
Entropy and topology for gravitational instantons

Stefano Liberati*
Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34013 Trieste, Italy

Giuseppe Pollifrone†

Theory Division, CERN, CH-1211 Geneva 23, Switzerland
and Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza,’’ and INFN, Sezione di Roma,

Piazzale Aldo Moro 2, 00185 Roma, Italy
~Received 12 March 1997!
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I. INTRODUCTION

At the beginning of the 1970s an impressive series of
theoretical results in general relativity were achieved, which
led to an interpretation of some laws of black hole physics as
thermodynamical ones@1–3#. Remarkably, it was found that
black holes were endowed with an intrinsic entropy propor-
tional to the horizon area, the so-called Bekenstein-Hawking
entropy. Consistency for such a framework was subsequently
achieved thanks to Hawking’s discovery of black hole radia-
tion @4#, which results from the application of quantum field
theory to such peculiar space-times. Soon after, thermody-
namical aspects of black holes appeared more evident in the
Euclidean path-integral approach@5#. If one considers the
Einstein-Hilbert action plus a matter contribution in the gen-
erating functional of the Euclidean theory, one finds that the
dominant contribution to the Euclidean path integral is given
by gravitational instantons~i.e., nonsingular solutions of the
Euclidean Einstein equations!. In space-times with event ho-
rizons, this usually implies that metrics extremizing the Eu-
clidean action are gravitational instantons only after removal
of the conical singularity at the horizon@5#. A period must
therefore be fixed in the imaginary time, which becomes a
sort of angular coordinate. It is well known that Euclidean
quantum field theory with periodic imaginary time is equiva-
lent to a finite-temperature quantum field theory in Lorentz-
ian space-time, where the temperature is the inverse of the
imaginary time period. In such a way thermodynamics ap-
pears as a request of consistency of quantum field theory on
space-times with Killing horizons, and in this sense we shall
define such a thermodynamics as ‘‘intrinsic.’’

In Refs. @6,7# it has been shown that the Bekenstein-
Hawking law, S5A/4, for black hole entropy fails for ex-
tremal ones. These objects were already considered ‘‘pecu-
liar,’’ since their metric does not show any conical structure

near their event horizon, so no conical singularity removal is
required. The discovery of a zero entropy for extremal black
holes, despite a nonzero area of the event horizon, made
them even more important for the present investigation on
the event horizon thermodynamics. In Ref.@6# it has been
observed that the source of such a different behavior between
extremal and nonextremal black holes is due to a change in
the topological structure. In the latter case the presence of the
event horizon is no longer associated with a nontrivial topol-
ogy; the Euler characteristic indeed vanishes for extremal
black holes, whereas it is different from zero for the nonex-
tremal ones. All these considerations seem to suggest that
extremal black holes should be considered as a rather differ-
ent object from the nonextremal ones.

In this work we shall prove that Euler characteristic and
gravitational entropy can be related in the same way in al-
most all known gravitational instantons endowed with event
horizons. In particular, we shall show that the Euler charac-
teristic and entropy have the same dependence on the bound-
aries of the manifold and we will relate them by a general
formula. This formulation extends to a wide class of instan-
tons, and in particular to the Kerr metric, the known results
@8–11# about such a dependence.

Finally, it is important to stress that in order to obtain this
result one has to consider not only the manifoldM , associ-
ated to the Euclidean section describing the instanton, but
also the related manifoldV, which is bounded by the sets of
fixed points of the Killing vector, associated to isometries in
the imaginary time. This should imply boundary contribu-
tions also for cosmological, compact solutions.

II. EULER CHARACTERISTIC
AND MANIFOLD STRUCTURE

The Gauss-Bonnet theorem proves that it is possible to
obtain the Euler characteristic of a closed Riemannian mani-
fold Mn without boundary from the volume integral of the
four-dimensional curvature:
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SGB5
1

32p2 E
M

«abcdR
ab∧Rcd, ~2.1!

where the curvature two-formRa
b is defined by the spin

connection one-formsva
b ~for details see the Appendix! as

Ra
b5dva

b1va
c∧vc

b . ~2.2!

In a closed Riemannian manifoldMn, Chern @12,13# has
defined the Gauss-Bonnet differentialn-form V ~with n
even!

