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Abstract

It was shown that only for the Coulomb potential and isotropic harmonic oscillator
! the radial Schrodinger equation can be factorized. Four kinds of raising and lower-
ing operators of 3D and 2D hydrogen atoms were constructed and the corresponding

selection rules and conserved quantum numbers were discussed.

'
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PACS numbers: 03.65.—w, 03.65.Ge.

I. INTRODUCTION

The factorization method introduced by Schrédinger [1] and extended by Infeld and
Hull [2] was used in the previous paper (3] to treat the radial Schrédinger equation of 3-
dimensional (3D) and 2-dimensional {2D) isotropic harmonic oscillator. It was found that
two kinds‘of raising and lowering operators can be introduced directly from the factorization
of the radial Schrédinger equation, and in terms of the two kinds of operator the other two
kinds of raising and lowering operators can be constructed. In this paper we will investigate
the possibility of factorization aof the radial Schrédinger equation of a particle in a central
potential. In Sect. II, it will be shown that only for the Coulomb Potential and isotropic
harmonic oscillator, the radial Schrédinger equation can be.factorized. In Sect. I, four
kinds of raising and lowering operators of a 3D hydrogen atom are introduced by using the
factorization method and the recurrence relations of the confluent hypergeometric function,
and the corresponding selection rules and conserved quantum numbers will be discussed.

Similar investigation of a 2D hydrogen atom is given in Sect. III.

II. FACTORIZATION OF THE RADIAL
SCHRODINGER EQUATION

For a particle in the central field V(r), the energy eigenfunction may be chosen as the
simultaneous eigenstate of the complete set of conserved observables (H,iz,i,), where | is

the angular momentum, i.e.,

V= R(Win(0,6) = XDy (g 4 1=0,1,2, -, m=ll-1,..,-1 (1)

r
where Vi, (8, $) is the spherical harmonic function, and x;(r) satisfies the radial equation,

A+ [ -ven - ) ) o, 2

xi(0) = 0.

Putting h=p = 1, =2E = X}, (2) may be recast into the following form

Dxu(r) = Aoaflr), {3)
2
b = - g,
2




To factorize D(I), let us define the {-dependent raising and lowering operators

Ad(l) = %—HTIH(M). (4)
a0 = Lilign,

f{l,r) and g¢(l,r) are to be determined to meet the requirement of factorization of the

Hamiltonian (or D(1)); iee.,

I

AU+ DAL = DE) +eft), _ (s)

Al -10A-() = D) +er(t),

i

. where ¢((l) and c2{l) are r-independent constants.

Using (4), it can be shown that

AL+ 1AL = j‘r;-ﬂ':;*”+[f(l,r)+g(l+1,r)]dir+dfﬁfi’rﬂ
G o+ 1 D 4 s, ©)

Adl=1A_(@) = %-'%ﬂﬂg(/,r)u(l—x,r)}%#‘—”%

| U010 =gt L 1= 1,000,
Compairing (5) and (6), one gets

1r) = =g+ 1), ™
wiral = LoD oty (®)
“W(r)+ell) = -'W%L'_)+2/(1-1,r)é—f(l~1,r)’. {9

We assume V () is l-independent. Replacing I by (I + 1) in (9), and substracting from (8),
one gets
L = ath, o)=Lt - a1y, (10)
Thus
' I{lr) = a(l)r + b(1), (11)

where b(l) is an integrating constant. Substituting (11) into (8) or (9), we obtain

1+1
r

2V(r) + 26(1) = a(l)?r? - 2a(N)b{l)r = %[q(l) tell+ 0] -2a0) +50)2.  (12)

(12) should hold at arbitrary point r and for any value of /, which implies that the form of

the l-independent V(r) must be one of the following three types of central potential:
() VOred, (i) Vet () V(r) o r. (13)
r
Now we investigate the three cases separately.
Case (i), V(r) L. From (12), we have a(l) =0and f(I,r) = b(1) = 1/{I +1). In this
case, apart from an additive constant, V(r) = —1/r (Coulomb potential). From (10) and

