Paula A. Pomianowski Virginia Polytechnic Institute CERN PPE Seminar 1 April 1996 ### Recent Charm Results From CLEO - CLEO II detector at CESR (Cornell U.) - Data: $e^+e^- \to \Upsilon(4S)$ [10.6 GeV] about $\frac{2}{3}$ and off-resonance about $\frac{1}{2}$ - 3.5 million (3.5 fb^{-1}) $e^+e^- \rightarrow B\bar{B}$ events processed! More than 4 million (4 fb^{-1}) $e^+e^- \rightarrow c\bar{c}$ events! - •CLEO has excellent charm physics program! # CER ### Charm results to discuss: - o Model independent measurement of $B(D_s^- \to \phi \pi^-)$ (ERN PP) o Inclusive D^0 semi-electronic branching ratio - \circ Inclusive D^0 semi-electronic branching ratio - o Precise meas. of $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ - o Observation of two new excited Ξ_c states - \circ Study of flavor-tagged Λ_c in B decays - o Measurement of color-suppressed mode $\Lambda_c^+ \to p\phi$ Monday PPE Seminor, CERN April 1, 1996 contact: FABIOLA GIANOTTI/ PPE tel: 78965 Paula A. Pomianowski Virginia Polytechnic Institute Oxford Nuclear Physics Seminar 2 April 1996 # Recent Charm Results From CLEO - CLEO II detector at CESR (Cornell U.) - Data: $e^+e^- \to \Upsilon(4S)$ [10.6 GeV] about $\frac{2}{3}$ and off-resonance about $\frac{1}{3}$ - 3.5 million (3.5 fb⁻¹) $e^+e^- \rightarrow B\bar{B}$ events processed! More than 4 million (4 fb⁻¹) $e^+e^- \rightarrow c\bar{c}$ events! - •CLEO has excellent charm physics program! #### Charm results to discuss: - Model independent measurement of $B(D_s^- \to \phi^- \iota^-)$ - \circ Inclusive D^0 semi-electronic branching ratio - Precise meas. of $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ - o Observation of two new excited Ξ_c states - \circ Study of flavor-tagged Λ_c in B decays - o Measurement of color-suppressed mode $\Lambda_c^+ \to p\phi$ •Tracking: 67 layers •PID: combine ionization energy loss measurement (dE/dx) in DR with scintillation TOF •EM showers: 7800 thallium-doped CsI crystals •1.5 T superconducting solenoidal magnet ## Absolute $B(D_s^- \to \phi \pi^-)$ - ullet Branching fraction measurements for D_s^- decay modes are made relative to $\phi\pi^-$ No absolute scale, only model dependent estimates - First absolute measurement: BES $B(D_s^- \to \phi \pi^-) = 3.9^{+5.1+1.8}_{-1.9-1.1}\% \qquad \text{2 double tag } D_s \text{ events}$ - New CLEO measurement: model independent, Technique: high statistics! $B(D^0 \to K^-\pi^+)$ is well-measured absolutely Measure $B(D_s^- \to \phi \pi^-)/B(D^0 \to K^-\pi^+)$ to get $$B(D_s^- \to \phi \pi^-)$$ \Rightarrow Partially reconstruct $\bar{B^0} \rightarrow D^{*+}D_s^{*-}$ Analysis used 2.5 fb⁻¹ (2.7 M B\bar{B}) ## Method to Extract $B(D_s^- \to \phi \pi^-)$ Method to extract $B(D_s^- \to \phi \pi^-)$: - Reconstruct $\bar{B^0} \to D^{*+}D_s^{*-}$ two ways: - 1) fully reconstruct D_s^{*-} , combine soft pion from $D^{*+} \to