalized to any root systemn.
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We now discuss the application of the duality to the Pieri rules, the recurrence formulas
for w,’s with respect to the index n. First we will discretize functions and operators.

Recall that the renormalized ¢, t-ultraspherical polynomials 7,(x) are characterized by
the conditions

Lﬂnz(tqn+t—1q—ﬂ)wn’ m(t) =1, (5.31)
where
tz —t71z71 tr~l — L
L= F - T (5.32)
r—z zl—2z

As always, T'z = gz['. Denote the set of C-valued functions on Z by Funct(Z,C). For

any Laurent polynomial f € C[z,2z™!] or more general rational function, we define f €
Funct(Z, C) by setting

flm) = f(tg™) forall me Z. (5.33)

Considering A = (C(2),T) as an abstract algebra with the fundamental relation 't =
gzl’, the action of A on ¢ € Funct(Z,C) is as follows:

Fo(m) = tq™p(m), Te(m) = @(m+1). (5.34)
The correspondence f ~— f, whenever it is well-defined (the functions f may have denom-
inators), is an A-homomorphism C(z) — Funct(Z, C).
Due to (5.31):
L#n(m) = (tg7" + 7 1¢")7au(m). (5.35)

The Pieri rules result directly from this equality. Indeed, the duality #.(m) = Fm(n)
tmplies:

LFg(n) = (t¢" + 17V {n) = (Z + 27 HF(n). (5.36)
Here £ is L acting on the indices m instead of n. Explicitly,
t2qm - t_2 —mA q—m - qm R N e
me+1(n) + m’ﬁm_l(n) = (x +Z 1)7rm(n). (537)

For generic g, t, the mapping f — f is injective. Hence one can pull (5.37) back, removing
the hats:
t2qm - t*Zq—m qm — q~—m

-1 —
(z+z7 Y7, = T - ig + P ———— Tn—1- (5.38)

This is the Pieri formula in the case of A;. See [2]. We remark that this formula makes
sense when m = 0, since the coefficient of 7,,_; vanishes at m = 0. Generally speaking
the ‘vanishing conditions’ are much less obvious.

The Pieri rules obtained above can be used to prove the so-called evaluation conjecture
describing the values of p, at ¢ = ¢. Applying (5.38) repeatedly, we get the formula

z 4+ 27 x,, = ComAmer + lower terms 5.39
: +
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for each £ =0,1,2,.... The leading coefficient ¢tm can be readily calculated:
=12 mti _ 4= _mei
Lttt -t
com =] e T 5.40
m E) tgmti — t-1gm= ( )
Let us look at (5.39) for m = 0:
(z+ 274 = epomp + lower terms. (5.41)

Comparing the coefficients of 2/ + 2™/, we have 1 = coo/pelt), since pp = 2t + 2z~ ¢ + ...
Hence

=142 ¢ =2~
¢ —17%q
Pf( ) Ceo0 o tq ~ t-1g—i ( )

This value is easy to calculate directly (the formulas for Pn are known). However the
method descibed in this section is applicable to arbitrary root systems. We need only the
duality, which is the main advantage of the difference harmonic analysis in contrast to
the classical Harish-Chandra theory.

5.3. The GL, case. In this last subsection, we will discuss the double affine Hecke
algebra and applications for GL,. Since we have already clarified the A, case in full detail,
we will try to get concentrated on the main points only.

In the GL, case, the Macdonald operators My =1, My,..., M, are as follows:

P SD
M.= % th‘—tx—xfr.-,---rim. (5.43)
4

I={i1<..<im} i€l 4
ig!

In this normalization, t = ¢*/? (cf. the differential case). For instance, the so-called group
case is for £ =1/2 (in contrast to SL, considered above).
‘The Macdonald polynomials py for GL, satisfy the Macdonald eigenvalue problem:

Mupy = en("1gM, ... T gy (m=0,1,...,n), {(5.44)

where A = (A1,...,A.) are partitions, i.e., sequences of integers A; € Z such that A, >
A2 > ... 2> A, 20). Here e,, is the elementary symmetric function of degree m. Civen A,
Py = pa(z) is a symmetric polynomial in z = (zy,... ,Zn) of degree |A| = T2 ), in the
form

pa(z) = 23" - - 22" + lower order terms. (5.43)
The lower order terms are understood in the sense of the dominance ordering. Namely,
a partition obtained from ) by subtracting simple roots (0,...,0,1,-1,0,...,0) is lower
than A. For instance,

A A ) > (A =12+ 1, > (A — 1,0, Mg +1 > (5.46)

We will use the abbreviation
thq,\ — (tn—lqh,' . ,f”nth)‘"), (5.47)
where 20 = (n —~1,n = 3,...,—n +1). So Mpp; = em(t*¢*)py. Using k: t = ¢*/2 and

t?pq)\ - q/cp+)\.
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Given a partition A, we set

_nE@ _ pleye.e)
= ) T e, e (549)
THEOREM 5.5 (DUALITY). For any partitions A and p, we have
m(t*#g") = m,(1¢Y). (5.49)
This duality theorem implies the following Pier: formula.
THEOREM 5.6.
£~ g =d g1
em(a")ﬂl)\(x) = Z H 20—1) N h n,\+(1(1‘>, (5'50)
II|=ml'EI t(J )ql S —
i¢l
where €7 = Tier € (sum of unit vectors).
Here the summation is taken only over subsets I C {1,2,...,n} (|} = m) such that

A+ €; remain partitions (generally speaking, dominant). It happens automatically, since
the coefficient of 7a4.,(z) on the right vanishes unless A + ¢; is dominant.