V5
~21!n/2

2npn/2~n/2!!
«a1•••an/2

Ra1a2∧•••∧Ran11an, ~2.3!

and he has then shown thatV can be defined in a manifold
M2n21 formed by the unit tangent vectors ofMn. In such a
way V can be expressed as the exterior derivative of a dif-
ferential (n21)-form in M2n21:

V52dP. ~2.4!

He has also proved that the original integral ofV over Mn

can be performed over a submanifoldVn. This
n-dimensional submanifold is obtained as the image in
M2n21 of a continuous unit tangent vector field defined over
Mn with some isolated singular points. By applying Stokes’
theorem one thus gets

SGB
volume5E

Mn
V5E

Vn
V5E

]Vn
P. ~2.5!

Since the boundary ofVn corresponds exactly to the singular
points of the continuous unit tangent vector field defined
over Mn, and bearing in mind that the sum of the indices of
a vector field is equal to the Euler characteristic, one finds
that the integral ofP over the boundary ofVn is equal to the
Euler numberx. For manifolds with a boundary, this formula
can be generalized@14#:

SGB5SGB
volume1SGB

boundary5E
Mn

V2E
]Mn

P5E
]Vn

P2E
]Mn

P.

~2.6!

Thus, the Euler characteristic of a manifoldMn vanishes
when its boundary coincides with that of a submanifoldVn

of M2n21.
The four-manifolds under consideration can have a

boundary formed by two disconnected hypersurfaces, say
]Mn5(r in ,r out). As far asVn is concerned, the abovequoted
unit tangent vector field coincides~again for the cases con-
sidered here! with the timelike Killing vector field]/]t.
Hence the boundary will be the fixed-point sets of such a
vector field. The event horizon is always such a set; then the
boundaries ofVn will be at r h and possibly at one of the
actual boundaries ofMn which, for sake of simplicity, we
shall assume atr out.

III. ENTROPY FOR MANIFOLDS WITH A BOUNDARY

Following the definition of gravitational entropy adopted
in Ref. @15#, we consider a thermodynamical system with

conserved chargesCi and relative potentialsm i , and we then
work in a grand-canonical ensemble. The grand-partition
function Z, the free energyW, and the entropyS are

Z5Tr exp@2~bH2m iCi !#5exp@2W#, ~3.1!

W5E2TS2m iCi , ~3.2!

S5b~E2m iCi !1 ln Z, ~3.3!

respectively. At the tree level of the semiclassical expansion,

Z;exp@2I E#

I E5
1

16p E
M

@~2R12L!1Lmatter!] 1
1

8p E
]M

@K#,

~3.4!

whereI E is the on-shell Euclidean action and@K#5K2K0 is
the difference between the extrinsic curvature of the mani-
fold and that of a reference background. We want to stress
here that the procedure we just showed has some subtleties
that are well studied in the literature. One of these is that the
Schwarzschild solution is a maximum and not a minimum of
the Euclidean effective action. This is related to the fact that
any black hole in vacuum is a highly unstable object~as can
be seen by the negative value of its specific heat
c528pM2!; but of course any self-gravitating system
shows such a behavior, due to the attractive nature of grav-
ity. The problem of performing a thermodynamical analysis
of black holes, considering a grand-canonical ensemble, has
been studied thoroughly by York@16#, who suggested to
consider the black hole in a box. Such a choice automatically
stabilizes the black hole and enables one to perform a further
semiclassical calculation. One can also consider the higher-
order corrections to the action. Unfortunately neither one-
loop graviton contributions@17# nor matter ones@18# seem to
be able to stabilize the black hole, since they are small in
comparison with the tree-level term, at least in the regime of
negligible back reaction~that is far away from the quantum
gravity regime!.

To computeZ andI E it is important to correctly take into
account the boundaries of the manifoldM4. We now evalu-
ate separately the two terms occurring in the right-hand side
of Eq. ~3.4!. To obtain b(E2m iCi) one can consider the
probability of transition between two hypersurfaces att
equals constant~wheret5 i t !, sayt1 andt2 . In the presence
of conserved charges one gets@15#

^t1ut2&5exp@2~t22t1!~E2m iCi !#'exp@2I E#]V .
~3.5!

The last equality in this equation is explained by the fact
that a hypersurface att5const has a boundary correspond-
ing to the sets of fixed points for the Killing vector]/]t.
Hence its boundary coincides with that ofVn.