D^0 \pi^+ \qquad (N_{D_s^*})$ - 2) fully reconstruct D^{*+} , combine soft photon from $D_s^{*-} \to D_s^- \gamma$ (N_{D^*}) ullet Measure efficiency corrected B meson yields from both methods and constrain them equal #### Method to Extract Branching Fraction Ratio • For one reconstruction mode: $$\frac{B(D_s^- \to \phi \pi^-)}{B(D^0 \to K^- \pi^+)} = \frac{N_{D_s^*}}{\varepsilon(D_s \to \phi \pi)} \frac{\varepsilon(D^0 \to K \pi)}{N_{D^*}}$$ Add in other decay modes to improve statistics: $$\frac{B(D_{s}^{-} \to \phi \pi^{-})}{B(D^{0} \to K^{-} \pi^{+})} = \frac{N_{D_{s}^{*}}}{\sum_{i=1}^{N_{D_{s}^{FS}}} R_{i}(\varepsilon \cdot B)_{i}} \frac{\sum_{j=1}^{N_{D^{0}}^{FS}} R_{j}(\varepsilon \cdot B)_{j}}{N_{D^{*}}}$$ Lots of systematics cancel! #### Tag event by fully reconstructing D_s^{*-} • Reconstruct three D_s^- decay modes $$D_s^- \to \phi \pi^- \qquad D_s^- \to K^0 K^- \qquad D_s^- \to K^{*0} K^-$$ - Combine D_s^- w/ soft photon $\Rightarrow D_s^{*-}$ - Using measured $\vec{p}_{D_s^*}$ and constraint $E_B = E_{beam}$ $\Rightarrow \text{ can calculate } |\vec{p}_{D^*}| \text{ and one angle}$ $E_B = E_{D^*} + E_{D_s^*} = E_{beam}$ $\vec{p}_B = \vec{p}_{D^*} + \vec{p}_{D_s^*}$ $\text{where } \vec{p}_{D^*} = \sqrt{(E_B E_{D_s^*})^2 m_{D^*}^2}$ - D^{*+} direction constrained to lie on: - 1) cone of $\Theta_{D_s^*D^*}$ w/R to D_s^{*-} direction $\cos \Theta_{D_s^*D^*} = (p_{D_s^*}^2 + p_{D^*}^2 + p_{D^*}^2 + p_B^2)/2p_{D_s^*} + p_{D^*}$ - 2) cone of Θ_{D^*} w/R to soft pion direction $|D^{*+} \text{ direction one of two intersections of these 2 cones} |\cos \phi_{D^*}| = \frac{\cos \Theta_{\pi D^*} - \cos \Theta_{D_s^* D^*} \cos \Theta_{D_s^* \pi}}{\sin \Theta_{D_s^* D^*} \sin \Theta_{D_s^* \pi}} < 1$ #### Tag event by fully reconstructing D^{*+} • Reconstruct three D^0 decay modes $$D^0 \to K^- \pi^+$$ $D^0 \to K^- \pi^+ \pi^0$ $D^0 \to \bar{K^0} \pi^+ \pi^-$ - Combine D^0 w/ soft pion $\Rightarrow D^{*+}$ - Obtain $\cos \phi_{D_s^*}$ in same fashion as $\cos \phi_{D^*}$ #### Use $\cos \phi$ distribution \rightarrow extract signals • Expectations from MC: - (a) Signal MC $\cos \phi$ for fully reconstructed D_s^{*-} - (b) Signal MC $\cos \phi$ for fully reconstructed D^{*+} ## Backgrounds ### D_s^{*-} full reconstruction - Two background sources: - 1) fake D_s^{*-} w/ true or random pions - 2) random pions w/ true D_s^{*-} - •Obtain $\cos \phi_{D^*}$ for both bkgs from MC - •Use data to normalize fake D_s^{*-} contribution Sideband distribution of $\cos \phi_{D^*}$ $60 < \Delta M_{D_s^*} < 90 MeV/c^2$ $170 < \Delta M_{D_s^*} < 220 MeV/c^2$ where $\Delta M_{D_s^*} = m_{D_s^*} - m_{D_s}$ Data: points with errors BKG: solid hist is total of MC bkgs dashed hist is fake D_s^{*-} w/ true pion D^{*+} full reconstruction - similar #### Feed-down • Many sources but only 1-2% of total bkg Data: Data points with fit solid