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Abstract

An extended time-reversal operator incorporating the charge conjugation in the
flavor SUj space is introduced in order to study the spin-flavor structure of the hyperon-
nucleon interaction. The particle-hole conjugation in terms of this extended time rever-
sal is found to be useful to characterize time-reversal odd components for the space-spin
part of the hyperon-nucleon interaction, which yield non-zero contribution to the ex-
change Feynman diagram or to the transition amplitude between AN and XN systems
when the flavor symmetry breaking is properly introduced. Some selection rules are
also given for the spin-flavor factors appearing in the quark-model potentials of the
hyperon-nucleon interaction.
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§1. Introduction

Since the quantum chromodynamics (QCD) was found to be the fundamental theory of
the strong interaction, a number of models have already been proposed to understand the
nucleon-nucleon (N.N) and hyperon-nucleon (Y V) interactions from more basic elements of
quarks and gluons. Among them the non-relativistic quark model is in a unique position
to enable us to take full account of the dynamical motion of the two composite baryons
though it has. to describe confinement with a phenomenological potential and to employ
the quark-quark (gg) residual interaction derived from the color analogue of the Fermi-Breit
interaction. Thanks to this advantage it can give a realistic description of the NN and
YN interaction, if the missing meson-exchange effect, which dominates at the long-range
part of the interaction, is properly taken into account. Since the quark model can describe
the short-range part of the NN and YV interactions within the unified framework of the
resonating-group method (RGM), the symmetry propertics of these interactions in the spin-
flavor SUs space become onc of the most important issues which indicate the quality of the
model.

A simultaneous description of the NN and YN interactions has recently been achieved
by two groups. One is a series of models, RGM-F,?? FS§¥4) and RGM-H,* by Kyoto-
Niigata group, and the other is the SUs-chiral symmetry quark model by Beijing-Tiibingen
group,®® in which chiral-symmetric effective meson-exchange potentials (EMEP) generated
from the scalar and pseudo-scalar meson cxchange between quarks are incorporated. In both
models it was found that the flavor-nonet scalar mesons play an important role in order to
deseribe the NN and YV interactions in a single framework which employs a unique set of
model parameters. We stress that a simultaneous and realistic description of the NN and
Y N interactions is very important, since the experimental data for the YV interaction are at
present very limited and thus one has to rely on the theoretical consistency of the framework
in order to make best use of the rich experimental information on the NN interaction.

It would be appropriate to mention that the purpose of the quark-model study of the
hyperon-nucleon interaction is not only to reproduce the experimental data, but is also to
clarify the rich behavior of various baryon-baryon interactions, which reflects dynamical pro-
cesses taking place between the composite systems of quarks. In the present approach by

‘the QCD-inspired quark-model, these processes arc dominated by the cffective gq interac-

tion as well as important kinematical requirements arising from the quark Pauli principle,
the conservation laws of energy-momentum and other quantum numbers, and the tensorial
properties related to the spin-flavor-color degrees of freedom. Although it would be difficult
to justify the non-relativistic treatment of the many-quark systems in this type of approach,




our experience obtained so far shows that the quark-model potentials for the NN and YN
interactions have correct degrees of freedom with respect not only to the space-spin structure
but also to the rich flavor dependence of the interaction.

The purpose of this paper is to study the symmetry properties of the NN and YN
interactions commonly observed in thc OBEP approach and the quark-model approach.
In particular, we will extend the time reversal symmetry to incorporate the flavor degree
of freedom, and discuss the NN and YN intcractions unifiedly. Namely, we introduce
an extended time-reversal operator incorporating the charge conjugation in the flavor SU,
space. We also define the so-called particle-hole conjugation by using this extended time-
reversal operator. This symmetry is found to be useful to characterize the time-reversal odd
components for the space-spin part of the hyperon-nucleon interaction; i.e., the time-reversal
odd tensor force Sy2(r, p) and the parity-dependent antisymmetric spin-orbit force LS)g. "
These forces do not appear in the NNV force and featurc the YN interaction involving the
strangeness degree of freedom. It will be shown that the Syy(r,p) force gives non-zcro
contribution only to the transition amplitude between AN and XN systems, and that the
LS5y force is non-zero when the flavor symmetry breaking (FSB) is properly taken into
account.

In the next section, we discuss the structure of the scattering amplitudes for the NV
and YN systems by introducing the Pauli-spinor invariants. The Nijmegen hard-core mod-
els® 10 are one of the standard OBEP models which are derived from the scattering ampl-
tudes through the Fourier transformation. Thesc potentials also sharc the same space-spin
invariant structure as the original transition amplitudes possess, except that the energy con-
servation law is not automatically incorporated in the potentials. A brief discussion of the
guark-model potentials is also given. In §3 we first start with a simple introduction of the
time reversal invariance including the discussion of the phase convention of the state vectors
and the tensor operators. By incorporating the SUs conjugation in the flavor space, we de-
fine an extended time-reversal operator and the particle-hole conjugation. Basic symmetries
of the Y'N interaction involving the exchange symmetry of the two baryons, hermiticity, and
the extended time reversal symmetry, are discussed in § 4. These are employed to find the
symmetries of the flavor factors of the Y N interaction under the constraint of the space-spin
structure given in § 2. One can then cxtract the operator form of these flavor factors both
in the OBEP and in the quark-modcl potentials. Some examples are given with respect to
the Nijmegen hard-core potentials. In § 5, the symmetry properties of the spin-flavor factors
in the qiark model are discussed with respect to the non-central forces. A brief summary is
given‘ in the last section.

By By Y N Y N
B kfz:' KK
B B, Y N N Y
q; —q; (2) direct (b) exchange
Fig. 1. The second-order Feynman diagram of  Fig. 2. (a) direct and (b) exchange Feynman
f-meson exchange from B1-Bs to B3-By. diagrams for the Y N elastic scattering.

§2. Invariant amplitudes, OBEP and the quark-model potentials

The scattering (or transition) amplitudes of two spin-1/2 particles from B,-B; to Bs-
B, (see Fig. 1) should take the following general form required from the invariance of the
interaction under the space rotation and the reflection of the coordinate frame: !

8
‘M(qf7 QI) = ZM(l)(q.fv ql)l)! 3 (21)
=1

where ¢; and g; are the incident and out-going relative momenta, by which one constructs
three orthogonal vectors

1
q=5(w+q.'), k=qgi—qi, n=¢gxqg=qxk . (2.2)

Qur choice of the Pauli-spinor invariants P; is given in Table I in terms of k, g, n, o, and
o5. Among these eight possible invariants, the last three from P through Py are not allowed
in the NN scattering because of the identity of the two particles (P; and Py) and because
of the time reversal invariance (P; and Pg). The combination, Py = (o1 - g)(o2 - q), is also
listed in Table I, although this combination is not independent of the others. The invariant
amplitudes, M®)(gy, g;) in Eq. (2:1), are in general functions of the three independent scalar
quantities, ()%, (g7)° and (gi-qy), which correspond to the energies E;, £y of the initial and
final channels and the scattering angle ¢ in the center-of-mass (c.m.) system, respectively.
Alternatively, one can also take g7, k? and k - g as independent variables. For the elastic
YN scattering in Fig. 2, the relative momenta in the initial and final states have the same
magnitude, (¢;)* = (gy)?, because of the energy conservation. This condition is equivalent
to k- ¢ = 0, and plays an important role in the following sections.
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Table I. Pauli-spinor invariants P; and the space-spin invariants O employed in this paper. A
generalized tensor operator Sia(a, b) is defined through Sia2{a, b) = (3/2){ (o1 - a)(o2-b)+ (02
a)(o) - b)] - (o1 02)(a-b), and ST) = (1/2)(o1 — &2) for the antisymmetric spin-orbit force.
The quadratic LS operator, @12, is defined in Eq. (B-12). The invariant Py corresponds to the
momentum {(mom.) tensor Si2(p,p), and is redundant if the other eight invariants are used.
£ for 1 = T is the time-reversal odd (7 -odd) tensor.

1 B 2 Op

1 1 central 1

2 o109 spin-spin [ SRR )

3 (o1-k)oz-k) tensor S1a (= S(7, 7))
4 in-S LS L-S

5 (0’1 -n)(a’z . n) QLS Qi

5 (o1-q)o2-q) mom. tensor  Si(p, p)

6 in.SO) LS§(-) L-S)

7 (o,-9)oz k)+ (o1 -k)oz-q) T-odd tensor iSy(r,p)

8 (o1-q)o2-k)— (o1 -k)oa-q) LS (L-S-YP,

One of the reasons we prefer to use the variables, k and g, in M® is that they show
a simple transformation property under the time reversal operation. Namely, the transfor-
mation, g; —» —qy and g5 — —gq;, implies ¢ — —¢, k — k and n — —n. This property
together with o; — —o; (i = 1, 2) clearly shows that Py ~ Ps in Table I do not change the
sign, while P; and Py do. We call the former case time-reversal even, and the latter odd.