Remarkably, for the manifolds under consideration,
Vbulk5Mbulk ; therefore the bulk part of the entropy always
cancels also for metrics that are not Ricci flat. The entropy
then depends on boundary values of the extrinsic curvature
only. Thus, one obtains
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S5b~E2m iCi !1 ln Z5
1

8p S E
]V

@K#2E
]M

@K# D .

~3.6!

The analogy between Eq.~3.6! and Eq.~2.6! is self-evident.
For the boundaries ofV andM , the same considerations as
at the end of Sec. II hold.

IV. GRAVITATIONAL ENTROPY
AND EULER CHARACTERISTIC

FOR SPHERICALLY SYMMETRIC METRICS

In this section we will find, for a given class of Euclidean
spherically symmetric metrics, a general relation between
gravitational entropy and Euler characteristic. We will then
explicitly treat the most interesting cases.

A. Euler characteristic

In this section we compute the Euler characteristic for
Euclidean spherically symmetric metrics of the form

ds25e2U~r !dt21e22U~r !dr21R2~r !d2V. ~4.1!

The associated spin connections read

v015
1

2
~e2U!8dt, v215eUR8du,

v315eUR8sin udf, v325cosudf, ~4.2!

and the Gauss-Bonnet action takes the form@9#

SGB
volume5

1

32p2 E
M

«abcdR
ab∧Rcd5

1

4p2 E
V
d~v01∧R23!

5
1

4p2 E
]V

v01∧R23. ~4.3!

The boundary term is@9,14#

SGB
boundary52

1

32p2 E
]M

«abcdS 2uab∧Rcd2
4

3
uab∧ue

a∧uebD
52

1

4p2 E
]M

v01∧R23. ~4.4!

Combining Eqs.~4.3! and ~4.4! one eventually gets

SGB5SGB
volume1SGB

boundary5
1

4p2 S E
]V

2E
]M

Dv01∧R23,

~4.5!

where for the metrics~4.1!

R235dv231v21∧v135@12e2U~R8!2#dV,

v01∧R235
1

2
~e2U!8@12e2U~R8!2#dVdt, ~4.6!

anddV[sin ududf is the solid angle.
As already said, we perform our calculations on Riemann-

ian manifolds with compactification of imaginary time,

0<t<b, which is the generalization of the conical singular-
ity removal condition for the metrics under consideration. It
is easy to see that this corresponds to choosing1

b54p@~e2U!r 5r h
8 #21. ~4.7!

By expressing Eq.~4.5! as a function of the actual bound-
aries, which are]V45(r h ,r out) and ]M45(r in ,r out), one
gets

SGB52@12~eUR8!2# r h

2@~e2U!r 5r h
8 #21$~e2U!8@12~eUR8!2#%r in

. ~4.8!

We can also rewrite Eq.~4.8! in a more suitable form for our
next purposes:

x5
b

2p
@~2U8e2U!~12e2UR82!# r in

r h , ~4.9!

expressing the Euler characteristic as a function of the in-
verse temperatureb.

B. Entropy

For the metrics~4.1! one can obviously use the general
formula ~3.6!. It is well known @15# that one can write

@K#5E
]M

@vmnm#, ~4.10!

where for the metrics~4.1! under investigation,vn and nn

are

vm5S 0,22e2U~] rU12] r ln R!,2
2 cot u

r 2 ,0D ,

nm5S 0,
1

Ag11
,0,0D , ~4.11!

and they lead to

vmnm5v1n1522eU~] rU12] r ln R!. ~4.12!

By subtracting from Eq.~4.12! the flat metric correspondent
term

ds25dt21dr21r 2dV2, ~4.13!

one obtains

v0
m5S 0,2

4

r
,2

2 cot u

r 2 ,0D ,

nm
0 5~0,1,0,0!, ~4.14!

1Note that condition~4.7! gives an infinite range of time~no pe-
riod! for extremal black hole metrics@i.e., (e2U)8ur 5r h

50#. This
leaves open the question to know if the period of imaginary time
remains unfixed or if it has to be infinite, in correspondence to a
zero temperature@6#.
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and

@vmnm#5vmnm2v0
mnm

0 522eU~] rU12] r ln R!1
4

r
.

~4.15!

Performing the integration of Eq.~3.6! for a spherically sym-
metric metric, and writing explicitly the dependence on
boundaries, one gets

S52
bR

2 F ~U8R12R8!eU2
2R

r GeUU
r h

r in

. ~4.16!

