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In this work a relation between topology and thermodynamical features of gravitational instantons is shown.
The expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for the entropy of
gravitational instantons are proposed in a form that makes the relation between them self-evident. A new
formulation of the Bekenstein-Hawking formula, where the entropy and the Euler characteristic are related by
S= xA/8, is obtained. This formula provides the correct results for a wide class of gravitational instantons
described by both spherically and axially symmetric metfi&§9556-282197)06020-7

PACS numbd(s): 04.70.Dy, 04.20.Gz, 04.62v

I. INTRODUCTION near their event horizon, so no conical singularity removal is
required. The discovery of a zero entropy for extremal black
At the beginning of the 1970s an impressive series oholes, despite a nonzero area of the event horizon, made
theoretical results in general relativity were achieved, whicithem even more important for the present investigation on
led to an interpretation of some laws of black hole physics ashe event horizon thermodynamics. In RE8] it has been
thermodynamical ondd—3]. Remarkably, it was found that observed that the source of such a different behavior between
black holes were endowed with an intrinsic entropy propor-extremal and nonextremal black holes is due to a change in
tional to the horizon area, the so-called Bekenstein-Hawkinghe topological structure. In the latter case the presence of the
entropy. Consistency for such a framework was subsequentlvent horizon is no longer associated with a nontrivial topol-
achieved thanks to Hawking's discovery of black hole radiangy: the Euler characteristic indeed vanishes for extremal
tion [4], which results from the application of quantum field p|ack holes, whereas it is different from zero for the nonex-
theory to such peculiar space-times. Soon after, thermodyremal ones. All these considerations seem to suggest that
namical aspects of black holes appeared more evident in thgremal black holes should be considered as a rather differ-
Euclidean path-integral approa¢h]. If one considers the gpt object from the nonextremal ones.
Einstein-Hilbert action plus a matter contribution in the gen- | this work we shall prove that Euler characteristic and
erating functional of the Euclidean theory, one finds that thegravitational entropy can be related in the same way in al-
dominant contribution to the Euclidean path integral is givenmgst all known gravitational instantons endowed with event
by gravitational instanton€.e., nonsingular solutions of the norizons. In particular, we shall show that the Euler charac-
Euclidean Einstein equationsn space-times with event ho- teristic and entropy have the same dependence on the bound-

rizons, this usually implies that metrics extremizing the Eu-gries of the manifold and we will relate them by a general
clidean action are gravitational instantons only after removajormula. This formulation extends to a wide class of instan-
of the conical singularity at the horizdis]. A period must  tons, and in particular to the Kerr metric, the known results
therefore be fixed in the imaginary time, which becomes g8-11] about such a dependence.

sort of angular coordinate. It is well known that Euclidean  Finally, it is important to stress that in order to obtain this
quantum field theory with periodic imaginary time is equiva- resyit one has to consider not only the manifdd associ-
lent to a finite-temperature quantum field theory in Lorentz-ated to the Euclidean section describing the instanton, but
ian space-time, where the temperature is the inverse of thgsg the related manifoldl, which is bounded by the sets of
imaginary time period. In such a way thermodynamics apfixed points of the Killing vector, associated to isometries in

pears as a request of consistency of quantum field theory Qe imaginary time. This should imply boundary contribu-
space-times with Killing horizons, and in this sense we shalljons also for cosmological, compact solutions.

define such a thermodynamics as “intrinsic.”

In Refs. [6,7] it has been shown that the Bekenstein-
Hawking law, S=A/4, for black hole entropy fails for ex-
tremal ones. These objects were already considered “pecu-
liar,” since their metric does not show any conical structure

Il. EULER CHARACTERISTIC
AND MANIFOLD STRUCTURE

The Gauss-Bonnet theorem proves that it is possible to
obtain the Euler characteristic of a closed Riemannian mani-
*Electronic address: liberati@sissa.it fold M" without boundary from the volume integral of the
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N conserved charge3; and relative potentialg;, and we then
Seszﬁzj gabcdR* R, (2.))  work in a grand-canonical ensemble. The grand-partition
M function Z, the free energyV, and the entropys are

where the curvature two-fornkR?, is defined by the spin

connection one-forms?, (for details see the Appendias Z=Trexd —(BH—uiCi)]=exd — W], 3.