histogram BKG: Dashed line sum of all backgrounds \Rightarrow Dotted: fake D_s^{*-} or D^{*+} bkg ⇒ Hatched: feed-down bkg $$D_s^- \to \phi \pi^- \text{ Results}$$ • Values of $R(\varepsilon \cdot B)$ #### for D^{*+} full reconstruction $$D^{0} o K^{-}\pi^{+}$$ 7.42 ± 0.13 $D^{0} o K^{-}\pi^{+}\pi^{0}$ 6.13 ± 0.35 $D^{0} o \bar{K}^{0}\pi^{+}\pi^{-}$ 1.61 ± 0.14 • Major systematic errors: 8% random γ shape 4% fake D^*, D_s^* normalization 2% feed down normalization 6% uncertainty $R_i(\varepsilon \cdot B)$ for D_s^- 3% uncertainty $R_j(\varepsilon \cdot B)$ for D^0 • Obtain: $$\frac{B(D_s^- \to \phi \pi^-)}{B(D^0 \to K^- \pi^+)} = 0.92 \pm 0.20 \pm 0.11$$ $$D_s^- \to \phi \pi^- \text{ Results}$$ • Using CLEO measurement: $$B(D^0 \to K^-\pi^+) = 3.91 \pm 0.19\%$$ gives $$B(D_s^- \to \phi \pi^-) = (3.59 \pm 0.77 \pm 0.48)\%$$ - Using the fully reconstructed D^{*+} we get: $B(\bar{B}^0 \to D^{*+}D_s^{*-}) = 1.85 \pm 0.30 \pm 0.49\%$ - Agrees with our full $D^{*+}D_s^{*-}$ reconstruction result: $2.11 \pm 0.52 \pm 0.37\%$ ### Inclusive D^0 Semi-Electronic Branching Fraction - $D^0 \to Xe^+\nu$ interesting and useful measurement: - o Compare it to the sum of exclusive modes $Anything\ missing$? - o Check e^+ spectrum against JETSET-based MC Last measured by DELCO, MC accurate? - \bullet For measurement, utilize decay $D^{*+} \to D^0 \pi^+$: - 1) for $e^+e^- \to c\bar{c}$, event thrust axis approximates D^{*+} direction - 2) limited phase space for $D^{*+} \to D^0 \pi^+$ produces small angle α between thrust axis and π^+ - 3) no D^{*+} from B decays if pion momentum > 225~MeV/c for $e^+e^- \rightarrow c\bar{c}$ • Now look for electron w/i cone around π^+ direction ## Measurement of $D^0 \to Xe^+\nu$ - Next, look for an electron - Signal: same sign correlation between: - o low momentum pion near thrust axis - close-lying electron - Need to correct for background contributions - 1) hadron misidentified as an electron - \circ 2) electron from $D^0 \to X\pi^0 \to Xe^+e^-\gamma$ # Measurement of $D^0 \to Xe^+\nu$ • Once corrected yields are measured, get: $$B(D^0 \to Xe^+\nu) = \frac{N(D^{*+} \to D^0\pi^+)}{N(D^0 \to Xe^+\nu) \cdot \epsilon(D^0 \to Xe^+\nu)}$$ $$= \frac{4609 \pm 121}{165,658 \pm 1149 \pm 2485 \cdot \epsilon(D^0 \to Xe^+\nu)}$$ $\epsilon(D^0 \to Xe^+\nu)$ is electron detection efficiency [*Teasurement actually done in 8 pion momentum bins] ### Electron Efficiency - Used cocktail of exclusive modes JETSET-based MC to determine e^+ efficiency for inclusive decay - Compare MC lepton spectrum to data (lab frame) MC provides good simulation of data # Result of $D^0 \to Xe^+\nu$ Measurement - $\epsilon(D^0 \to Xe^+\nu)$ ranges between 38-51% - Measure inclusive branching fraction: $$B(D^0 \to Xe^+\nu) = (6.64 \pm 0.18 \pm 0.29)\%$$ • Compare to most recent sum of exclusive modes: $5.73 \pm 0.25\%$ ^a Still a 