C. Entropy and topology

We now prove that a relation between the gravitational
entropy and the Euler characteristic can be found for the
general case under consideration. One has

A54pR2~r h!,

b54p@~e2U!r 5r h
8 #21,

S5
bR

2 F ~U8R12R8!eU2
2R

r GeUU
r 5r h

,

x5
b

2p
~2U8e2U!~12e2UR82!U

r 5r h

, ~4.17!

hence one can relateS andx by their common dependence
on b

S5
pxR

~2U8e2U!~12e2UR82!

3F ~U8R12R8!e2U2
2R

r
eUGU

r 5r h

. ~4.18!

By definition one hase2Uur 5r h
50, and Eq.~4.18! then yields

S5pxR~r h!@~e2U!8#21ur 5r h
5

pxR2~r h!

2
5

xA

8
.

~4.19!

Some remarks on Eq.~4.19! are in order. We evaluated Eq.
~3.6! in a grand-canonical ensemble so this formulaa priori
is valid only for instantons endowed with nonzero tempera-
ture. Nevertheless, as we said, for extremal black holes there
is no conical singularity, and therefore nob fixing. The fact
that Eq. ~4.19! gives the expected result also for extremal
solutions2 @as seen in these cases one getsx50, which in Eq.
~4.19! straightforwardly givesS50# enables us to conjecture
that Eq.~4.19! is the general formula, which can be applied
to all the known cases of instantons with horizons. The even-

tual lack of intrinsic thermodynamics is simply deducible
from Eq. ~4.19! by considerations about the topology of the
manifold.

We will prove this assumption by studying most of the
known solutions with intrinsic thermodynamics. We will
start with metrics of the~4.1! form. Moreover, we will show
that Eq.~4.19! also holds for an instanton with a Euler char-
acteristic different from 2~i.e., the Nariai one where the
Euler characteristic equals 4! and for an axisymmetric one
~i.e., the Kerr metric! which cannot be cast in the form of Eq.
~4.1!.

We will consider both black hole and cosmological solu-
tions. The formers are asymptotically flat solutions, hence
they always have a boundary at infinity,r out5`. The inner
boundary ofM is usually missing since the horizon, after
removal of the conical singularity, becomes a regular point
of the manifold. By contrast, a drastic change in the bound-
ary structure occurs for extremal black holes. In such a case
we cannot fix imaginary time value since metrics present no
conical singularity. The horizon is at infinite distance from
the external observer; hence it is an inner boundary ofM4

~i.e., the coordinate of this inner boundary isr in!.
As far as the cosmological solutions are concerned, they

are compact, and therefore]M50. Instead, the boundary of
Vn is only at the horizon that now is also the maximal radius
for the space; hence the formulas for the entropy and Euler
characteristic are still applicable, settingr out50 and revers-
ing the sign in front of the equations.

V. SPHERICALLY SYMMETRIC METRICS

A. Schwarzschild instanton

We first consider the Schwarzschild black hole, where

e2U5~122M /r !,

U5
1

2
ln~122M /r !,

R5r . ~5.1!

Using Eq. ~4.7! and bearing in mind thatA5br h54pr h
2 ,

one can write the relation betweenb andA as

b5
A

r h
. ~5.2!

Moreover, from Eq.~4.16! one gets

S5
A

4
, ~5.3!

and from Eq.~4.9! one also finds

x5br h

1

2pr h
2 5

A

2pr h
2 . ~5.4!

Now, combining Eqs.~5.3! and ~5.4!, one obtains

S5
p

2
xr h

25
x

32p
b25

xA

8
. ~5.5!

2We are referring here to the semiclassical results@6,7# quoted
above. For a discussion about the discrepancies with respect to
string theory calculations, see the Conclusions.
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B. Dilaton U„1… black holes

In the case of the dilaton U~1! black hole solutions param-
etrized by 0<a<1 ~where a50 corresponds to the
Reissner-Nordstro¨m black hole! one has

e2U5S 12
r 1

r D S 12
r 2

r D ~12a2!/~11a2!

U5
1

2
lnF S 12

r 1

r D S 12
r 2

r D ~12a2!/~11a2!G ,

R5r S 12
r 2

r D a2/~11a2!

,

M5
r 1

2
1

12a2

11a2

r 2

2
,

Q25
r 1r 2

11a2 ,

r h5r 1 . ~5.6!