(11), we obtain ci{l) = c2(l + 1), and all) = ~1/(1+1)%, e(l) = =1/1%, (I > 0). Thus,
from (4), we get

d 1+1 1
A(l) = - +1+_1, {14)
d | 1
and (5) is reduced to
(! ) = ! —_—
AU+ DA = D+ (15)
1

Adt=1a-() = pu)- 1,
In fact, (15) can be verified by straightforward calculation using (14). Using (15) and (3},

it is easily shown that,

DA+ -~ )y} = At AL (- o, (16)
DA+ 1)xu4a] = At A- (U + Dy (17)

From (18) it is seen that if Xit—1 is an eigenstate of D(l - 1) with eigenvalue A1, then
As(l — Dxy_y is an eigenstate of D(l) with eigenvalue Ar-1. Thus, the effect of At is to
increase the angular momentum by 1, but keep the energy eigenvalue unchanged. Similarly,
the effect of A_ is to decrease the angular momentum by 1, but keep the energy eigen-
value unchanged. Therefore, A, and A_ are the angular momentum raising and lowering
operators respectively, which have been investigated in [4-86].

Case (ii), V(r) « 2. From (12) we have (1) = 0, a(l) =constant. Choosing natural
units, a{!)? = 1, we get V(r) = Lr? (isotropic harmonic oscillator), and a{l) = +1.

For a{l} = +1, the raising and lowering operators are labelled by A,

d |

d [+1
A+(I)=;— +r, A-(():d—r+;—r, (18)




For a{l} = -1, the raising and lowering operators are labelled by By,

B+(l)=dir-—l+Tl—r, B_(l)=%+é+r. (19)

In this case, (5) is reduced to
A+ DA = DO+ (A +3), A1 - 1)A_() = D) + (20— 1), (20)
B+ 0By =D~ (2+3),  B.(-1)B.()=D)-(2-1), (21)

'

which can also be verified by straightforward calculation using (18) and (19). From (20},
(21) and (3), it can be shown that

| DA+ = Dxima] = (Mo +2) Ay (1 = Dy,
D(I)IA—U + 1)Xl+1| = (Myq - 2)'4—(1 + Uxis1,

DB+l ~ Vxiy] = (Moy - 2)Bo(l - xi-1,

DINNB-(! + xa41] = (Mar + 2)B_(1 + 1}x141.
From (22) it is seen that the effect of Ay (A_) is to increase (decrease) the angular momen-
tum by 1 and simultaneously decrease (increase) its energy eigenvalue by 1. Similarly, from
(25) we see that the effect of By (B.) is to increase (decrease) the angular momentum by
1 and simultaneously increase (decrease) the energy eigenvalue by 1. In terms of At and
By we may construct the other two bands of raising and lowering operators C and D of 3D
isotropic harmonic oscillator (for details, see [3]).

Case (iii), V(r) « r. From (12) we have a(l} = (1) = 0. But in this case, one gets
V{r) =constant. Thus, a linear potential V(r) « r is excluded.

Therefore, we arrive at the conclusion that, only for the Coulomb potential end isotropic
harmonic oscillator the radial Schrédinger equation can be factorized. It is worthwhile to
note that, 'in ~ddition to the O3 geometric symmetry, there exists additional dynamical
symmetry for both the Coulomb attractive potential (bound states, O, symmetry) and the
isotropic harmonic oscillator (SUs symmetry), which results in the l-degeneracy in energy
eigenvalues and additional constants of motion. The above conclusion holds both for the 3D
and 2D hydrogqn atoms and isotropic harmonic oscillators. Finally, the above conclusion
reminds us of the famous Bertrand theorem in classical mechanics [7], which says: “The only

central forces that result in closed arbits for all bound particles are the inverse square law
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and Hooke’s law”. The underlying physics concerning the connection between the Bertrand
theorem in classical mechanics and the factorization of the radial Schradinger equation

needs further investigation.