We can also determine the value of the Macdonald polynomial py(z) at & = 1% exactly
by the method used in the A4; case. The formula was conjectured by Macdonald and
prooved by Koornwinder. The above theorems (for GL,) are also due to Macdonald and
Koornwinder. See also [22]. For arbitrary roots they were established in my recent papers.

Our approach is based on the double Hecke algebras. The operators M, appear natu-
rally using the operators A, from (4.32). The latter describe the action of the generators Y;
in the induced representation Ind%(%—) isomorphic to the algebra of Laurent polynomials
CIX{,... , X*]. So the analogy with (5.26) is complete.

The double affine Hecke algebra (DAHA) 7 = HH" for G L, is the algebra generated
by the following two commutative algebras of Laurent polynomials in » variables:

CIXE, ..., X% and Cl¥F,..., Y3, {5.51)
and the Hecke algebra of type A,_;:
H={T1,..., T} (5.52)
with the standard braid and quadratic relations. The remaining relations are as follows:
TiX\‘Ti :)(H-l (Z = 17--- ,TL**l)-, T;‘Xj :XJTt (.7 #Zvl'l'l)u (553)
TV T =Yy (i=1,...,n=1), TY;=YT.(G#£ii+ 1), (5.54)
YUIX Y X =T, (5.55)
¥X;=¢X,V and XYj=q VX (5.56)

Here X = M, X; and Y = ITi=, Y:. They commute with {73,... ,7,_,} thanks to 5.53
and 5.55.

When ¢ = 1,t = 1 we come to the elliptic or 2-extended Weyl group of type GL, due
to Saito [42]. If g = 1 and there are no quadratic relations, the corresponding group is the
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elliptic braid group (m; of the product of n elliptic curves without the diagonals divided
by §,.). It was calculated by Birman [3] and Scott.

Establishing the connection with (4.32), X; = ¢%, T; = T, and Y; = A, give the so-called
polynomial (or basic) representation of 7.

There is another version of this definition, using the element 7. It is introduced from
the formula

Yy=T T, x7} (5.57)
and has the following commutation relations with X; and T::
TXi=Xigr (i=1,...,n~1), 7X,=¢'Xir (5.58)
and
=T, (i=1,...,n—2). (5.59)

In the polynomial representation this element coincides with # from Lemma 4.3. Note
that it acts on the functions X; = e¥ through the action of 7= on vectors v. Considered
formally, 7 is the image of the element P from Lemma 4.1 with respect to the Kazhdan-
Lusztig automorphism, sending T — 771, ¥ — Y~1 ¢ — ¢-1,

Since
Lo XL - Ty =X;, i TinYiTi,---Ty =Y, (5.60)
we can reduce the list of generators. Namely,
M= (X, Y1, T1,... , Thoy) (5.61)
or
M= (X, 7, Ty, ..., Toy). (5.62)

In terms of {T, 7, X}, the list of defining relations of #H is as follows:

(a) X,’X]' = X]'X,' (1 S i,j S n),

(b) the braid relations and quadratic relations for Ty, ... , Toy,

()7 Xi=Xiar (i =1,...n— 1) and 7"X; = ¢" X;7" (i =1,... ,n)

(7T =Tr(i=1,..n—2) and #"T; = Ti7" (i = 1,... ,n=—1).

For instance, let us deduce (5.55) from these formulas. Substituting, the left hand side
equals:

’

(TM‘TH__II cee T2_1)X1(T2 S 7;1_17T~1T1'1)X1_1
= leT;}l s Tz_l(Tz v Tn-l)XlW-l(T{l‘Yl_lTl_l)T1
= T1(7rX17I‘_1)(2_1)T1 = le.

This representation, however, is not convenient from the viewpoint of the symmetry be-
tween X; and Y;, which will be discussed next. It is better to use {¥'} instead of .
The algebra 7 contains the following two affine Hecke algebras:

Hé\' = (X17~" :‘Y'mTls--' aTn—1>)

Hy = (Y. Yo Ty Toy). (5.63)
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They are isomorphic to each other by the correspondence X; « ¥;™!. This map can be
extended to an anti-involution of 7. It is a general statement which holds for any root
systems.

THEOREM 5.7. There exists an anti-involution ¢ : TH™ — PH' such that ¢(X;) =
YLo(Y)=X fori=1,...,n, end ¢(T}) =T, (i = 1,... ,n — 1). It preserves q,t.
PROOF. We need to check that the relation (5.55) is self-dual with respect to ¢. The
other relations are obviously ¢-invariant. One has:
=T X0RX == TP Y (X TTHNTTTX )
= }G_IXZTfQYI(Tl_le—]TfI) = Y1_1X2T1_2Y1X';1~
The latter can be rewritten as ¥; X;'Y;7'X; = T2, which is the ¢-image of (5.55). 0

Using this involution we can establish the duality theorem for the GL,, case in the same
way as we did in the A, case. Generalizing the theory to the case of arbitrary roots we
can prove the Macdonald conjectures and much more. It gives a very convincing example
of the power of the medern difference-operator methods.
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