For such black holes one findsA5bRr h
54pRr h

2 , whereR

determines the characteristic scale of distance. As before@cf.
Eq. ~5.2!#,

b5
A

r h~12 r 2 /r h!
. ~5.7!

From Eq.~4.16! one obtains

S54pRr h

2 5
A

4
, ~5.8!

and from Eq.~4.9! one finds

x5br h

1

2pRh
2 5

A

2pRh
2 . ~5.9!

Again, combining Eqs.~5.8! and ~5.9!, one gets

S5
p

2
xRh

25
xA

8
. ~5.10!

C. de Sitter instanton

In the de Sitter cosmological case, we can prove how the
relation Eq.~4.19! is due to the boundary structure~horizons
and ‘‘real’’ boundaries! of the manifold and not to the pres-
ence of a black hole. There now is only a cosmological ho-
rizon and no proper boundary forM , and the topology of the
de Sitter instanton is a four-sphere. One has

e2U5S 12
L

3
r 2D ,

U5
1

2
lnS 12

L

3
r 2D ,

R5r ,

r L5A3

L
,

A5
12p

L
,

b52pA3

L
, ~5.11!

wherer L andA are, respectively, the radius and area of the
cosmological horizon. For such compact manifold no
Minkowskian subtraction is needed; hence, by using Eq.
~4.12! one straightforwardly gets

S5
1

8p E
]V

K. ~5.12!

From Eq.~4.15! it is easy to find

vmnm522eU~] rU12] r ln R!

52H rL

3

1

@12~r 2L/3!#1/22
2

r F12S r 2L

3 D G1/2J .

~5.13!

Hence, bearing in mind Eq.~4.10!, one obtains

S5
1

16p E
r L

vmnmeUr 2 sin ududtdf5
b2

4p
. ~5.14!

By using Eq.~4.9! with r in50 andr h5r L , the Euler char-
acteristic is

x5
b2L

6p2 . ~5.15!

Combining then Eqs.~5.14! and ~5.15!, it is easily checked
that Eq.~4.19! also holds in the de Sitter case.

D. Nariai instanton

The Nariai instanton is the only nonsingular solution of
Euclidean vacuum Einstein equation for a given massM and
cosmological constantL. It can be regarded as the limiting
case of the Schwarzschild–de Sitter solution when one
equals the surface gravity of the black hole to that of the
cosmological horizon in order to remove all conical singu-
larities. This could seem meaningless since, in Schwarz-
schild–de Sitter coordinates, the Euclidean section shrinks to
zero ~the black hole and cosmological horizons coincide!.
However, on making an appropriate change of coordinates
@19,20#, the volume of the Euclidean section no longer van-
ishes, and the space-time can be properly studied. In this
coordinate system, one still deals with a spherically symmet-
ric metric, and the vierbein forms are

e05
1

AL
sin jdc, e15

1

AL
dj, ~5.16!
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e25
1

AL
du, e35

1

AL
sin udf. ~5.17!

One then obtains

de052AL cotje0∧e1, de15de250,

de35AL cot ue2∧e3, ~5.18!

and

R015dv015Le0∧e1, ~5.19!

R235dv235Le2∧e3. ~5.20!

Moreover one has

R5L21/2,

A5
4p

L
,

b5
2p

AL
. ~5.21!

The ranges of integration are 0<c<bAL, 0<j<p,
0<u<2p, 0<f<2p. The extremes ofj correspond to the
cosmological horizon and to the black hole horizon@20#. It is
worth noting that the period of the imaginary time,c, is
bAL, instead of the usualb. This is due to the normalization
of the timelike Killing vector one is forced to choose in this
space-time.3 The form of the Nariai metric does not enable
us to apply Eq.~4.9! and we then compute the Euler charac-
teristic from the very beginning. We obtain

SGB5
L2

4p2 E
V
e0∧e1∧e2∧e3

5
1

4p2 E
0

p

sin jdjE
0

bAL
dcE

0

p

sin uduE
0

2p

df

5
2bAL

p
. ~5.22!

By substitutingb, one can check that Eq.~5.22! gives the
correct result. In fact, the Nariai instanton has topology
S23S2; hence its Euler number, bearing in mind the product
formula, isx523254.