R%,=dw?,+ 0? 0%, . (2.2 W=E-TS-uC;, 3.2
In a closed Riemannian manifol", Chern[12,13 has S=B(E—u;C))+In Z, (3.3
defined the Gauss-Bonnet differentiatform Q (with n
even respectively. At the tree level of the semiclassical expansion,
(-1 Z~exd — gl

0 g o R DR, (29

1 1
and he has then shown th@tcan be defined in a manifold le=T6- f [(=R+2A) +Laned] + 5~ j [K],
M?2"~1 formed by the unit tangent vectors bf". In such a M M
way () can be expressed as the exterior derivative of a dif-
ferential (h—1)-form in M2"~*:

(3.9

wherel g is the on-shell Euclidean action apd]=K—Kj is
2.4 the difference between the extrinsic curvature of the mani-
fold and that of a reference background. We want to stress
He has also proved that the original integral(fover M" here that the prqced_ure We'just showed has some subtleties
can be performed over a submanifold”. This that are well studied in the literature. One of these is that the

n-dimensional submanifold is obtained as the image inSchwarzschiId solution is a maximum and not a minimum of
M2~ of a continuous unit tangent vector field defined overthe Euclidean effective action. This is related to the fact that

M" with some isolated singular points. By applying Stokes' @MY black hole in vacuum ISa highly ““St"%b'e Obj@.ﬂ. can
theorem one thus gets be seen 2by the negative value of |ts_ s_pecmc heat
c=—-8wM"); but of course any self-gravitating system
shows such a behavior, due to the attractive nature of grav-
SVO'“me=f n9=f anf L (2.5  ity. The problem of performing a thermodynamical analysis
M v N of black holes, considering a grand-canonical ensemble, has
Since the boundary of" corresponds exactly to the singular been studied thoroughly by Yorki6], who suggested to
points of the continuous unit tangent vector field defineqconsider the black hole in a box. Such a choice automatically
overM", and bearing in mind that the sum of the indices ofStabilizes the black hole and enables one to perform a further
a vector field is equal to the Euler characteristic, one find$émiclassical calculation. One can also consider the higher-

that the integral of over the boundary 0¥" is equal to the Order corrections to the action. Unfortunately neither one-
Euler numbery. For manifolds with a boundary, this formula 100P graviton contribution17] nor matter onepl8] seemto
can be generalize.4]; be able to stabilize the black hole, since they are small in

comparison with the tree-level term, at least in the regime of
negligible back reactioffthat is far away from the quantum
Ses=Sgz "+ Sg%mdary:f nﬂ_f nH:f nH_f AL gravity regime.
M ™ W n To computeZ andl g it is important to correctly take into
account the boundaries of the manifditf. We now evalu-
Thus, the Euler characteristic of a manifold" vanishes ate separately the two terms occurring in the right-hand side
when its boundary coincides with that of a submanifgfl  of Eq. (3.4). To obtain B(E— u«;C;) one can consider the
of M2 1, probability of transition between two hypersurfaces rat
The four-manifolds under consideration can have aequals constariivherer=it), sayr; andr,. In the presence
boundary formed by two disconnected hypersurfaces, sagf conserved charges one géi$]
IM"=(ri,,Tou)- As far asv" is concerned, the abovequoted
unit tangent vector field coincidgagain for the cases con- (re|moy=exd — (1o— ) (E— uiC) 1~exd — I glov -
sidered herewith the timelike Killing vector fieldd/d7.
Hence the boundary will be the fixed-point sets of such a
vector field. The event horizon is always such a set; then the The last equality in this equation is explained by the fact
boundaries o™ will be at r, and possibly at one of the that a hypersurface at=const has a boundary correspond-

actual boundaries of1" which, for sake of simplicity, we Ing to the sets of fixed points for the Killing vectardr.
shall assume at,;. Hence its boundary coincides with that\af.