The standard procedure to derive OBEP consists of a couple of steps involving various
approximations, In the Nijmegen hard-core models,® 1% one first writes down the second-
order Feynman diagram in Fig. 1 for the exchange of the scalar, pseudo-scalar and veetor
mesons between Y and N. After some approximations on the mass factors and the prop-
agator in the exchange diagram, the non-relativistic reduction of the relativistic amplitude
for a particular meson species 3 becomes

4ir 8 o
MPBEP(qs,q) = mz;ﬂi(kz,ql)ﬂ , (2:3)

where m is the meson (or effective meson) mass and €;(k?, ¢*) are in quadratic form of
the baryon-meson coupling constants. The explicit expressions of (k2 ¢%) are given in
Egs.(23) ~ (26) of Ref.12) except for 02s(k?, ¢%), which is given in Appendix A. These
involve no k - g term and the ¢ dependence is at lcast lincar. In the Nijmegen hard-core
potentials in Refs.8) ~ 10), the g? dependence in (%;(k? ¢?) is neglected and the cnergy
dependence of the potential is controlled by choosing the core radius in some appropriatc

way. The k? dependence is also ignored by setting k? = —m?, since the higher order terms
simply yield the delta function of the relative coordinate and its derivatives in the coordinate
representation. After these approximations one constructs a local expression of the OBEP in
such a way that the Born amplitude of this potential coincides with Eq. (2-3). This process
is conveniently carried out by using the Wigner transform technique for non-local kernels as
discussed in Appendix B. The resultant OBEP is given by

8
Vg"“’:;Qe(—mz,O) oF(r) , (2-4)

where the invariant factors OfF(r) in the operator form are recovered from the corresponding
Wigner transform

W _ . ] .
O¥(r,q) = (QW)S/dke el (2:5)
through
1 :
or(r) = [ ds et { T [daee oY (r,q)} bV (26)

Here V = 3/8». Since the ¢ dependence of OF(r,q) is simple, the transformation in
Eq.(2-6) is actually very easy. The final expression of O;(r), shown in Appendix B, contains
the full spin-dependence of the central and non-central potentials together with the standard
Yukawa functions Y (z), Z"(z) and Z(x) with z = m |r|. Finally one can express the OBEP
somewhat symbolically as
VIEEr = 3 X2 U (2) O (2:7)
7]

where 2 is used to specify the interaction types of the space-spin invariants in the coordinate
representation. Refer to Table I for the common names of £2 and the explicit form of Oy,. In
Eq.(2:7), U%(z) denotes some appropriate Yukawa function corresponding to the interaction
type {2, and X§ are expressed in quadratic form of the baryon-meson coupling constants
involving mass factors.

So far the scattering amplitude for a specific combination of ¥ and N is obtained for
the exchange of a meson § with some definite internal quantum numbers in the flavor de-
gree of freedom. The full scattering amplitude is obtained by summing up all the meson
contributions allowed for the direct and exchange Feynman diagrams. The needed calcula-
tion in this process is most efficiently carried out by using the operator formalism for the
coupling constants, in which flavor-singlet and octet SUs tensor operators, fiayg, (which we
call coupling-constant operators) are postulated in the flavor SU; space. In this formalism,
Y and N are considered to be two different states of an identical particle, namely, the octet
baryon Bg, and the generalized Pauli principle

(1" () P=-1 (2:8)




is always assumed if one uses the spin-flavor wave function

n5F = xss.[B1BalTy,

= XSS:“““E“’— {[3132]11, + 'P(—I)IXHPI[BzBl]u,} . (29)
2(1 + 6B, B,)

In Eq.(2-8), § denotes the total spin, L is the orbital angular momentum of the relative
motion, and the parity is given by 7 = (—1)*. The flavor exchange phasc P is the eigen-value
of the flavor exchange operator P[, with the eigen-vector [ByBs|Ty,. In Eq.(2:9), Bi = By,
with ¢; = Y;I;, and the subscript a of 73F specifies a set of spin-flavor quantum numbers:

= [1/2(11)a;, 1/2(11)ag}SS.YI1,;P. We use the convention that the first B; always
refers to particle 1 and the second to particle 2. The matrix elements of the two coupling-
constant operators with respect to [B1By)7;. are expressed by the isospin-standard coupling
constants multiplied with the isospin factors related to the baryon channels and the isospin
I of the exchanged mesons. By using these notations and the baryon-exchange operator,
P = PI, P7, PE, the total scattering amplitude by the OBEP, VOBEF = 33, VPBFF in
BEq.(2-7), is given by

(trg'tal(qf qJ
= <ﬁ(l _ Pm)eaq!r SF } vOBLP l ﬁ(l - P )eu; ir SF>
=1 [au‘(quqi) + (_1) p iwan'(qfa -Qi) (210)

with
o = [1/2(11)ay, 1/2(1 1)} S’SY IL; P,
a= [1/2(11)(13,1/2(11 aq)SS.YIL;P
r={(-1)5P =(-1)°P . (2-11)
Here, M,a/(qy,q:) is the spin-flavor matrix element of Eq. (2-1), which should be given by
Maa’(qfv (Ii) = (eiq;r £F|VOBEP‘eiq,r"g‘F> ' (2'12)

Care is needed for the treatment of the quark-model potential because the RGM equation
for the NN and Y N interactions is not straightforwardly reduced to the simple equation of
Schrodinger type. We start from the RGM equation for the parity-projected relative-motion
wave function, ¥%(r) = (1/2)(xalr) + 7xo(-T)):

{eﬁ i (;’” ) =2 [ @ G ) 0 (2:13)

The parity non-projected x.(r) satisfies Eq.(2-13) with the exchange kernel Guo{r,7’) re-
placed by

5 [Gaarlr, ¥+ (C1) P Gaw(r, =] (214)

which corresponds to VO"EP (r)* The Born amplitude of the RGM kernel also takes the
form of Eq. (2-10) with Maar(qy, g:) given by

Maa(gs,4) = (€97 | Gar(r, ') | €97) . (2:15)

The exchange kernel G (7, 7') is calculated as the matrix element of the quark-model
Hamiltonian with respect to the spin-flavor SUs wave functions, £3F, defined through
Eqs.(2.6) and (2.8) of Ref.1). We can find a simple transformation rule to convert the
spin-flavor matrix elements of a singlec baryon into those of some flavor operators at the
baryon level. We can thus postulate that G(r, ') contains the spin and flavor operators at
the baryon level, whose matrix element with respect to 737 and n3F becomes Gou(r, 7).

The WKB-RGM method enables us to convert the nonlocal exchange kernel to the
momentum-dependent local potential.’® The Wigner transform of G(r,r") is given in a
form similar to Eq.(2:7):

Z):XT Gyr(r.q) OF (2:16)

where 7T specifies five different interaction types, E, §, S', D, and D_, for a particular piece
of the gq interaction.'®) Since the spin-favor factor X§ and the spatial function Gf(r,q)
depend on each type of the gg interaction, the summation over {2 in Eq. (2-16) implies not
only for the interaction types at the baryon level, but also for those at the quark.

The Wigner-transformed version of the space-spin invariants, O¥ , is obtained by replac-
ing the momentum-operator p = (i/h)(@/8r) in O, with its classical counterpart and thus
neglecting the operator ordering. (See the discussion in Appendix B.) An energy-dependent
term like —€4(Xn)aarGly (7, q) is included in the central component as a part of the E-type
interaction, where N stands for the quantity related to the exchange normalization kernel.