The entropy can be easily calculated from Eq.~5.12!. In
this case the extrinsic curvature is given by

K52AL
cosj

sin j
, ~5.23!

and one obtains

S52
1

8p E
0

2p

dfE
0

p

sin uduE
0

bALFAL cosj

L3/2 G
0

p

dc5
b

AL
.

~5.24!

It is now easy to check that the combination of Eqs.~5.22!
and ~5.24! gives Eq.~4.19!.

Remarkably, this implies that Eq.~4.19! cannot be cast in
the form

S5S x

2D a A

4
, ~5.25!

wherea could in principle be any positive constant. Since
Eq. ~4.19! holds also for the Nariai instanton,a must be
fixed to 1.

VI. KERR METRIC

The Kerr solution describes both the stationary axisym-
metric asymptotically flat gravitational field outside a mas-
sive rotating body and a rotating black hole with massM and
angular momentumJ. The Kerr black hole can also be
viewed as the final state of a collapsing star, uniquely deter-
mined by its mass and rate of rotation. Moreover, its thermo-
dynamical behavior is very different from Schwarzschild or
Reissner-No¨rdstrom black holes, because of its much more
complicated causal structure.4 Hence its study is of great
interest in understanding physical properties of astrophysical
objects, as well as in checking any conjecture about thermo-
dynamical properties of black holes.

In terms of Boyer-Lindquist coordinates, the Euclidean
Kerr metric reads@22#

ds25
D

r2 @dt2a sin2 udw#21
r2

D
dr21r2du2

1
sin2 u

r2 @~r 21a2!dw2adt#2, ~6.1!

where

r5r 21a2 cos2 u,

D5r 222Mr 1a2. ~6.2!

Herea is the angular momentum for unit mass as measured
from the infinity; it vanishes in the Schwarzschild limit, and
D is the Kerr horizon function. The roots of the horizon
function D correspond to two null-like surfaces at

r 65M6AM22a2, ~6.3!

wherer 1 is the Kerr black hole event horizon andr 2 is the
Cauchy horizon around the ring singularity atr50. The area
and the black hole angular velocity are, respectively,

A54p~r h
21a2!, ~6.4!

3For a wider discussion of this point, see the Appendix of Ref.
@20#.

4For instance, Wald pointed out that in a Kerr black hole it is not
possible to mimic the Unruh-Rindler case to explain its thermal
behavior@21#.
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V5
a

~r h
21a2!

. ~6.5!

Such a metric corresponds to the following vierbein forms:

e05
AD

r
~dt2a sin2 udw!, e15

r

AD
dr, ~6.6!

e25rdu, e35
sin u

r
@~r 21a2!dw2adt#, ~6.7!

wherer is the positive square root ofr2.
From Eq.~6.6!, one can obtain the spin connection one-

forms as@22#

v0
152

ar sin u

r3 e31Fe0,

v0
252

a cosuAD

r3 e32a2
sin u cosu

r3 e0,

v0
352

ar sin u

r3 e11
a cosuAD

r3 e2,

v1
252a2

sin u cosu

r3 e12r
AD

r3 e2,

v3
152v1

35r
AD

r3 e31
ar sin u

r3 e0,

v2
352

cosu

sin u

~r 21a2!

r3 e32
a

r3 cosuADe0, ~6.8!

where@22#

F[
]

]r

AD

r
5

~r 2M !r22rD

r3AD
. ~6.9!

By virtue of Eqs.~6.8! and ~2.2!, and the nilpotency of the
exterior derivative operatord, the Gauss-Bonnet action in
Eq. ~2.6! takes the form

SGB52
1

4p2 E ~v01∧R231v02∧v21∧v231v03∧v31∧v23

1v02∧dv31!r h
, ~6.10!

wheredv31 can be expressed in terms of a suitable combi-
nation ~wedge product! of the typeei∧ej , and r h is the ra-
dius of the Kerr horizon~i.e., the positive roots ofD50!. For
further details see the Appendix and Ref.@22#. By defining
the quantities@22#

I[
Mr

r6 ~r 223a2 cos2 u!,

K[
Ma cosu

r6 ~3r 22a2 cos2u!, ~6.11!

one obtains, for the quantity in parentheses, in Eq.~6.10!,

e0∧e2∧e3S 2FI
3ra4~sin u cosu!2AD

r9 D
2e0∧e1∧e3S 8Mr 3a2 sin u cosu

r9 D ,

in terms of one-forms appearing in Eq.~6.6!. Such a quantity
has to be evaluated atr 5r h .