Remarkably, for the manifolds under consideration,
Vouk=Mpui; therefore the bulk part of the entropy always
cancels also for metrics that are not Ricci flat. The entropy

Following the definition of gravitational entropy adopted then depends on boundary values of the extrinsic curvature
in Ref. [15], we consider a thermodynamical system withonly. Thus, one obtains

Q=—dIIL

Ill. ENTROPY FOR MANIFOLDS WITH A BOUNDARY
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0= 7< B, which is the generalization of the conical singular-
ity removal condition for the metrics under consideration. It
is easy to see that this corresponds to chodsing

(3.6

— 2U\/ -1
The analogy between E¢B.6) and Eq.(2.6) is self-evident. p=Ami(e )f:fh] ' 4.7

For the boundaries o and M, the same considerations as

at the end of Sec. Il hold. By expressing Eq(4.5 as a function of the actual bound-

aries, which aredV*=(ry,,ro,) and dM*=(ry,,r o), ONe

IV. GRAVITATIONAL ENTROPY gets

AND EULER CHARACTERISTIC Sea= 2[1_(eURr)2]rh
FOR SPHERICALLY SYMMETRIC METRICS
_ 2Uy 7 -1 2Uy 1 _(aUpry\2
In this section we will find, for a given class of Euclidean [(e )r:rh] {(e™)T1—(e"R) ]}rin' (4.8
spherically symmetric metrics, a general relation between

gravitational entropy and Euler characteristic. We will then'We can also rewrite Eq4.8) in a more suitable form for our

explicitly treat the most interesting cases.

A. Euler characteristic

next purposes:

X=%[(2U'ezu)(1—eZUR’2)][pn, 4.9

In this section we compute the Euler characteristic for

Euclidean spherically symmetric metrics of the form
ds?=e?Vdt?+e 2Vdr2+ R%(r)d2Q. (4.1

The associated spin connections read
01 1 2Uy\ 7 21 Up’
w :E(e )'dt, w=e-R’d#,

w3=e"R’sin 6d¢, w?=cosodde, 4.2

and the Gauss-Bonnet action takes the &

Svolume:

1 1
abrpcd_— 01lpR2
GB 3972 fMSabcdR UR 172 fvd(w OR?3)

1
_ 01p23
. va OR%, 4.3
The boundary term i§9,14]

1 4
bound
Ses" =~ 35 f aMEade( 20°°0R% - = aabmagmeeb)

1
= — 01, 23
i LM“’ OR%3, (4.4)

Combining Eqs(4.3) and(4.4) one eventually gets

1
SGB: S\éoéume+ Sgcémdary: m ( f _ f )w01DR23,
Vv oM
(4.9
where for the metric$4.1)
R¥=dw?+ 0*'0e'®=[1-e*(R")?]dQ,

1
wR¥=2(e*)'[1-e®"(R))?]ddt, (4.6

anddQ=sin #déd¢ is the solid angle.

expressing the Euler characteristic as a function of the in-
verse temperaturg.

B. Entropy

For the metrics(4.1) one can obviously use the general
formula (3.6). It is well known[15] that one can write

[K]=J’3M[a}”n#], (4.10

where for the metricg4.1) under investigationw” andn,,
are

>U 2coté
w*={0,—2e"(s,U+24, InR),— 20/,
B 1
n,= O'F“’O'O , (4.11
and they lead to
w*n,=o'n;=-2e"(9,U+24, INR). (4.12

By subtracting from Eq(4.12 the flat metric correspondent
term

ds?=dt?+dr2+r2dQ?, (4.13
one obtains
4 2coto
wh= O’_F’__rQ_’O ,
n%=(0,1,0,0, (4.14

INote that condition4.7) gives an infinite range of timéo pe-
riod) for extremal black hole metricfi.e., (€*)’[,—, =0]. This
leaves open the question to know if the period of imaginary time