Actually the Wigner transform of Eq. (2:16) well approximates the original RGM kernel
only when the local momentum g is determined by solving the self-consistent transcenden-
tal equation.” The use of the Wigner transform technique is possible so far only for the

*) The first term of Eq. (2-14) corresponds to the {—9)Psq-type single-quark exchange term, while the
gecond to the two-quark exchange term expressed as the single-quark exchange followed by the (3¢) exchange.
In the WKB-RGM technigue, these two terms give the same contribution to the Wigner transform since the
second term should be transformed as a Majorana-type non-local kernel.®) However, this is not true for the
total Born amplitude in Eq. (2-10). This fact is first pointed out by C. W. Wong and his co-workers in their
quark-model study of the LS amplitudes for the YN interaction. 14)




elastic scattering (a = a') with the central force. Even in this case, the solution of the tran-
scendental equation sometimes does not exist, if the Pauli repulsion is very strong, e.g., in
the odd-parity case of the NN interaction. Nevertheless, it would be useful to examine the
Wigner transform by simply assuming q = 0 in the spatial Gaussian functions G+ (r, q) of
Eq:{216), since we are interested in the low-energy scattering. The effective quark-model
potential in this approximation can be given by

V= S5 X7 Glr(r,0) Oa (217)

The LS potentials thus derived from the Fermi-Breit interaction were found to have a good
correspondence to the OBEP (especially to the Nijmegen modcl-F LS forces) for the NN
and Y N single-channel systems.” The same technique is also applied to the (g7) exchange
potentials in the NN system. %17 They show very good correspondence to the OBEP in
the medium- and long-range region, except for the OPEP-type (¢g) exchange potential.

Before discussing symmetries of the flavor operators, X§ (in Eq.(2-7)) and X# (in
Egs.(2:16) and (2-17)), we will discuss some simple properties of the time reversal oper-
ator and their extension to the flavor SU; space in the next scction.

§3. Time reversal invariance and the extended time-reversal operator

For the basic propertics of the time reversal symmetry, we refer to Refs.18) and 19).
The time reversal symmetry is usually employed to determine the phage of state vectors and
operators. The invariance under this symmetry i3 therefore intimately related to the reality
of the matrix elements.

In the simplest system composed of a single spin-1/2 particle, the time reversal operator
is defined by*

T=R'K , (3-1)

where R = R,(r) = e~*/%)% implies the rotation of the coordinate frame through an angle
7 about the y axis, and K taking the complex conjugate of all c-numbers. The time-reversal
odd character of the spin operator

TeT '= -0 (3-2)

*) Here we use the standard notation 7 for the time reversal operator, which should not be confused with
the subscript 7 in X7 etc., specifying the interaction types of the quark exchange diagrams (see Eq. (2:16)
and the subsequent discussion.)

can be easily proved by using the explicit expression of the Pauli matrices. One of the most
important properties of 7 is the commutation relations

[RT,S? = [RT,S.] = [§%,5.]=0 (3-3)

for the spin operator § = /2, which allows us a simultancous eigen-state of $%, S, and
R7T. The phase of the spin eigen-state is usually taken as

RT|SS,) = |5S.) . (3-4)

This relation gives us the well-known transformation rule of the spin angular-momen-
tum states under time reversal:

T|SS;) = R—1‘55z> - eilS,lSSz> = (_1)S+S,

§-8.) . (3-5)

It should be noted that these relations are easily extended to the many-particle systems
involving the spatial degree of freedom, since the Clebsch-Gordan (C-G) coefficients are
chosen to be real. For the orbital angular-momentum state, the well-known ¢ factor should
be included for the spherical harmonics in the coordinate representation.

Let us consider the matrix element of an operator T' with the lbasis set of Eq. (3-4):

(S8.IT|S'Sy)" = (K{SS.HK{T|S'S0)}
= (RT{SS}(RT)T(RT)|RT{S'S.})
= (SS|(RT)T(RT)™|S'SL) . (3:6)

The matrix element of the operator T becomes real if the operator T is invariant under the
transformation by R7. If T' changes & sign under R7, the matrix element is purely imag-
inary. Thus the transformation property of operators under the time reversal characterizes
the phasc of their matrix elements. An operator which satisfies the relationship

(ROT(RT) ' =T (37)

is called real. For the tensor operators T, the transformation above by RT usually reduces
each Ay component to itself, except for a phase factor:

(R (RT) ™ =crTay - (3-8)
Then, the Wigner-Eckert theorem and the reality of the C-G cocfficients yield

SITISY = er(SITISY - (39)
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Namely, if c; = 1 and the operator T} is real, then the reduced matrix element in Eq.(3-9)
is real, 50 as to all the matrix clements. Note that the phase factor cr is not an intrinsic
property of T, since it depends on the phase choice of the operator. Thus, by multiplying
T, with a suitable phase factor, we can always achieve ¢z = 1. For examples, the operators,
Ty, =0, and Dy = *Y3,.(#), are real but the spherical vector r,, is not real:

(RT)ru(RT)™ = -1, . (3-10)

On the other hand, the momentum spherical vector, p, = (=1)#(h/i)(8/8r_,), is real be-
cause it includes the imaginary unit §. By using these, we can casily show that all the
space-spin invariants Oy, given in Table I are rcal operators.

So far we have considered only the space-spin degrees of freedom. When the above
formalism is applied to the YN interaction, it is convenient to incorporate further the flavor
degree of freedom and to introduce an extended time-reversal operator as shown below. It
should be noted that the flavor operators are also affected by the time reversal operation 7,
since it contains K. We need to modify the transformation property of the tensor operators
in the flavor space such that it becomes compatible with the effect of K. This can be doue
by using a technique similar to the one employed for the isospin-dependent operators in the
nuclear many-body problems. ' We first introduce an operator for the 5U; conjugation, C,
through

COGwuC ™t = (= 1)HNO 50, (311)

for the SU; tensor operators Opye. Here, ¢{(Au)a) is the conjugation phasc given by
1 1
HAYIL) = (A - +35Y + 1, (3-12)

following the Draayer and Akiyama’s phase convention, 20} and the conjugate quantum num-
ber a, of @ = YII, stands for a, = (=Y )I(~1,). Since ¢({(Ap)a) + ¢({#A)ac) = 0, one can
assume C2 = 1 or C~! = C. The extended time-reversal operator is defined by

F=CT=CR'K . (3-13)
Using RC™'F = RT = K, we can easily show that
[RC'F, 8% =[RCT'F,5.]=0 ,
[RCIF,Cy) = [RCVF,Ca) = [RCTFY| = [RCT'F, I’
={RCF.L]=0, (314)

where C; and Cj are the SUs Casimir operators of the second and third ranks, respectively.
To prove Eq.(3-14), we have used the fact that the SU; tensor generators Aanyrr, are all

11

expressed by 3 x 3 matrix units as is shown in Ref.20). We can construct such spin-flavor
SUs basis state that simultaneously diagonalizes RC™'F, §%, S,, Cp, C3, Y, I? and I,.
Choosing the phase of the basis state as

RCLF|SS (Ap)a) = |85, (\)a) (3-15)
we find that

F|8S.(Mr)a) = CR7YSS.(Au)a)
= (1) (-~ 1)ANG — G (uh)ac) . (3-16)

The reality of the SUs tensor operators, Orr, (au)a. 18 also defined similarly. (We use the
netation, 7., to specify the spin quantum numbers of the spin operators.) Suppose that

(RC_I.F)OT,.,(,\,‘),,(RC—J.F)_I = 5 Orr, () (317)

be satisfied. We can choose the phase of @, (x.)a Such that ¢z =1, and then all the matrix
elements become real. As an cxample, let us consider coupling-constant operators; a set of
SUj operators fiaag (A =0, 1) for the baryon-meson coupling constants. By choosing the
phase of the operator as

(RCTIF) fanys(RETVF) ™ = foms (3-18)
it follows that

FfompF Tt =CfansC™
= (—1)*O) fona = fOns - (3-19)

Namely, the effect of F in the flavor space is simply the SUz conjugation for the real op-
erators. Under the phase convention of Eqs.(3-15) and (3-18), all the coupling constauts
become real.