14% discrepancy • Using only CLEO measurements for exclusive modes and world average if no CLEO data: $4.7 \pm 7.5\%$ discrepancy ^aBurchat and Richman, UCSB HEP-95-08, to appear in Review of Modern Physics Precise Measurement of $$B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$$ - •Many analyses need precise measurements of common charm decay modes ⇒ Reduce systematic error - • $D^0 \to K^-\pi^+\pi^0$ useful normalization for channels with π^0 in final state Ratio $B(D^0 \to K^- \pi^+ \pi^0)/B(D^0 \to K^- \pi^+)$ | , , | | | | | |------------------|-----------------|---|--|--| | Experiment | Year | Measurement | | | | ARGUS | 1992 | $3.04 \pm 0.16 \pm 0.34$ | | | | NA14 | 1991 | $4.0 \pm 0.9 \pm 1.0$ | | | | CLEO 1.5 | 1991 | $2.8 \pm 0.14 \pm 0.52$ | | | | Mark III | 1988 | $3.17 \pm 0.42 \pm 0.43$ | | | | E516 | 1984 | 4.2 ± 1.4 | | | | Mark II | 1981 | 2.85 ± 1.13 | | | | PDG Ave. | 3.07 ± 0.29 | | | | | PDG Fit | 3.51 ± 0.28 | | | | | Mark II PDG Ave. | | 1981 2.85 ± 1.13
3.07 ± 0.29 | | | ## Current world average appears too low - PDG average and fit in poor agreement. - In $B\to$ charmed final states, branching ratios higher for D^0 reconstructed through $K^-\pi^+\pi^0$ than $K^-\pi^+$ ## D^0 Decay Reconstruction - Reconstruct $D^0 \to K^-\pi^+$ and $D^0 \to K^-\pi^+\pi^0$ CLEO has excellent π^0 reconstruction efficiency - D^0 must come via $D^{*+} \to D^0 \pi^+$ - Pion (225-425~MeV/c) from D^{*+} has same charge as pion from D^0 - Reduces combinatoric background - D^{*+} produced with hard fragmentation function - \circ Require $x_{D^{*+}} > 0.6$ where $x_p = \frac{p_{D^{*+}}}{\sqrt{E_{beam}^2 m_{D^{*+}}^2}}$ $$\Delta M = M(D^{*+}) - M(D^0) - 145 \ MeV/c^2$$ • Use sideband to estimate fake decays ## D^0 Invariant Mass Spectra Fit: 2 bifurcated Gaussians Bkg: Straight line with sideband subtraction Yield: $$9808 \pm 127 \ K^-\pi^+$$ $15,013 \pm 204 \ K^-\pi^+\pi^0$ Geant based MC determined efficiency 20.4% 8.2% Ratio $$\frac{K^-\pi^+\pi^0}{K^-\pi^+} \Rightarrow R = 3.81 \pm 0.07$$ ### Summary of $B(D^0 \to K^- \pi^+ \pi^0) / B(D^0 \to K^- \pi^+)$ - Main systematic errors: - $\circ \pi^0$ finding efficiency 5.5% o variation of $D^0 \to K^-\pi^+\pi^0$ efficiency due to resonant substructure 3.4% #### Summary • Most precise to date - high stats! $$R = \frac{B(K^{-}\pi^{+}\pi^{0})}{B(K^{-}\pi^{+})} = 3.81 \pm 0.07 \pm 0.26$$ $$\begin{bmatrix} 3.07 \pm 0.29 & POG & Ave \\ 3.51 \pm 0.28 & POG & Fit \end{bmatrix}$$ • Combine with CLEO's recent measurement: $$B(D^0 \to K^-\pi^+) = 0.0391 \pm 0.0008 \pm 0.0017$$ gives: $$B(D^0 \to K^- \pi^+ \pi^0) = 0.149 \pm 0.004 \pm 0.012$$ Current PDG fit: 0.135 ± 0.011 CLEO is working to reduce systematic error # Observation of Two New Excited Ξ_c States • Well established: ground state isodoublet $$\Xi_c^+$$ and Ξ_c^0 $(J^P = \frac{1}{2})$ Two lighter quarks antisymmetric