As already said, we perform our calculations on Riemanntemains unfixed or if it has to be infinite, in correspondence to a
ian manifolds with compactification of imaginary time, zero temperaturgs].
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and tual lack of intrinsic thermodynamics is simply deducible
. from Eq. (4.19 by considerations about the topology of the
0 manifold.
[0*n,]=w"n,—wgn,= —2e%(3,U+24; In R)+ Y We will prove this assumption by studying most of the
(4.15  known solutions with intrinsic thermodynamics. We will
start with metrics of th€4.1) form. Moreover, we will show
Performing the integration of E¢3.6) for a spherically sym-  that Eq.(4.19 also holds for an instanton with a Euler char-
metric metric, and writing explicitly the dependence onacteristic different from 2(.e., the Nariai one where the
boundaries, one gets Euler characteristic equalg 4nd for an axisymmetric one
. (i.e., the Kerr metricwhich cannot be cast in the form of Eq.
s £ (U’R+2R’)eu—§ " 419 4D
2 r ' ' We will consider both black hole and cosmological solu-
tions. The formers are asymptotically flat solutions, hence
they always have a boundary at infinity,,=. The inner
C. Entropy and topology boundary ofM is usually missing since the horizon, after

We now prove that a relation between the gravitationaremoval of the conical singularity, becomes a regular point
entropy and the Euler characteristic can be found for théf the manifold. By contrast, a drastic change in the bound-

eU

h

general case under consideration. One has ary structure occurs for extremal black holes. In such a case
we cannot fix imaginary time value since metrics present no
A=47R?(ry), conical singularity. The horizon is at infinite distance from
the external observer; hence it is an inner boundar6f
,8:47r[(e2U);:rh]‘1, (i.e., the coordinate of this inner boundaryrjg).

As far as the cosmological solutions are concerned, they
are compact, and therefosé = 0. Instead, the boundary of
, V" is only at the horizon that now is also the maximal radius
r=ry for the space; hence the formulas for the entropy and Euler
characteristic are still applicable, setting,=0 and revers-

R 2R
SZIB? (U'R+2R')6U—T

= %(ZU/EZU)(l—GZUR,Z) ' 4.17) ing the sign in front of the equations.
T V. SPHERICALLY SYMMETRIC METRICS
hence one can relate and y by their common dependence A. Schwarzschild instanton
on
A We first consider the Schwarzschild black hole, where
mxR 2U
— er=(1-2M/r),
S (2Ure2U)(1_eZUR12) ( )
2R U= Sin(1—2M/r)
x| (U'R+2R e~ —eV (4.18 =3I *

r=ry

- U ) R=r. (5.
By definition one hag |,:,h=0, and Eq(4.18 then yields

Using Eq.(4.7) and bearing in mind thaal\=,8rh=47-rrﬁ,

pe TxR(rn) XA one can write the relation betweghandA as
S=mXR(WI(EY) ] Y o= o= 22 #h
4.1 A
(4.19 B (5.2

Some remarks on Ed@4.19 are in order. We evaluated Eq.

(3.6) in a grand-canonical ensemble so this formalgriori Moreover, from Eq(4.16 one gets

is valid only for instantons endowed with nonzero tempera-

ture. Nevertheless, as we said, for extremal black holes there A

is no conical singularity, and therefore @ofixing. The fact S= 4’ (5.3
that Eq.(4.19 gives the expected result also for extremal

solutiong [as seen in these cases one getD, which in Eq.  and from Eq.(4.9) one also finds

(4.19 straightforwardly givess=0] enables us to conjecture

that Eqg.(4.19 is the general formula, which can be applied B 1 B A & 4
to all the known cases of instantons with horizons. The even- X=PBrn 272 22 (5.4

Now, combining Eqs(5.3) and(5.4), one obtains

2We are referring here to the semiclassical resifts] quoted
above. For a discussion about the discrepancies with respect to S= erzz X 2:ﬁ (5.5
string theory calculations, see the Conclusions. 24 327 8 '
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B. Dilaton U(1) black holes \F
In the case of the dilaton (@) black hole solutions param- TA= N
etrized by O<a<1 (where a=0 corresponds to the
Reissner-Nordstra black hol@ one has 12
A

r, r (1-a?)/(1+a?)