Since the extended time-reversal operator F contains K, ¢x in Eq. (3-17) depends on the
phase choice of the operators. To avoid this ambiguity, we use an extra operation of the
hermitian conjugation and define the so-called particle-hole conjugation. In order to realize
this, we should recall that the hermite conjugate of Ty, (in the spin space for example)
should be defined through

T = (-1, . (3-20)
Then T,{L also becomes a tensor operator of rank A with the z-components . Similarly, we
can show that
f(},{,\)ﬁ = (“1)«('\A)ﬂ)f(t,\,\);3c (3-21)
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is also the SU; tensor operator with the same irreducible representation label (AA)3. (See,
for example, p. 218 of Ref.21).) It is not always true, however, that f(‘z 08 18 proportional to
the original fy3. Nevertheless, the coupling-constant operators fig in the OBEP usually
satisfy
f(T,\,\)ﬂ = fg,\)@ ) (3-22)
just like the SUj generators Aqy),. We write this as f(gk)ﬂ = cy fong with ¢y = 1, and call
the operator satisfying Eq.(3-22) self-conjugate.
Let us now define the particle-hole conjugation operation through

OPEC, = —(FO ) (323)

Tr{ Ap )
The relationship in Eq.(3-17) and the hermitian phase ¢y yicld

he 41, A
O?fx(/\p)a = —'C]:(—l) *r (_1)4’(( P)a)ol—r,(pt\)ac

= —trcg Orr,(Ms)a
= COTT,(/\;;)u ) (3'24)

where ¢ = —crcg does not depend on the phase choice of the operator. It should be noted
that combining two operators in the particle-hole conjugation is useful only when these two
operators are for different degrees of freedom. Suppose that A and B be such operators as
satisfying, [4, B] = 0, and APBC — o 4 BPRC = ¢ B Then the particle-hole conjugation
phase c4p is obtained through (AB)phc = capAB with cqp = —cacp. Therefore, both of
the A and B should be particle-hole conjugation odd or even, if we want to have AB odd.

For the real flavor operators fiaxs which satisfy Eq. (3-18), the particle-hole conjugation
Eq.(3-23) is reduced to fglj)cﬂ = —(f&s)"- Thus the self-conjugateness property means that
fg{\lﬁ, = — fuang. Namely, foas is particle-hole conjugation odd; ¢ = —-1.

The real self-conjugate operators fiays satisfy a couple of specific relations. First, the
flavor-singlet operator fio) is always hermite; f(fm) = fio0). 1f we combine two such real
self-conjugate operators, fos and gaxs, into flavor-singlet form, the product is always
hermite. In fact, we find that

ZM =3 fEns(Mgons(2) = 3 fona(1)gins(2) (3-25)
5 5

satisfies ZOM! = ZOY). We use a notation

z= Y Z™M=fgt, (3-26)
(AX)=(00),(11)
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by assuming that particle 1 for the first operator and particle 2 for the sccond operator.
Then the hermiticity of Z is expressed as

fat =g =rlg . (3-27)

This product of the coupling constant operators is always real, since f and g are real oper-
ators. Under the particle-hole conjugation, it is odd since f and g are both odd.

84. Basic symmetries of the YV interaction

In this section, we discuss some basic symmetries of the YNV interaction and apply them
to the OBEP potential in Eq.(2-7) and to the quark-model potential in Eq.(2:17). As in
the study of the NN interaction, these symmetries turn out to give strong constraints on
the models for the YN interaction. Since the space-spin invariants Oy, satisfy some specific
symmetries, the symmetry properties of the fiavor factors, X§ and X#, are consequently
hniquely determined from these constraints. One can then use these to recover the operator
form of the flavor factors.

Here we discuss the following four types of symmetrics:

(P12) : 1o 2‘(01' (34)—clustcr) exchange, Py = PP, Pr ,
(H) : hermiticity ,
(T) : time reversal, T = R-YK, or the extended time teversal, 7 =CT ,
(PH) : particle-hole conjugation with F, ophe - —(FOF-IH . (4-1)
In addition to the parity conservation and the rotational invariance, the full potential ypot
for the NNV and YN interactions should satisfy
1) Py VPO Py = VPOt
2) R =YRet
3)  FYPOl gl ypot (42)
The last condition in Eq.(4-2) indicates the invariance under the extended time reversal.*)
This condition with the hermiticity makes the full potential PH conjugation odd; ¢ = —1.
First, let us consider the symmetries of the space-spin part. Since the space-spin invari-

ants, P; (i = 1 ~ 8 and 5') and Og in Table I, have one-to-one correspondence, we will use a
notation @ in order to indicate @p,. For the exchange symmetry in 1) of Eq.(4-2), we can

*) Actually this condition is equivalent to the time-reversal invariance, since the full potential is usually
invariant under the SUj conjugation; C VPOEC—1 = YPOL, The effect of FSB is always expressed by octet
tensor operators with the internal quantum numbers Y11, = 000.
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Table II. Symmetries of the space-spin factors O; or Q. The operators O; with i = 1 ~ 6 and
5' are hermite (O] = ©;), and those with i = 7 and 8 are anti-hermite (O] = —0;). The
spin exchange cperator is denoted by P, = (1 + o1 - 02)/2. For i = 7 and 8, a proper phase
convention for the time-reversal odd (7-0dd) operators is given in the parentheses.

hermite anti-hcrmite
{T-0dd)
O, central
@, spin-spin
P,0O;P, = O (3 tensor @7 T-odd tensor
04 LS (~i0O7)
O QLS
Qs mom. tensor
P,OP, = -0; O LS 03 LSg
(1 0g)

consider P,O;P, instead of (P.P,)0:(P.F,), since all the O; are parity conserving. This
symmetry, together with the hermitian property, gives that O; are classified into four groups
as is shown in Table II. On the other hand, the effect of the extended time-reversal operator
F is reduced into 7 for @;. However, the time reversal property is usually referred to the
hermite operators. Thus we consider

—i07 = Slﬂ(rap) ’
iOg=i(L-8)P, = %([m xo)-L) (4:3)

instead of the anti-hermite operators, 0, and Os, themselves. In the phase independent ter-
minology, these are PH conjugation even operators. (On the other hand, the other operators,
@, ~ O, are PH conjugation odd.)

Before proceeding to the discussion on the symmetries of the flavor factors, we need some
comments on the spatial functions in each model. The spatial functions, U?(z), of the OBEP
in Eq.(2-7) are the simple Yukawa functions which are real and depend only on 7 = |r]. In
this particular case, the symmetries of the flavor factors, X? = Xf in Eq.(2-7) or §; in
Eq.(24), are uniquely specified from the combinations of Eq.(4-2) and the symmetries in
Table II. Here we assume the isospin invariance and the subscript 3 is supposed to indicate
the meson species of some particular isospin supermultiplet. On the other hand, the spatial
wave_ functions of the quark model, G, (r,q) in Eq.(2-16), are the functions of r?, ¢?,
and ir - q. We need the factor ¢ for 7 - ¢ to make this combination a real operator in the
coordinate space. Since the original quark-model Hamiltonian is a real operator, Gl i(r,q)

Table III. Symmetries of the flavor factors 2; or X. The operators €); with i = 1 ~ 6 and §'
are hermite (2] = (%;), and those with i = 7 and 8 are anti-hermite (] = —€;). The flavor
exchange operator is denoted by Pp. For ¢ = 7 and 8, a proper phase convention for the
extended time-reversal odd (F-odd) operators is given in the parentheses. The selection rules
for ¢ = 6 ~ 8 components are for the diagonal baryon channels.

hermite anti-hermite
( F-odd )

{}; central

{1, spin-spin
Pe)Pr = 13 tensor {}; T-odd tensor

Q4 LS (iS)

Qs QLS no direct

Qs mom. tensor and no exchange
PeSl,Pr = =0, Qg LSO Qs LSHo

no exchange (—i2) no direct

are real functions of these three variables. A detailed analysis of the quark cxchange kernels
shows that they are hermite for the intcraction types, 7 = E, Dy, and D_, while the kernels
of the 7 = § and S types are transformed to each other by the hermitian conjugation. '
This situation makes the symmetry discussion of the full Wigner transform in Eq. (2:16)
a little complicated. Here we rather dwell on a simpler version Eq.(2-17) with the ¢ = 0
Wigner transform, and discuss the symmetries of the flavor factors, X? = X#, X and
X§ . The S and §' factors appear only in the combination of X £+ X§ in Eq.(2-17) because
of the property, Gis(r,0) = Gfys(r,0). Thercfore, this combination should be considered
to be X. More complete discussion on each of the quark-model flavor factors, X#2 is made
in the next section, after the explicit definition of these factors is given.