under interchange of flavor ⇒ Spin 0 configuration • Next higher states: $$\Xi_c'$$ $(J^P = \frac{1}{2})$ and Ξ_c^* $(J^P = \frac{3}{2})$ Two lighter quarks symmetric \Rightarrow Spin 1 configuration Theory predicts: • CLEO observes: Narrow state decaying into $\Xi_c^+\pi^-$ Narrow state decaying into $\Xi_c^0\pi^+$ Believe we are seeing $J^P = \frac{3}{2}$ spin excitation of Ξ_c^0 and its isospin partner # Reconstruction of $\Xi_c^{*0} \to \Xi_c^+ \pi^-$ • Reconstruct Ξ_c^+ : Require w/i 2.5σ of Ξ_c^+ mass | Decay Mode | Yield | |-------------------|--------------| | $\Xi^-\pi^+\pi^+$ | 160 ± 18 | | $\Xi^0\pi^+\pi^0$ | 76 ± 12 | | Σ^+K^{*0} | 59 ± 12 | Now relax cut on x_p for Ξ_c^+ ... # Reconstruction of $\Xi_c^{*0} \to \Xi_c^+ \pi^-$ • Reconstruct Ξ_c^{*0} : Combine each Ξ_c^+ candidate with each remaining π^- Place mode dependent x_p cut on $\Xi_c^+\pi^-$ combination modes summed Clear peak around $178MeV/c^2$ Fit: Chebyshev polynomial with threshold suppression Breit-Wigner with Gaussian resolution ($\sigma = 1.6 MeV/c^2$) Yield: 54.6 ± 12.1 [a) 31.8 ± 6.6 , b) 10.5 ± 4.6 , c) 10.9 ± 4.3] #### 5 # Reconstruction of $\Xi_c^{*+} \to \Xi_c^0 \pi^+$ • Reconstruct Ξ_c^0 : Require w/i 2.5σ of Ξ_c^0 mass and $x_p > 0.5$ | Decay Mode | Yield | |--|--| | $\Xi^{-}\pi^{+}$ $\Omega^{-}K^{+}$ $\Xi^{-}\pi^{+}\pi^{0}$ $\Xi^{0}\pi^{+}\pi^{-}$ | 106 ± 13 14 ± 4 118 ± 18 48 ± 12 | Now relax cut on x_p for Ξ_c^+ ... # Reconstruction of $\Xi_c^{*+} \to \Xi_c^0 \pi^+$ • Reconstruct Ξ_c^{*+} : Combine each Ξ_c^0 candidate with each remaining π^+ Place $x_p > 0.5$ cut on $\Xi_c^0 \pi^+$ combination Clear peak around $174MeV/c^2$ Fit: Chebyshev polynomial with threshold suppression Breit-Wigner with Gaussian resolution ($\sigma = 1.6 MeV/c^2$) Yield: $34.2^{+8.9}_{-7.9}$ a) 12.0 ± 4.0 b) 1.8 ± 1.4 c) 14.7 ± 4.8 d) 6.9 ± 3.1 ### Summary of Excited Ξ_c Results - a) $M(\Xi_c^+\pi^-)$ $M(\Xi_c^+)$ = 178.2 ± 0.5 ± 1.0 MeV/c^2 $\Gamma < 5.5 MeV/c^2$ (90% CL) $\Rightarrow J = \frac{3}{2}$ spin excitation Ξ_c^{*0} - b) $M(\Xi_c^0 \pi^+)$ $M(\Xi_c^0)$ = 174.3 ± 0.5 ± 1.0 MeV/c^2 $\Gamma < 3.1 MeV/c^2$ (90% CL) ⇒ isospin partner Ξ_c^{*+} - c) $M(\Xi_c^{*0})$ $M(\Xi_c^{*+})$ = -1.3 ± 2.6 MeV/c^2 - Identification as Ξ_c^* only by mass difference - States are narrow, as expected Just at threshold ⇒ little phase space - Mass difference between two states small # Flavor Tagged Λ_c Production in B Decays \bullet B produces baryons in its weak decays Mechanisms to produce Λ_c from $\bar{B} \to \Lambda_c X$ - Expect a) and b) dominant sources of Λ_c^+ - Expect c) to be negligible \Rightarrow limited phase space - ullet Expect d) source of $\bar{\Lambda}_c^-$ suggested may be significant by Dunietz et. al, Phys. Rev. Lett. 73:1075 What is ratio of $\bar{\Lambda}_c^-$ to Λ_c^+ ? # Flavor Tagged Λ_c Production \bullet Previous experiments [ARGUS and