At this stage some remarks are in order. In the Euclidean
path-integral approach the Kerr solution is an instanton
~i.e., a nonsingular solution of the Euclidean action! only
after the identification of the points (t,r ,u,w) and
(t12pk1

21 ,r ,u,w12pk1
21k2) @5#, wherek15k is the sur-

face gravity of the black hole andk256V. With this iden-
tification, the Euclidean section has topologyR23S2 and
x52. The condition of a periodic isometry group implies
k2 /k15q @8#, whereqPQ is a rational number. By using
this relation, it is easy to see that the periods are

bt52pk154p
Mr h

A~M22a2!
,

bw52p
k1

k2
52pq, ~6.12!

If one would setqÞ1, Eq. ~3.6! for the black hole entropy
would acquire a factorq, but this spurious factor would be
absorbed in the change of the period ofw that implies a
redefinition of the black hole area~6.5!, which would be-
comeA54pq(r h

21a2). Therefore one still expectsS5A/4,
and the fixing ofq51 will not bring about a loss of gener-
ality. Moreover in this way the area will be the ‘‘physical’’
one, as written in Eq.~6.5!. Hence the Euler number is

x5
Mr h~r h2M !

4p2 E
0

b

dtE
0

2p

dwE
0

p ~r h
223a4 cos4 u!

~r h
21a2 cos2 u!3

3sin udu5
2

p
b~r h2M !

Mr h

~r h
21a2!2 . ~6.13!

Bearing in mind Eq.~6.12! and that (r h
21a2)52Mr h , one

eventually gets

x58
M2r h

2

~r h
21a2!2 52. ~6.14!

As far as the entropy is concerned, here we follow the
procedure outlined in Secs. III and IV B. From Eq.~3.6!,
writing vm as

vm52
2

Ag
S ]Ag

]xn D gmn2
]gnm

]xn , ~6.15!

and bearing in mind that the Kerr determinant is

Ag5r2 sin u, ~6.16!

one finds
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vm5S 0,22
rD

r4 ,2
2~r 2M !

r2 ,22
cot u

r2 ,0D ,

nm5S 0,
r

AD
,0,0D . ~6.17!

By subtracting the flat Minkowskian term ofvm @see Eq.
~5.7!# one easily obtains

@vmnm#52
2

rAD
S rD

r2 1r 2M D1
4

r
. ~6.18!

One can then evaluate the Kerr black hole entropy:

S52
1

16p E
0

b

dtE
0

p

dwE
0

2p

durAD

3sin u•F2
2

rAD
S rD

r2 1r 2M D1
4

r G
r h

5
b

2
~r h2M !.

~6.19!

Thus, combining Eqs.~6.13! and ~6.19!, one has

S5
p

4

~r h
21a2!2

Mr h
x5

1

2
p~r h

21a2!x5
A

8
x. ~6.20!

VII. CONCLUSIONS

The main result of this work is a new formulation of the
Bekenstein-Hawking entropy. This has been achieved by
making explicit how gravitational entropy depends on topol-
ogy. This result has been proved to be valid for a wide class
of gravitational instantons endowed with intrinsic thermody-
namics. Therefore, it can be considered a confirmation and
generalization of previous results@10,11# ~obtained for black
holes and in a different formalism! as well as a compact,
general formulation of the Bekenstein-Hawking relation.

Although our results seem to imply a central role for
space-time topology in the explanation of intrinsic thermo-
dynamics of gravitational instantons, we are not claiming
that it is not necessary to understand the microscopic degrees
of freedom of black holes in order to understand their en-
tropy. The fact that the horizon’s area is still present in Eq.
~4.19! implies a dependence for the gravitational entropy on
two different objects: a discrete topological parameter~i.e.,
the Euler characteristic, which can be 0, 2, or 4 for the
known solutions with event horizons! and the area, which
can vary with continuity. Since the topological term comes
out in the general form~4.19!, for all the space-times en-
dowed with intrinsic thermodynamics, this seems to imply
that the topological nontriviality of space-time is a necessary
~although probably not sufficient! condition for the coming
up of the, otherwise hidden, microscopic nature of gravity.
The origin of these hidden degrees of freedom is still a mat-
ter of debate. The authors suggest that the relation here
clearly shown between the entropy and the boundary struc-
ture of the four-manifold seems to add evidence in favor of
an interpretation based on the dynamical degrees of freedom
associated to vacuum in topological nontrivial four-

manifolds@23#. This enables us to argue that intrinsic ther-
modynamics of some gravitational instantons could be due to
a sort of ‘‘gravitational Casimir effect’’@24# on such four-
manifolds.