Table III shows the obtained symmetries of the flavor factors €; = €1;(—m?,0) in Eq. (2-4).
Although these are shown by using the (%, the factors X7 discussed above also satisfy these
symmetries. First, the condition 1) of Eq.(4-2) yields the flavor exchange symmetry with
respect to Pp. For example, the relationship, PrSkPr = —; (i = 6, 8) implies that
the flavor factors for the LS() and LS‘7)¢ forces are antisymmetric with respect to the
interchange of the first and second particles. On the other hand, the flavor factors, (17
and g, are characterized by the anti-hermiticity; () = —(: (¢ = 7, 8). Here the type
i = 7 corresponds to the time-reversal odd tensor in X 2, These non-hermite operators are
again converted 10 the hermite ones by taking i {}; and —2 Qg, which are F-odd. In either
representation, these arc even under the PH conjugation.
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It should be noted that all the flavor factors, Q; and X, in Table III, are real operators,
since the original Hamiltonian is real. This condition gives some interesting features of the
" matrix elements of Q; for the elastic channel (B;B; — BB, or B2B, — B B,). By using
the symmetry properties of f); in Table III and the reality of the matrix elements, we can
easily show

(By BalS%| By By) = (B Bo|(%|B) Bo) =0
(B1 leﬂﬁle BI> = (31 32IQ7|BZ Bl> =0, (4‘4)

where the matrix clements are evaluated in the particle basis. The relationship in Eq.(4-4)
implies that the LS force has no exchange-term contribution, while the LS)o force has no
direct-term contribution. For the elastic Y NV interaction, the non-strange mesons contribute
to the direct Feynman diagram (Fig. 2(a)), while the strange mesons only to the exchange
diagram (Fig. 2(b)). Consequently, the LS~} force gets the contribution only from the non-
strange mesons, while the LSg force only from the strange mesons. Notc that these
selection rules are useful only for the clastic (or diagonal) potentials. In particular, {7 picce

or the time-reversal odd tensor exists only for the transition poteatials like (A N|VPOU Z N).

Another important selection rule emerges from Table III, if FSB is neglected. In this
case, all the coupling constant operators are self-conjugate. Since {}; are simple flavor-
singlet products of the real self-conjugate operators, all the Q, in this case are hermite as
is discussed at the end of the preceding section. Thus there is no 27 and Qg contributions
to the SUzsymmetric OBEP (and also to the quark-model potential Eq.(2-17) in the SUy
limit.) Furthermore, {3 is not allowed either for the NN system, owing to the identity of the
two particles. This leads us to the well-known fact that only €2; ~ {}s (or {1y} are enough
for the NN interaction.

As an example of showing how these symmectries and selection rules are realized in the
OBEP, let us reexamine the procedure to derive the Nijmegen hard-core potentials. The full
relativistic expression of the one boson exchange amplitude does not have i = 7 piece for
the elastic process which involves two octet baryons B, and Bs. Except for the standard
pieces of interaction, 4 = 1 (central), 2 (spin-spin), 3 (tensor), 4 (LS), and 5 (QLS), we only

" have i = 6 (LS'7) type contribution for the direct diagram, which comes from the scalar
and vector meson exchanges. For the exchange diagram, i = 5 (momentum tensor) and

i = 8 (LS*)g) come from the pscudo-scalar and vector mesons, while ¢ = 6 (LS*™)) comes
“only from the vector mesons. However, i = 5' term disappears through the non-relativistic
approximation and through some extra approximations of the mass factors which we call the
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Nijmegen approximation:'2 -
) 1 + 1 2
My? " Mp* o MyMy

ii) for AN-Z'N transition potcntials, use My = %(MA +My) . (4-5)

The condition i) implies

1 2
() 0.
My My
1 1 4 1 1 2

2
——+——) ~ e :
(My My MyMy " W T My T /AT M (46)

Namely, we neglect the second order of the hyperon-nucleon mass difference, which causes
the error of about 5 %. The exchange §24 factor for the vector mesons is given by

1 1 1
Qu = (g1a Fag — SN L
& = (q13fe f13942)2M (My + MN)
fis fol

3
he da ot —at) (5 3) o) (47)

My My

where g and f are the vector-type and tensor-type coupling constants, respectively, and M
is a some standard mass usually taken as the proton mass, M = M,. Here, k- q term is
actually absent owing to the cnergy conservation. The coupling constants for the exchange
diagram arc

g1afer — fiagee = gyv fyy — favgny =0 . (4-8)

{On the other hand, a similar combination appearing in the direct Q¢ factor of the vector
mesons is ¢iafaz — flags2 = gvy Fnn — fyvynn # 0.) After all, we get the following simple
structure of the Nijmegen potentials with respect to the non-zero contributions of the i = &,
6, 7, and 8 pieces; the non-strange scalar and vector mesons contribute to the L5 force
in the direct diagram, and the strange pseudo-scalar and vector mesons contribute to the
L5 force in the exchange diagram.

In the Nijmegen potentials, the exchange contribution is obtained from the direct con-
tribution. by just replacing both My and My with /My My, and by adding an extra minus
sign. An exception is (3 = 0 for the exchange contribution. In this case, (lg is given by
Eqgs.(A-2) and (A-3). Note that these LS o contributions are zero, if we set My = My
by neglecting FSB. An extra exchange term originating from the second part of the vector-
meson propagator (k,k, /m?) for the K* meson does not contribute to {s. (See Eq.(26) of
Ref.12).} :
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§5. Symmetry properties of the spin-flavor factors in the quark model

In the quark-model calculation of the NN and YN interactions, FSB of the Fermi-Breit
interaction is explicitly introduced through the quark-mass dependence by using the formula

Mg _ % (2+ %) N (1 - %) Y(i) . (51)

m;

Here Y(i) is the hyperchage operator of particle i, A = m,/myq, and the SU; limit is realized
through A — 1. Various terms of the quark-model potential are classified into three groups
of the central, spin-orbit and tensor components, which depend on the spin variables in
the zeroth, linear and quadratic powers, respectively. Each of these groups includes the
space-spin invariants in Table I as follows: the spin-independent central and spin-spin terms
for the central component; LS, LS and LS)¢ terms for the spin-orbit component; and
the tensor, momentum tensor (or quadratic LS) and time-reversal odd tensor terms for the
tensor component. Here we only discuss the non-central spin-orbit and tensor components,
since these have the most complicated symmetry structure.

The spin-flavor operators for the non-central pieces of the Fermi-Breit interaction are
defined by

Mud 2

w4, ) = %( ("‘) 201 o)

1

w9, j) =

L1
*3
) (mud) T .
R mm,[ A (52

) o 42 (Ta)? G

mim;

which correspond to the spatial operators [r x (p; — p;)] for sLS, [r x (p: + p;)] for aLS
and [#;#; ]‘(‘2) for T', respectively. Note that the definitions in Eq. (5-2) are such that they are
reduced to the simple combinations, o;+¢; (sLS) and o;—@; (aLS), in the SU; limit A = 1.
From the spatial integrals, we find that only the interaction types 7 = D, and D_ survive
for sLS, while S and 5’ types for aLS. In the tensor component, all the types but E are
possible. In order to calculate (37 |w(M(4, 1) PEF|£3F), we first express the exchange operator
PSF by the SUg generators as in Eq. (C.1) of Ref. 22) and separate the quark operators from
wP(4, 5) and P into two groups corresponding to each (3¢) baryon. Each matrix element
of the (3¢) system is expressed as that of some abstract operators at the baryon level. In the
SUj, limit, the flavor part of these operators is given by the electric- and magnetic-type SUs
unit vectors, €f,, and €f}) (A =0, 1), for the SUs coupling (3] x {221111] — {3), introduced
in Refs. 22) and 23). When the FSB is introduced, we need to extend these into several types
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of flavor operators. These flavor operators play a role of the coupling-constant operators in
the OBEP approach. The original matrix element of the (3q)-(3¢) system is then obtained
by recombining two of these and by evaluating the matrix element at the baryon level. For
the LS interaction of Eq.(5-2), we should note that w*!5)(i, j) and w'*9)(i, j} are spin
vectors. We can therefore express the full matrix elements as those of 737 in Eq.(2-9), b
employing the spin operators op,, 0p, and i [os, X og,]. Alternatively, we can also use
= (1/2)(op, + or,), 8 = (1/2)(0n, — 0p,) and §VP, = (~if2)|es, x op,). The
spin-orbit type spin-flavor factors, X£5, X£5" and X£57 are thus defined through

(ESFlw(sLS)(:; G)PSF,§QF> — (an|X'“SS + XLS(-) 8§ +XLS“)05(—)P l"]ﬁ'r> ,
(€5F |t (2, 5)PEFIESFY = —(nF|XES S + X557 890 + XS T7 5P, nSF)
(E5 w9 (2,6)PF1eSF) = -3 (nF|X§°S + Xs” 'S4+ Xs”‘ AT

(53)

The factors, (—1) for D, type and (—3) for S type, are just for convenience. Similarly, the
tensor factors are defined through

(€F 1wl (3,6)PETIEST) = 3 TIXD_lemeonllina’)
(€SFlwP(2,5)PT1ES"y = 3(nSFIXT, los,0m|PIni)
(€ lel"2,6)PET1ET) = =5 (ZFIXE o mowlOIn3) - (54)
The S'-type factors are defined from the S-type ones through the replacement w(?)(2,6) —
w9(2,3).