CLEO] studied Λ_c from $B\bar{B}$ decays Did not show if Λ_c came from B or \bar{B} This analysis tags the flavor of the B Method: high p lepton / baryon sign correlation - Tag one side of $B\bar{B}$ with $B \to X l^+ \nu_l$ - Tag other side with $\bar{B} \to \bar{\Lambda}_c^- X$ or $\bar{B} \to {\Lambda}_c^+ X$ $$R_{\Lambda_c} = \frac{N_{\bar{\Lambda}_c^- l^+}}{N_{\Lambda_c^+ l^+}} = \frac{B(\bar{B} \to \bar{\Lambda}_c^- X) B(X l \nu)}{B(\bar{B} \to \Lambda_c^+ X) B(X l \nu)}$$ $\Rightarrow R_{\Lambda_c}$ direct measure of fraction of charmed baryons produced in $b \to c\bar{c}s$ relative to $b \to c\bar{u}d$ w/ small correction for $B\bar{B}$ mixing - Reconstruct Λ_c : $pK^-\pi^+$ $p\bar{K}_s^0$ $\Lambda\pi^+$ $\Sigma^0\pi^+$ $2.2MB\bar{B}$ pairs $\Rightarrow 3154 \pm 160\Lambda_c$ candidates - ullet Next pair Λ_c with lepton candidate # Flavor Tagged Λ_c Production • Λ_c invariant mass distributions Resonance data $50 \pm 15 \Lambda_c^- l^+$ Scaled continuum $7 \pm 7 \ \bar{\Lambda}_c^- l^+$ Resonance data $143 \pm 15 \ \Lambda_c^+ l^+$ Scaled continuum $2 \pm 6 \ \bar{\Lambda}_c^- l^+$ • After subtracting continuum, hadrons faking leptons, and cascade leptons: $$38 \pm 16 \ \bar{\Lambda}_c^- l^+$$ $$139 \pm 16~\Lambda_c^+ l^+$$ • Need to correct for $B\bar{B}$ mixing! 15% $$R_{\Lambda_c} = 0.20 \pm 0.12 \pm 0.04 = \frac{b \to c\bar{c}s}{b \to c\bar{u}d}$$ Internal spectator $b \to c\bar{c}s$ not dominant source of charmed baryons in B meson decay $$\Rightarrow consistant with 0$$ ## Measurement of $\Lambda_c^+ \to p\phi$ - Color suppression works for B decays - Doesn't work well for charm decays: $$B(D_s^+ \to \bar{K}^{*0}K^+)/B(D_s^+ \to \phi\pi^+)$$ Color matching: $= \frac{1}{9}$ Experiment (PDG): ~ 1 Same for charm baryons? Study ratio: $$B(\Lambda_c^+ \to p\phi)/B(\Lambda_c^+ \to pK^-K^+)$$ • Test color suppression for charm baryons Cabibbo suppressed $\Lambda_c^+ \to p\phi$ decay 'color suppressed' Only internal factorizable diagram \Rightarrow good test #### Previous measurements: - $\Lambda_c^+ \to p\phi$ seen by ACCMOR (2.8 ± 1.9 events) - E687: upper limit when measured Cabibbo suppressed $\Lambda_c^+ \to p K^- K^+$ ## Reconstruction of $\Lambda_c^+ \to p\phi$ • Reconstruct $\Lambda_c^+ \to pK^-K^+$ Use $3.46 \ fb^{-1}$ Require $$x_p = \frac{p_{\Lambda_c}}{\sqrt{E_{beam}^2 - m_{\Lambda_c^2}}} > 0.5$$ Fit: Gaussian with $\sigma = 4.9 MeV$ Bkg: 2^{nd} order Chebyshev polynomial Above 2.37 GeV/c^2 excluded, from $\Lambda_c^+ \to pK^-\pi^+$ 214 ± 50 events Mean $2285.5 \pm 1.2 \ MeV/c^2$ Now look for K^-K^+ from ϕ # Reconstruction of $\Lambda_c^+ \to p\phi$ • Look for $\phi \to K^-K^+$ substructure Divide into signal: $1.012 < m_{KK} < 1.027 GeV/c^2$ sidebands: $0.990 < m_{KK} < 1.005 GeV/c^2$ $1.035 < m_{KK} < 1.050 GeV/c^2$ #### Two methods a) fit invariant mass of pK^-K^+ combinations yield 54 ± 13 