1 r, r (1—-a)/(1+a?)
=Bl e )

r a?/(1+a?)
R=r(1——_>
r
r 1-a%r_
++_2_,
2 1+a° 2

ror_
T 1+a*

QZ

rh=ry. (5.6

For such black holes one finds= ,BRrh=47rRr2h, whereR

determines the characteristic scale of distance. As bgfbre
Eq. (5.2],

SEPCETNIN >
From Eq.(4.16 one obtains
, A
S=47R? = 7. (5.8
and from Eq.(4.9) one finds
B 1 _ A 5.9
X_ﬂthWRﬁ_ 277Rﬁ' (5.9
Again, combining Egs(5.8) and(5.9), one gets
_m 2_&
S= 5 xRi=5 - (5.10

C. de Sitter instanton

(5.11

wherer , andA are, respectively, the radius and area of the
cosmological horizon. For such compact manifold no
Minkowskian subtraction is needed; hence, by using Eg.
(4.12 one straightforwardly gets

1

8w oV

S K. (5.12

From Eq.(4.15 it is easy to find

w*n,=—2e"(9,U+24, INR)

A 1 2 (rzA) 12
NEEEEE N
(5.13

Hence, bearing in mind E@4.10, one obtains

S=i #n eYr? sin #dod d¢=ﬂ—2 (5.14
167 J, @ m T g

A

By using Eq.(4.9) with r,,=0 andr,=r,, the Euler char-
acteristic is

ZA

®

(5.19

1

X~

Combining then Eqgs(5.14 and (5.19), it is easily checked
that Eq.(4.19 also holds in the de Sitter case.

D. Nariai instanton

The Nariai instanton is the only nonsingular solution of
Euclidean vacuum Einstein equation for a given mdsand
cosmological constamk. It can be regarded as the limiting

In the de Sitter Cosmo|ogica| case, we can prove how th@ase of the Schwarzschild—de Sitter solution when one

relation Eq.(4.19 is due to the boundary structufieorizons

equals the surface gravity of the black hole to that of the

and “real” boundarie$ of the manifold and not to the pres- Cosm0|Ogica| horizon in order to remove all conical Singu-
ence of a black hole. There now is only a cosmological holarities. This could seem meaningless since, in Schwarz-
rizon and no proper boundary ft, and the topology of the Schild—de Sitter coordinates, the Euclidean section shrinks to
de Sitter instanton is a four-sphere. One has zero (the black hole and cosmological horizons coingide
However, on making an appropriate change of coordinates

U A, [19,2Q, the volume of the Euclidean section no longer van-
e = 1—§r ' ishes, and the space-time can be properly studied. In this
coordinate system, one still deals with a spherically symmet-
1 A ric metric, and the vierbein forms are
U= —In( 1- —rz) ,
2 3 1 1
e®=—sinédy, el=—d¢, 5.1
Rt [ Snedy, el=—de (5.16
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2 1d0 st in d¢ (5.17)
e‘=—=df, e’=—sin . )
VA VA
One then obtains
de’= — A cotze®De!, del=de?=0,
de3= /A cot 6e20e?, (5.18
and
R%=dw%=AeCe!, (5.19
RZ=dw?=Ae’[ed. (5.20
Moreover one has
R:AflIZ
A 4
=5
B 2 (5.2
e )

The ranges of integration are<Qy<p\A, O<é<mr,
0=<0<2m, 0< ¢=<27. The extremes of correspond to the
cosmological horizon and to the black hole horiZ@fl]. It is
worth noting that the period of the imaginary timg, is
B+/A, instead of the usugs. This is due to the normalization
of the timelike Killing vector one is forced to choose in this
space-timé. The form of the Nariai metric does not enable
us to apply Eq(4.9) and we then compute the Euler charac-
teristic from the very beginning. We obtain

2

- Oralre2 a3
Ser mfveDeDeDe

1 T BVR T 27
jf sin fdgf dzﬂf sin #d 6 do¢
41 Jo 0 0 0
2BVA

™

: (5.22

By substitutingB, one can check that E¢5.22 gives the

correct result. In fact, the Nariai instanton has topologyf
S?x S?; hence its Euler number, bearing in mind the product

formula, isy=2x2=4.
The entropy can be easily calculated from E§12. In
this case the extrinsic curvature is given by

cosé
sin &’

K=—A (5.23

and one obtains

3For a wider discussion of this point, see the Appendix of Ref.