For the present discussion of the YN interaction with B, = By = N and By, B3 =
N, A, ¥ and =, we also use the notation

(X2)py0, = (BsNFIXPBINTTL) (5-9)

which is always real since all the spin and flavor operators we are dealing with are real.
The spin-flavor factor for the particular channel, (X§)y, 5, , is generally expressed as a linear
combination of the iso-scalar term, the iso-vector term with (7, - 75,), and the strangeness
exchange term with Pr. The eigen-value of Pr should be considered to be 7' in Eq. (5-5).
In the diagonal channel with B, = By = B, this Pr term does not exist for B = N and
Z, but appears for B = 4, and also for X' in the combination of (14 7y - Tv) Pr. In the
off-diagonal channel with B3 By = A X or X A, the total isospin is I = 1/2, and the isospin
factor of the iso-vector term (—v/3) and that of the strangencss exchange term (v/3) are
included in (X£)s,s,. These factors for the spin-orbit and tensor components are explicitly
given in Appendix C.
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The symmetries of the spin-flavor factors, X# and (X#)p, 5, are discussed from the
above definitions in Eqgs. (5:3) ~ (5-5). We consider the following three cases.

i) P = P’ case for 2 = central, LS, and T

Let us consider the type 2 = LS, for example. The bermiticity of X45S yiclds
(XE58) = XESS for T = D_ and Dy, and (XE°S)f = X45S. Thus we find, for 2 =
central, LS and 7,

(XDt =X for T#S5, 5,
(X' =Xg . (56)
Since P = 7’ in the present case, an alternative expression in terms of the spin-flavor factors
in Eq.(5-5) is
(XQ)BgB; = (X’}Q)Ullfa for T ?é S.'v Sl 3
(AQ 3391 = (A )BxBa - (57)

For B3 = B; = B, this implies
(Xpp = (X)pp for 2= central, LSand T . (5-8)

In the case of By # By, we find that X£ is symmetric for T # S or §', while X2 and X§
are interchanged if B; and B) are exchanged. For example, the result in Eq.(C-4) yiclds

D=~ (2 3) - S
Xs)av = =53 |\12-3) ~3F7)

(X§)as = —6-—152 (2 + ;) - 6Pp} . (5-9)

For B3B; = YA matrix clements, S and S’ in Eq.(5-9) should be interchanged. Note that,
for A = 1, the two expressions in Eq. (5-9) are equal:

. 1
(X§)Ag = (Xg',),u; = (Xg:)zA = (Xg‘,)z,‘ = —m (7 - SPF) for A=1. (5-10)

Also, note the equality of the LS factors (X55) 4z = (X5%)an = (XE5) 54 = (XE5) 54 for
an arbitrary A, which seems to be accidental.

The equality; (X&) 5,5, = (X2)8,8,, in the SU; limit with A = 1 can be understood from
the discussion similar to the one given at the end of the preceding section for the OBEP. We
consider the combination X — X£, which is real and anti-hermite because of the second
equation of Eq.(5-6). In the SU; limit, all the spin-flavor factors of the quark model are
expressed by the SUj scalar combinations of ef,,, and €7}y, Since these SUs unit vectors
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are all real self-conjugate operators, these SUj scalar combinations cannot be anti-hermite,
leading to X# — X2 = 0.

ii) P # P’ case for 2 = LS
In this case, Eq.(5+6) is also valid since §¢-) is hermite. However, Eq.(5-7) should be
modified since we now have PP’ = —1. Instead, we find

(XE ) g,m = (X )p,5, with Pr— —Pp for T#S, 5 ,
(XE5g.p, = (XL Vg5, with Pp— —Pp . (5.11)

In particular, the diagonal case yields

(XES)pp and (.X’“S( "ys do not have Pr term

(XL pp = (XES )y with Pp— ~Pr . (5-12)

The first equality is indeed satisfied in Eqs. (C-1), (C-2) and (C-3). For ByB; = AX and £A
factors given in Eq. (C-4), we find that the D_ and Dy factors have the opposite sign in the
Pr term, while for S” we have, for example,

) 1 g1 16 4 1
(X ))“:“ 108[3(7+T"%>+X(4_X)PF] :

1 1 16 5
£L5) - - jah .
(K5 Dz = 2-108[3(7+,\ w)r1(es-m)p] 0w
Again, these coincide with each other if A = 1. The rule Eq.(5-11) can be reproduced if we

assume (Pr)! = —Pp in (X257}, 5 (and also for LS)a below).

iii) P # P’ case for 2 = LS o
Since S$(-)P, is anti-hermite, the relationship in Eq.(5-6) involves an extra minus sign:

(XEST0) = XS for T#S, 8",
(XESOo)t = x50 (5:14)

Accordingly, Eq.(5-11) also involves an extra minus sign:

(XEOVgyp, = — {(XE ")pu, with Pp— =P} for T#S, S,
(XE ) gy, = = {(XE 7%V p,p, with Pp— —Pr} . (5-15)
The diagonal case yields
(x5 )")BU and (X457%)ps do not have Pp-independent term

(XEO) gy = = {(XE)an with Pr— —Pr} . (516)
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The first condition is actually satisfied in Eqs. (C-1), (C-2) and (C-3). In particular, B3 B, =
== factors give (X5577)zz = (X557%)z= = 0, since there is no Py term permissible (i.e.,
the single-quark exchange of the strange quark can not restore the ZN system to itself).

For B3B; = AX channel, Eq.(C-4) gives

(D69 (D)
(Xs™ “har = 108(1 M IzB -5+ U—3) Pl o

sy 1 ( _ 1)2 (5_’ _ .
XE =1 (1-3) (5 Pp) , (5:17)

which are both zero if A = 1.

Note that the LS )¢ factors are all zcro if we assume the SU; limit with A = 1. In fact,
X557, X557 and X577 + XE57'7 arc anti-hermite from Eq. (5-14) and therefore zero
through the same discussion as before. One can easily prove that X L5 = X157 for
X =1 by employing w9 (2,6) — w(*£9(2,3) = o3 — &g, which changes the sign for the
(3¢)-cluster exchange. =

The spatial integral of the quark exchange kernel and its Wigner transform Gér(r,q)
in Eq. (2-16) arc easily calculated by using the standard RGM technique. It is convenient to
factor out a common Gaussian factor of the exchange normalization kernel and the strength
of the Fermi-Breit interaction. For the spin-orbit components with 2 = LS, LS¢) and
LS8)g, G (r,q) = =1 X£GH7(r,q) in Eq.(2:16) is given by

2 .
Gi(r.q) = G (r,q) \/;rsz“muacz (—%)

- 2\1 1(bq * . 9 rr\2

x {"5’— ) m (‘3 (%) ) «xg2 (7))
, 2

erxg) e (2(5) -5 (%) 5 (59

(X3 + X3) B (32 ) -s(7) 50
Cof 0 2 1(bq\: 3/r-q

a_yo\ s 2 (T (Y. 2(T49 5

+ (X§ - x3) it (32 (b) 8(h) ' 8( D ) : (5-18)
where b is the harmonic oscillator constant of the (3¢) clusters, z = (h/muqch) and

aeo-@ef30 3@} oo

*) This fact is also shown by observing that all the flavor operators invalved in X#s(~)" are reduced
to the flavor singlet combination of the type el,(1)en(2) for A — 1, and that it can not be antisymmetric
with respect to the exchange between the first and second particles. On the other hand, LS~ factors are
non-zero, since we can make an antisymmetric combination from e, and ee; ™ el (1)ee(2) — el (L)em(2).
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The functions A,(a), h{(a,b) and h¥(a,b) in Eq.(5-18) are defined by

K (a:b) \ cos (b12)
} =(2n+1) ] dt e t2"{ , (5-20)

hS(a;b) 0 sin (bt2)

and ha(a) = h$(a,0) is normalized such that h,(0) = 1 (n = 0, 1, 2). For the elastic
scattering, the last term of Eq.(5-18) does not contribute sincc the odd power of ir - g
implies the odd power of k- ¢ in the scattering amplitude. A similar discussion of the other
interaction types leads us to the conclusion that the quark-model potential for the elastic
scattering is real. In particular, the symmetry properties of the spin-flavor factors discussed
above implies that there is no P term in LS} and no Pp-independent term in LS s, as
long as the diagonal potential is concerned. For the off-diagonal potential with B3 B, = AX
or XA, the imaginary component like the last term in Eq. (5-18) is possible in general, but
this term vanishes in the SU; limit with A = 1 or in the low-energy limit with ¢ = 0. The
LS5 )g component is always zero in A = 1.