Finally we stress that the interesting results@25,26#, about
the nonzero entropy of some extremal string theory black
hole solutions, are not necessarily in contrast with ours. In
fact recent calculations@27,28# have proved that the discrep-
ancies between semiclassical and string theory results can be
eliminated if one performs in the former approach a sum
over topologies and imposes the extremality condition after
quantization. It is easy to see@28# that with this procedure
the nontrivial topologies will dominate, in this case reducing
the case to a nonextremal one, with nonzero entropy. Hence
it seems that string model results implicitly involve a quan-
tization procedure where the classical extremal topology is
ignored by means of the quantization procedure. Of course it
is still an open question which of the two procedures could
better fit reality.

In the opinion of the authors all these problems are deeply
intertwined and hence they deserve further investigation.
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APPENDIX

The Euler number of a four-manifold can be defined as an
alternating sum of Betti numbers:

x[ (
n50

4

~21!nBn . ~A1!

The nth Betti numberBn is the number of independent
closed n-surfaces that are not boundaries of some
(p11)-surface. For a compact manifold without boundary,
Bn is also equal to the number of linear independent har-
monic n-forms, and Bn5B42n ~i.e., B05B451 and
B15B3!. If the four-manifold is simply connected,B150,
whereas if there is a boundary,B051 andB450.

In the Cartan approach to geometry one deals with differ-
ential forms~see Sec. II!. Defining a local coordinate basis of
one-formsdxm and a local orthonormal basis of one-forms
ea over a four-manifoldM , the metric can be expressed as

g5gmndxm
^ dxn5habe

a
^ eb, ~A2!

wherehab is the flat Euclidean metric tensor with signature
14, and the information about the curvature of the Riemann-
ian four-space is encoded in

eb5em
b dxm. ~A3!
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Hereem
a (x) are the vierbein~or tetrad! one-forms, and they

can be viewed as a sort of square root of the metric. Note that
the Greek lettersm,n,... denote abstract indices, and Latin
lettersa,b,... internal indices.

We can now introduce the spin connection one-formsva
b

and define the first Cartan structure equation:

Ta[dea1va
b∧eb5

1

2
Ta

bce
b∧ec, ~A4!

whereTa is the torsion two-form of the manifold. The sec-
ond Cartan structure equation defines the curvature two-form
of the manifold@see Eq.~2.1!#:

Ra
b[dva

b1va
c∧vc

b5
1

2
Ra

bcde
c∧ed. ~A5!

In the tensor formalism the covariant derivative¹a is de-
fined by using the Levi-Civita connection~or Christoffel
symbols! Gmn

a . By virtue of the metricity conditions~i.e.,
¹agmn50! and of the absence of torsion~i.e., Tm

[ab]50!,
the Levi-Civita connection is then uniquely determined in
terms of the metric. In the Cartan approach, the spin-
connection one-forms replace the Christoffel symbols. The
Levi-Civita spin-connection one-forms are then obtained by
imposing the metricity and the torsionless conditions, which
yield

vab52vba ~A6!

and

dea1va
b∧eb50, ~A7!

respectively.
In Sec. VI the term«abcdR

ab∧Rcd occurring in the Gauss-
Bonnet action~6.10! reads

«abcdR
ab∧Rcd56@d~v01∧R231v02∧v21∧v23

1v03∧v31∧v231v02∧dv31!

1dv03∧dv12#. ~A8!

The last termdv03∧dv125d(v03∧dv12), bearing in mind
that ei∧ei50, vanishes by virtue of the structure ofv03 and
v12 @see Eq.~6.6!#. Furthermore, the termdv31 takes the
form

dv3152
a sin u

r3 S rF 1AD

r3 a2 cos2 u D e0∧e1

2
ar cosu

r6 ~r212a2 sin2 u!e0∧e2

1
1

r6 @D~r222r 2!1rr2~r 2M !#e1∧e3

1
rAD cosu

r6 sin u
~r22a2 sin2 u!e2∧e3. ~A9!
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