events b) fit K^-K^+ mass peak for pK^-K^+ combinations yield 56 ± 22 events Agrees! estimate < 1% fake rate from $D_s^+ \to \phi \pi^+$ ## Normalization to $\Lambda_c^+ \to pK^-\pi^+$ • Use same analysis and cuts as $\Lambda_c^+ \to pK^-K^+$ Only loosen PID cuts for π^+ Yield: 5683 ± 138 Mean: $2286.8 \pm 0.2, \Gamma = 6.4 \pm 0.2 \ MeV/c^2$ • Calculate relative branching ratios | Decay Mode | $p\phi$ | pK^-K^+ | $pK^-\pi^+$ | |----------------------|---------------|---------------|-----------------| | Raw Yield | 54 ± 13 | 214 ± 50 | 5683 ± 138 | | Efficiency | $.178\pm.004$ | $.216\pm.005$ | $.224\pm.005$ | | $B(\phi \to K^-K^+)$ | $.491\pm.005$ | | | | Corr. Yield | 618 ± 138 | 991 ± 233 | 25371 ± 837 | | $B/B(pK^-\pi^+)$ | $.024\pm.006$ | $.039\pm.009$ | 1 | | $B/B(pK^-K+)$ | $.62 \pm .20$ | 1 | | All errors systematic only! - Have measured the Cabibbo-suppressed decays $\Lambda_c^+ \to p\phi$ and $\Lambda_c^+ \to pK^-K^+$ - Compare our results to other experiments and phenomenological predictions: | Ratio | $B(p\phi)/B(pKK)$ | $B(pKK)/B(pK\pi)$ | $B(p\phi)/B(pK\pi)$ | |----------|--------------------------|--------------------------|--------------------------| | CLEO I | II $.62 \pm .20 \pm .12$ | $.039 \pm .009 \pm .007$ | $.024 \pm .006 \pm .003$ | | NA32 | | | $.04 \pm .03$ | | E687 | <.58@90%CL | $.096 \pm .029 \pm .010$ | | | Theoret | ical prediction | | | | (no colc | or suppression) | | 0.01-0.05 | Expect $B(p\phi)/B(pK\pi)$ down factor of 15 if color suppressed - CLEO II measurement: - $\Rightarrow B(p\phi)/B(pKK)$ consistent with E687 U.L. - $\Rightarrow B(pKK)/B(pK\pi)$ differs from E687 by 1.7 σ - ⇒ Phenom. predictions agree w/i factor of 2 3 Supports non-validity of color suppression for charmed baryons # Summary of Recent CLEO Charm Results - 1) Observation of 2 new excited = states ⇒ Seeing J= 3/2 spin excitation of = - Ξ_{c}^{*+} : $M(\Xi_{c}^{+}\pi^{-}) M(\Xi_{c}^{+}) = 178.2 \pm 0.5 \pm 1.0 \text{ MeV/c}^{\circ}$ Ξ_{c}^{*+} : $M(\Xi_{c}^{\circ}\pi^{+}) - M(\Xi_{c}^{\circ}) = 174.3 \pm 0.5 \pm 1.0 \text{ MeV/c}^{\circ}$ - $M(\Xi_c^{*o}) M(\Xi_c^{*+}) = -1.3 \pm 2.6 \text{ MeV/c}^2$ - Measurement of color suppressed $(A_c \rightarrow p\phi)$ (a) $B = B(A_c + \rightarrow p\phi) = 0.62 \pm 0.20 \pm 0.12$ $B(A_c + \rightarrow pkk)$ - (b) charm hadrons do not obey color suppression - Flavor tagged A_e production $R_{A_e} = 0.20 \pm 0.12 \pm 0.04 \Rightarrow \frac{6 \rightarrow c\bar{c}s}{6 \rightarrow c\bar{c}d}$ internal spectator b > ces not dominant source of charmed baryons in B decay 4) Lots of new branching fractions... B(D= - \$\phi \pi^-) = 3.59 ± 0.77 ± 0.48% B(0° -> Xe+v) = 6.64 ± 0.18 ± 0.29 % B(0° -> K n+n°) = 3.81±0.07±0.26 B(0° -> K n+1) Preprints found on http://w4.lns.cornell.edu/ | | | ,4 | |--|--|------------| | | | | | | | | | | | | | | | , , | | | | | | | | | | | | | | | | |