Finally, we briefly discuss the T-odd tensor term of the quark-model potentials. This
term comes from the expansion of the tensor operators Sia(a, b) of the S and S’ types. The
invariant part of the T-odd tensor term in Eq.(2:16) (except for the factor i Sia(r, p)) is
given by

_ 2 ; 3
G'vrvodd tensor(r’q) =G (r q) ;asx“‘mudcz (_%)

o (56133
oo (56 36)) e

For the elastic scattering, the first term (X% — XZ) h§ term in Eq. (5-21) is zero because of
Eq. (5-8), while the second term does not contribute to the scattering amplitude because of
the energy conservation. For the transition potential, however, both terms are not zero in
general, in contrast to the OBEP example given in the preceding section. Evenin A =1,
the imaginary term, 2 XJ i h§, survives, which is PH conjugation even. This term, however,
should be small in the low-energy scattering. It should also be noted that the approximation
in Eq.(2:17) is too crude to study the momentum tensor and 7-odd tensor components
contained in the quark-model potentials.
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§6. Summary

In this investigation, we have studied the symmetry aspects of the hyperon-nucleon (Y V)
interaction, by taking some examples from the Nijmegen hard-core models and the quark-
model potentials. The new feature of the YV interaction is the exchange symmetry of two
baryons and the rich flavor contents which can be conveniently described by the SUy algebra
related to the up-down and strange quarks. Since the strange quark has a heavier mass than
the up-down quarks, the correct treatment of the flavor symmetry breaking (FSB) is very
important for a realistic description of the ¥’ N interaction. Nevertheless, the correct treat-
ment of FSB is still not casy, since it is related to the dynamical aspect of the quark motion,
which is apparently relativistic. In this paper, we have assumed that the octet baryons hold
the exact SUs symmetry for the spin-flavor degree of freedom, and that their spatial mo-
tion is described by a simple (05)* harmonic-oscillator wave function with a common width
parameter. On the other hand, FSB originating from the quark-mass dependence in the
residual Fermi-Breit interaction is exactly taken into account without any approximation.

With this restriction on the treatment of the FSB, one can carry out an cxtensive study
on the symmetry properties of the spin-flavor factors appearing in the quark model. We find
that the time reversal operator is conveniently extended to include the SU; conjugation in
the flavor space, which makes it possible to discuss the reality of the spin-flavor factors in
the standard phase convention of the Clebsch-Gordan coefficients in the spin-flavor space.
We can assume the invariance of the YV interaction under this extended time reversal just
as the NN interaction is invariant under time reversal. The particle-hole conjugation with
respect to this extended time-reversal symmetry is found to be convenient to characterize
the time-reversal odd components for the space-spin part of the YN interaction. These
involve the LS")¢ force acting between channels with different spins and the time-reversal
odd tensor, Sys(r,p), which is possible only for the transition potentials between AN and
TN channels. When the FSB is neglected, the LS(-)o force entirely vanishes, while the
'SIZ(r,p) component remains in the quark model. The reason why this ferm is missing in
the Nijmegen hard-core models is simply because the transition potentials are derived from
the diagonal ones by some mass-averaging procedure in these models. It is also found that
the usual L5¢) force gets the contribution from the exchange process of up-down quarks,
while the LS g force from the exchange of the strange quarks. This is the same feature as
is observed in the OBEP.

It should be noted that the spin-orbit and tensor components of the quark-model poten-
tials discussed in this paper have diffcrent levels of reality for describing the experimental
data on the NN and Y N interactions. The spin-orbit force is essentially short ranged and

is expected to be described reasonably well in the quark model. Although the absolute
strength is still controversial, the LS, LS and L5)s potentials predicted by the quark
model have correct flavor dependence corresponding to the result of very successful OBEP
approaches. 2% On the other hand, the tensor force is a long-range force which can get
a large contribution from the meson-exchange processes, especially, from the OPEP. The
quark-model tensor force from the Fermi-Breit interaction is supposed to describe only the
short-range part of the whole tensor force. In this respect, it is intcresting to examine
the quadratic LS (QLS) force which constitutes the dominant part of the momentum tensor
force S12{p, p). This component is rather short ranged, since it does not get the contribution
from the pions in the lowest approximation. A preliminary result shows that the QLS force
predicted from the Fermi-Breit tensor term has correct flavor dependence corresponding to
that of the Nijmegen hard-corc models, although the magnitude is too small.

Acknowledgements

This project was initiated while one of the authors (Y. F.) was a visitor at the Institute
of High Energy Physics, Chinese Academy of Sciences, as a part of the exchange programme
between Japan and China. He wishes to thank Professor Zheng Zhi-peng, the director
of IHEP, for the kind hospitality, and members of the nuclear theory group for rendering
his stay intellectually pleasant. Also, the financial assistance by JSPS and CAS is greatly
acknowledged. This work was supported by the Grant-in-Aid for Scientific Research from
the Ministry of Education, Scicnce, Sports and Culture (Nos. 07640397 and 08239203).

Appendix A
—— The OBEP factors Q; for the Nijmegen hard-core potentiols

The explicit expression of 2:(k?, ¢%) of Eq. (2-3) in the Nijmegen approximation is given
in Eqgs.(23) ~ (26) of Ref.12). Our result agrees with theirs except for some misprints
(an extra minus sign in 95 and 4My My — 4My2My? in ) and the ¢? term in the
vector-meson {3; i.e., we have obtained

2 = [(913 + f1327;1_4y) (942 + f42-A—/IA%)

1 , k? 1
stz (¢ + %)) (o) A

while the ¢? term is missing in Ref. 12). However, this term is usually ncglected in the tensor
expression. Note that their definition of Pj is different from ours. Since they did not give
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the expression of g for the exchange term, we will give it here. For pseudo-scalar mesons,

it is given by
21 1 1
Q= —gyNzg (—MN2 M2 ) ) (A-2)

while, for vector mesons,

Qg =— . - —
8 [(QYN +fry M §VE 7
1 1 1
3 (MN2 - MY“> ' (A9
For this factor, we should also refer to the result given by Dover and Gal.?) Their result

in Eq.(2.6) of Ref.25) for the K meson contribution to the LS™)g force is recavered, if we
employ Oy in Eq. (B-10) and note that

1 1 1 1 (M y — JMN) ( A-d)
8\My? My?)  2MyMy \My + My
in the Nijmegen approximation. For the K™ meson contribution, their result is

2 ;
Qg — — (!JYN + fYNM> (1 ES _m'j._.)

——MYMN)2 - fyn® ! (q2 + kz)]

2M 16My My
1 My — A{N)
X My My (My ¥ My (A-5)
Appendix B

——— Fourier transformation of the Pauli-spinor invariants ——

In this appendix, we will outline the procedure to derive the OBEP of Eq.(2-4) from
Eq.(2'3), and show the final result for O(r). For any plane-wave amplitude O(qy, qi),
we can postulate a non-local kernel O(r,r'), its Wigner transform OY(R, P), and a local
operator O°?(r) which generally involves the momentum operator p = (1/i}(8/0r) in it.
(We use the unit of % = 1 for simplicity.) Here we assume that the non-local kernel O(r,v')

is of the Wigner type and the locality is stronger with respect to r — r' than to r + /. 13)
We start from
O(4s, 4} = (gs10lq:)
= _/dr dr' e U 9 Ofr, 1)
= / dR e *® O¥(R,q) , (B1)
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where we have used the transformation of variables Eq. (2.2) and R = (r+1')/2, 8 =1 ~r.
The Wigner transform OW (R, ¢) in Eq. (B-1) is defined by

O"(R,q) = / ds €90 (R - SR+ g) , (B2)
and is related to the plane-wave amplitude through the inverse transformation of Eq. (B-1):
. 1 .
144 __ - ikr . .
0" (r0) = 5 [k € Olara) - (83)

Note that ¢ = (g; + ¢:)/2 in Eq.(B-3) is nothing but the classical local momentum of the
non-local kernel O(r,'). In order to calculate the local operator form O°, we proceed as
(V=2a/dr)