[20].
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2m T BN \/KCOS& m B
S=——f d J’ sin&d@f — =—.
8 0 ¢ 0 0 A32 o \/K
(5.249

It is now easy to check that the combination of EGs22
and(5.24) gives Eq.(4.19.

Remarkably, this implies that E¢4.19 cannot be cast in
the form

where « could in principle be any positive constant. Since
Eq. (4.19 holds also for the Nariai instantory must be
fixed to 1.

“A
1

X

5 (5.29

VI. KERR METRIC

The Kerr solution describes both the stationary axisym-
metric asymptotically flat gravitational field outside a mas-
sive rotating body and a rotating black hole with missnd
angular momentumd. The Kerr black hole can also be
viewed as the final state of a collapsing star, uniquely deter-
mined by its mass and rate of rotation. Moreover, its thermo-
dynamical behavior is very different from Schwarzschild or
Reissner-Nmstrom black holes, because of its much more
complicated causal structuteHence its study is of great
interest in understanding physical properties of astrophysical
objects, as well as in checking any conjecture about thermo-
dynamical properties of black holes.

In terms of Boyer-Lindquist coordinates, the Euclidean
Kerr metric read$22]

A 2
ds'=_[dt-a sit de]*+ %dr2+ p2d 62

sir 6
7 [(r’+a®)de—adt]?, 6.1
where
p=r?+a? co< ¢,
A=r?—2Mr+a?. (6.2

Herea is the angular momentum for unit mass as measured
from the infinity; it vanishes in the Schwarzschild limit, and
A is the Kerr horizon function. The roots of the horizon
unction A correspond to two null-like surfaces at

ri:Mt\/Mz—az,

wherer . is the Kerr black hole event horizon and is the
Cauchy horizon around the ring singularitygst 0. The area
and the black hole angular velocity are, respectively,

(6.3

A=4n(ri+a?), (6.9

4For instance, Wald pointed out that in a Kerr black hole it is not
possible to mimic the Unruh-Rindler case to explain its thermal
behavior{21].
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a one obtains, for the quantity in parentheses, in BdL0),
= 7o (6.5
(rhta’) 3ra’(sin 6 cos 6)%\A
_ o eODeZDe3(2FI ( 3 ) J—)
Such a metric corresponds to the following vierbein forms: p

8Mr3a? sin 6 cos
—eODe1De3( . )

A
eozg(dt—asinz ode), e="dr, (6.6 P

VA
in terms of one-forms appearing in E§.6). Such a quantity
has to be evaluated at=ry,.

At this stage some remarks are in order. In the Euclidean

_ 3:sin¢9 s o 3
pdo, e —p [(re+a%)dp—adt], (6.7
path-integral approach the Kerr solution is an instanton

wherep is the positive square root @f. (i.e., a nonsingular solution of the Euclidean actiamly
From Eq.(6.6), one can obtain the spin connection one-after the identification of the points 7(,0,¢) and
forms as[22] (7+2mky tr,0,0+ 2Ky tky) [5], wherex; = « is the sur-
_ face gravity of the black hole and,= = (). With this iden-
_arsing 0 tification, the Euclidean section has topologyx S? and
w=— —e’+Fe", = " T -
p x=2. The condition of a periodic isometry group implies
k,/k1=0q [8], whereqe Q is a rational number. By using
0 a cos 6A ;3 ,Sindcosd | this relation, it is easy to see that the periods are
wy=————F——e’—-a*"——5—¢€’,
2 ,03 p3
B,=2mwk=4m L
o arsing  acosoyA T ! (M2—a?)’
W 3= — 3 e+ 3 e
p p
Be —277——27Tq, (6.12

k2

If one would setq# 1, Eq.(3.6) for the black hole entropy

. JA , arsing would acquire a factoq, but this spurious factor would be

wd=—wlh=r—5e3+ +—e°, absor_bgd in the change of the period @ﬁhat implies a
p p redefinition of the black hole are@.5), which would be-
5 5 comeA=47-rq(rﬁ+a2). Therefore one still expecS=A/4,
w2y=— cosd (r'+a’) 3 Eg Cosa\/ZeO, (6.9 and the fixing ofg=1 will not bring about a loss of gener-