(riow) = [ar' (riowyr'1#)
= /ds (rlO|r + 8)¥(r + 5)
= /ds (r|O|r +8)e*¥ (r)
_ sV 8 S Ly
_/dse* (r—5|01r+—2v> e’V ¥(r) . (B-4)
Here we usc the inverse Fourier transformation of Eq. (B-2) and define O through
(r|OW) = O%(r)¥(r) . - (B)

Then we get the result in Eq. (2-6).
In order to simplify Eq.(2-6) furthcer, let us assume

O¥(r,q)=vr)f(a) . (B6)

and use

e [ da e st = {1 CILTIE (B7)

where the differential operator (8/8s) in f(i(8/ds)) operates only on 6(s). Then, by using
the integration by part. we can easily derive

(B-8)

=0

o) =1 () 7 s b7

Here we first take the derivative of s, and then take s = 0. Note that the derivative in
the left e4* factor operates not only v(r), but also all the wave functions in the right-hand
side. If we approximate the momentum operator p by the c-number g, the two exponential
factors are combined into %9 and we recover the original Wigner transform in Eq. (B-6).
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The explicit expression of O; = OF(r} in Eq. (2-6) is now straightforwardly obtained by
using the above techniques. First, the central, spin-spin and tensor factors are simply given
by

O =mY(z) ,
Oy =mY(z)(or- o) |
3
Oy = =2 (Y(2) (01 02) + Z(x) Swa | (B9)

where Y(z) = €*/z and Z(z) = (1 + 3/z + 3/1%)Y (z) are the standard Yukawa functions of
z = m|r|, and S)2 is the tensor operator Sy = 3o -#)(02-#) — (- 03). The g dependence
starts to appear from the LS force, which has three different types:

O;=m* ZO() (L-85) ,

O =m® ZW(z) (L- 87y ,

O =2m3 ZW(z) (L- 8P, (B-10)
where the LS-type Yukawa function is defined through Z(z) = (1/z + 1/2%)Y (). The

Wigner transform of the above LS operators, O, are obtained by using the classical angular
momentum, LW = [r x g}, instead of L. The factor for 7 = 5 is given by

05 = -m* 2(z) Qu
m? {0y x 91 29(2) 03 x p + o2 x P Z0(@) o x p)}
OF = -m* 2(z) Q%
+m?® ZV(x) o, x q] o2 x q] , (B-11)
where the quadratic LS operator and its Wigner transform are defined through
Qu=3lor L)os- L) +(o2- D)1+ L))
Q¥ = (a1 - L¥)(o- L¥) . (B-12)

Note that the operator @5 contains a component of the momentum tensor, Sia(p,p) =
3(oy - p)(oy - p) — p*(a, - 02). This extra part (ic., the second term of Eq.(B-11)) is
usually neglected and only the Qio part is retained: O ~ —(m%/2?) Z(x) Q12. We can also
calculate Oy and @, although these are not necessary for the application to the OBEP
in the Nijmegen approximation. These pieces correspond to the momentum tensor and the
time-reversal odd tensor, respectively, and are given by

Oy =m 1 ({01 P)(@2-P)Y (D) + Y () (01 P)(o2-P)] = 1Os
Oy =mY(z)(o1-q)o2-9) , (B-13)
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and
0= im {{Sutr.p) + (o1 onlr 211 200)

+20(z) [ Sa(rp) + (- o) p)J} :

OF =i m* 2(z) Z[Su(ra) + (@1 o) @) . (B14)
Here, S)3(r, p) is defined by
Su(r,p) = 3[04 702 D)+ (o3 701 Pl = (a1 0)r p) . (B19)
Appendix C

—— Spin-flavor factors for the spin-orbit and tensor components of the Y N interactions
in the quark model

Here we list up the explicit expressions of (X£)py,u, in Eq.(5-5) with respect to the
spin-orbit and tensor components. The factors of the central component and the detailed
derivation of these factors will be published elsewhere. The NN factors are given in Eq. (B.6)
of Ref. 17). The diagonal spin-orbit components for the AN and LN systems are already
published in Ref. 7), but are included here for convenicnce. In the following, the parameter
A (= mya/m,) controls FSB of the Fermi-Breit interaction. The spin and isospin operators,
o; and 7;, are with respect to the two baryons B; with i = 1 or 2, and the flavor exchange
operator Py is supposed to operatc on the ket state. The factors of the interaction type
T = 5 are discussed in § 5.

[BaBl=AA]

Ls_L[ ( 4 L) ] r _ 1
X_“182+ 1+,\+,\2 Ppl X_—IS)\PFy
Ls___l_( 8 E) ro. 1
Xo, =-mg\titx) by = Togx

11 4 3 2 1 1
LS _ - 2 = e [ T __ "
X" =% 3(1 ,\+,\2)+2(1+,\ ,\2)PF] X5 = ~Togx
LS(’)—_.{ Ls‘('>a=__1_( —--1—)P
XD_ - 9 ’ XD_ 18 1 /\2 F
LS() __ 1 4 3 L§Hle __
X =g i-3-%) - XE =0
S 1 8 3 L5y 1 1y?
X5 _-2-108(1+X—ﬁ) » X5 w3 Fr (1)
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[ B3Bl =Xy ]
XLs(—)., - Xllﬁ(—)a =0,

17,7 1 4
LS _ > ! N -
XD_—3[1+9T1 T2 54(1+/\+/\2)(1+7‘1 T2)Pp] ) XLS( o _ 1 (l—l) 1+§ )
ors o1 5 28 13 BTN 3 )
B =g (53~ %) r3 (- ) nomriste e C
w1 2% 5 68 13 X = (1 ) ro_ L ( L )
X =g 0+ T w) (g ) o T A Yo =\l T3 ™)
1/ 10
4 1 XT=—__[(-—1)+_(1+__) . ] . .
*2(”5;*7)(”11-72)&], $ T Tae I\N 3 X)) (C3)
[BgBl=AEa.IldEA]
s _ 1 LS 1 1 4 1
Xllif 25(1_7—1'7'2) ’ Xp? =— 9{1+6( +X+F)PF] y
w1 K 12 1)_1( 24 ) ] s _ 5 ( 2.1
Xoo =3 (BT xTm) "3\ Byt BT\ e )
s _ L 8 1\ 1. 32 7 s m =i 2) (1422 LY R
X = 108[(1HX’F)_E(‘?“Tﬁﬁ)”"’“’ i T A bt el Bl G Sl i B
8/ 1 _
_E(I—X)(Hn.m)l’p], 150 & —5[1+§(1+§+§7)Pp] for AY ,
_ L5C)
—1[1—1(1+4+1)P] for XA
ng“"’:_g154(1—%)(”11.72)&, X7 =0, U AP ’
/ 5 s[5 (54§ + %) 2P for Az
ngH”zL(l—l) [1‘{-27'1'7'2 (1——-)(1+n Tg)Pp] , \LS‘): 08 |3 AT F ’
‘ I\ A 3 U2 > L hdl s s
_1'08[3("+X+,\7)_12P’ for YA |
r 5 1 . )
Xp =g [1+3‘r1 nt (TP s -rlmg['ﬁ’ (7+%—;‘,)+§(4—%) Pp] for AS
. 1 1 1 4
AT .
xn+———*3,108[(2—x)(1—§rl.rz)+§(1+nn)Pp] . —rlfﬂg[.ﬁ,(ul/\@—fg)—z;(u% Xlg) P,] for TA
. 1 1 1/, 5 2/ 1
Xé=————[(6——)+—(6——)1’1~T2——(1+—) (1+7'1-1'2)Pp]. (C2) oy 1 1
3-108 MT3U T 3V T X5 =‘SZ(1‘7\3) Pr
== il 1 L
[BJBI*‘—'-'] XLS(‘)O {—m(l—x) (3+X) for AE,
D,
1 1 5 1 1
XE = om- xhg =g (1454 5) (1-37m) raa(1-3)(+x) for 24,
Z + TRl 32 3 > s
Ls [ ( 2 1)+l(1+__L)T.T] L5l s (-5 -3 +0-%) P for 4z,
s 1 T2 X
3 54 A 3 A2 1 1\2(5
~1s(1-%) (5+7) for 24,
LSC) _ l
Xpo =—glrmm) ple g l(-’—lPr) XD =g
LS” 1 6 4 1 18 8 . 54\3 A + 3.108
Ao =371 [(1—,\ ,\2) 5(”7*,\2) 1"2] ’ . | e [(2-3) - % Pr] for oAz,
xpso o L [(1 L 1(1+%——8-)r-r] Xs = 1 5 (C4)
§ 3108 P AN R G vY R I ~gi[(2+%) 6P for T4
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