- ——€e°—
Sin @ p p

ality. Moreover in this way the area will be the “physical”
one, as written in Eq(6.5. Hence the Euler number is

where[22]
, Mrh(rh f f2w f (r2—3a* co¢ 0)
Ffiﬂzw_ 6.9 X w° o (ri+a?cod 6)°
o p p*VA Mr
h
By virtue of Egs.(6.8) and (2.2), and the nilpotency of the Xsin 9d6= _'B(rh )(r7h+ a%)?’ (6.13
exterior derivative operatod, the Gauss-Bonnet action in
Eq. (2.6) takes the form Bearing in mind Eq(6.12 and that (ﬁ+ a?)=2Mr,,, one
1 eventually gets
SGB: _ m f (w01DR23+ wOZDleDw23+ wOSDw31Dw23 M2r2
X= =2. (6.19

8 7 77
+020dw®), | (6.10 (rh+a%)

As far as the entropy is concerned, here we follow the
wht_eredw can be expressed in terms of a suitable Comb'procedure outlined in Secs. Il and IV B. From E®.6),
nation (wedge produgtof the typee'lJe!, andr, is the ra- writing w* as

dius of the Kerr horizoti.e., the positive roots ok =0). For

further details see the Appendix and RE#2]. By defining a\/— a9
the quantitie22] wt=— \/_6 ( 7 ) my axVVM’ (6.15
Mr o . .
l=— (r —3a? co¥ 6), and bearing in mind that the Kerr determinant is
Ma cos Jg=p? sin 6, (6.16

—pf,—(Sr —a® cog), (6.11) one finds
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rA 2(r—M) cot @ manifolds[23]. This enables us to argue that intrinsic ther-
o= 0,—2?.— P =2 P 0/, modynamics of some gravitational instantons could be due to
a sort of “gravitational Casimir effect'[24] on such four-
manifolds.
n,= O,L,O,O _ (6.17) Finally we stress that the interesting res@?§,26|, about
JA the nonzero entropy of some extremal string theory black

By subtracting the flat Minkowskian term aé* [see Eq.

(5.7)] one easily obtains

rA

hole solutions, are not necessarily in contrast with ours. In
fact recent calculation®7,28 have proved that the discrep-
ancies between semiclassical and string theory results can be
eliminated if one performs in the former approach a sum
over topologies and imposes the extremality condition after

4
+F' (6.18

?H_ M guantization. It is easy to sd¢@8] that with this procedure
the nontrivial topologies will dominate, in this case reducing
the case to a nonextremal one, with nonzero entropy. Hence
it seems that string model results implicitly involve a quan-
tization procedure where the classical extremal topology is
ignored by means of the quantization procedure. Of course it
is still an open question which of the two procedures could
B better fit reality.

= E(rh_ M). In the opinion of the authors all these problems are deeply

" intertwined and hence they deserve further investigation.

=R

One can then evaluate the Kerr black hole entropy:

B T 2
drf d(pf dﬁpx/K
0 0 0

1

S=" Ton

pVA

Xsin 6-

4
+_
r

rA-I— M
— r‘_
2

(6.19
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The main result of this work is a new formulation of the flzrgzﬁd\;\{[?snsupported in part by the Angelo Della Riccia

Bekenstein-Hawking entropy. This has been achieved by
making explicit how gravitational entropy depends on topol-
ogy. This result has been proved to be valid for a wide class
of gravitational instantons endowed with intrinsic thermody- . '
na?nics. Therefore, it can be considered a confirmation gnd The I_Euler humber of_a four-ma.mfold can be defined as an
generalization of previous result$0,11] (obtained for black alternating sum of Betti numbers:
holes and in a different formalismas well as a compact,
general formulation of the Bekenstein-Hawking relation.
Although our results seem to imply a central role for
space-time topology in the explanation of intrinsic thermo-

dynamics of gravitational instantons, we are not claimingThe nth Betti numberB,, is the number of independent
that it is not necessary to understand the microscopic degre@gysed n-surfaces that are not boundaries of some
of freedom of black holes in order to understand their €N{p+1)-surface. For a compact manifold without boundary,
tropy. The fact that the horizon’s area is still present in EdB,, is also equal to the number of linear independent har-
(4.19 implies a dependence for the gravitational entropy onyonic n-forms, and B,=B,_, (i.e., Bo=B,=1 and
two different objects: a discrete topological paraméier., B,=B,). If the four-manifold is simply connected,=0,

the Euler characteristic, which can be 0, 2, or 4 for the,hereas if there is a bounda§y=1 andB,=0.

known solutions with event horizopsnd the area, which ', the Cartan approach to geometry one deals with differ-
can vary with continuity. Since the topological term comesgjg| forms(see Sec. )l Defining a local coordinate basis of
out in the general formi4.19), for all the space-times en- e formsdx and a local orthonormal basis of one-forms

dowed with intrinsic thermodynamics, this seems to implyga oyer a four-manifoldVl. the metric can be expressed as
that the topological nontriviality of space-time is a necessary ’

(although probably not sufficientondition for the coming
up of the, otherwise hidden, microscopic nature of gravity.

The origin of these hidden degrees of freedom is still a mat-

ter of debate. The authors suggest that the relation he?é{here 7ap IS the flat Euclidean metric tensor with signature

clearly shown between the entropy and the boundary struct 4, and the information about the curvature of the Riemann-

ture of the four-manifold seems to add evidence in favor of@" four-space is encoded in
an interpretation based on the dynamical degrees of freedom
associated to vacuum in topological nontrivial four-

T (rﬁ+a2)2

= =—ﬂﬂ+¥)=é (6.20
4 Mr, XT2TUnTEXTgx

VII. CONCLUSIONS

APPENDIX

(A1)

4
X nZ()(—l)”Bn.

0=0,,dx“@dx"= npe’®e®, (A2)

eP=eldx”. (A3)
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Here ej(x) are the vierbeir(or tetrad one-forms, and they and
can be viewed as a sort of square root of the metric. Note that
the Greek lettersu,v,... denote abstract indices, and Latin
lettersa,b,... internal indices.

We can now introduce the spin connection one-fotsfis
and define the first Cartan structure equation:

de?+ w?,0eP=0, (A7)
respectively.
In Sec. VI the ternz ,,. R2°OR® occurring in the Gauss-
Bonnet action(6.10 reads
1
Te=de?+ 0?,0eP=-T?, e e, & abedR2PIR =6 d( 0 R?+ 02w Hw?®

. (A%)

+ 00w 0w+ wOZde31)

+dw®0dw!?].

whereT? is the torsion two-form of the manifold. The sec-
ond Cartan structure equation defines the curvature two-form
of the manifold[see Eq.(2.1)]:

(A8)

The last termdw®0dw'?=d(0®0dw'?), bearing in mind
thate'Oe'=0, vanishes by virtue of the structure ©f° and
'? [see Eq.(6.6)]. Furthermore, the terndo3! takes the
form

R =dw?,+ waCDw°b=% R?,.e°0e’. (A5)
In the tensor formalism the covariant derivatiVe, is de-

fined by using the Levi-Civita connectiofor Christoffel s asing rF+ A
symbols I';,. By virtue of the metricity conditiongi.e., do™=— p° p°
V.9,,=0) and of the absence of torsidne., T#,5=0),

the Levi-Civita connection is then uniquely determined in
terms of the metric. In the Cartan approach, the spin-
connection one-forms replace the Christoffel symbols. The
Levi-Civita spin-connection one-forms are then obtained by
imposing the metricity and the torsionless conditions, which
yield

a? cog 6|e’0et

ar cosé
- T(p2+ 2a2 S|n2 0)60Dez

1
+ ;G[A(p2—2r2)+rp2(r— M)]et0e®

ryA cosé

(A6) + ~Fsing p?—a? sirt §)e?ed.

sin 6 (A9)

Wah= ~ Wha
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