III. FOUR KINDS OF RAISING AND LOWERING
OPERATORS OF A 3D HYDROGEN ATOM

In Sect. II, using the factorization method, one kind of raising and lowering operators,
A{l) and A_(!) are derived. The other kinds of raising and lowering operator can be

derived from the recurrence relations of the conftuent hypergeometric functions,

For an electron in a 3D hydrogen atom, V(r) = —e?/r, the radial wave equation reads
(h=p=e=1)
2 Hl+1
xi'(r) + [; A -z )} xifr) = Aalr), A =-2E, (24)
xi((0) = o

Considering the asymptotic behavior of xi(r) as r — 0 and r — 00, we may put

xi(r) = r'“e_‘/r"'u(r), (25)
and u(r) satisfies
re' + 200+ 1) = 2v/Rrfu’ - (04 1)V — ju=0. (26)
Let & = 2/Xjr, (26) is reduced to the confluent hypergeometric equation
d?u du 1
—_— 2! - &l — - { —— =0. 27
R (L o P (27)

The solution u (satisfying x,(0) = 0) may be expressed as the hypergeometric function
Fla,7,£),
1
a={+1)- — y=2(+1). . (28)

v
For bound states, the infinite series expansion of F must be terminated, thus it is required

that a = —n,, n, = 0,1,2,---, where n, = 0,1,2,--- is the numbser of nodes of the radial

wave function (r = 0,00 excluded). So /3; = (! +n, +1)7", and the energy cigenvalue is

E=FE,= —2—1—2- {natural unit)) n=1l+n,+1= 1,2,3,---. (29)
n




The corresponding radial wave function may be expressed as

Xin(r) ~ r'+‘e-'/"F(—n,,21+2,2r/n)

! !

For a given energy level E,,, [ = 0,1,-.

Now, using the fundamental recurrence relations of conflu

o f,[l+le_€"/2F(—

(see Appendix of ref. (3]), one m

ne, 20+ 2, £n), €n

= 2r/n, (30)

n- 1, (l—degenercy), and the degenercy is n?,

ent hypergeometric function

ay prove
| k7-a~ﬂ+tilﬂmmiﬁﬂv—ﬂFh—Lﬁ@% (31)
(a-{-:%) F(a,7,z)=aF(a+l,7,r), . (32)

[(a +z) - (v + z]%] Fla,v,z) = ‘t%é%};"lrf‘(a,'y +2,1), (33)

{[(7_ 1)(7_2)+a:]+x(7—-2+1)£} Fla,v,z)

=0 -0~ 2)F(a,y-2,2), (34)
[la=Dzt(y-1- z)(7—2—2)+(7_2-z)1§] Fla,7,z)
=(r=-10(-2)F(a~2,y-2,2), (35)
, [—a+(7~z)f£] Fla,1,2) = 2202 F(a 2, + 2,2). (36)
Defining operator M (k),
| M(K)f(z) = {(kz) (37)

dnd using (31-36), we may derive other three kinds of raising and lowering operators, B,

C and D given in (39)-(41), in addition to the operators Az (1) given in (14). To clearly

" indicate their effects, the operators A1)

are relabelled as A(! T,n), and A(l |,n). The

four kinds of raising and lowering operators of a 3D hydrogen atom are summarized in (38)

through (41) and are graphically illustrated in Fig. 1.

and conserved quantum numbers are given in Table [.

A(l1,n)
A(l |,n)
! B(l,n1)

B(l,n|)

tt

I

I

The corresponding selection rules

(38)

(39)

Clttnt) = {l(1+1)(n+1)+rl;-'r—n;l
QLIM+(n—I—I)}M(ﬂIJ, (40)
Cliny) = {ll(n-l)“l%n:,
N ﬂ"_r‘_‘)_(n—l)}M(nfl),
D(ilnt) = {[l(n+l)—r]%+#1
+ M_(n+1)}M(n:l). (41)
Dit,nl) = {[(1+1)(n—l)—r%—r—l:—l

_— (—{ﬂ_-l)-+(n+l+l)}M<nnl).

r

IV. FOUR KINDS OF RAISING AND LOWERING
OPERATORS OF A 2D HYDROGEN ATGM

For an electron in a 2D hydrogen atom, V(p) = —€*/p, the energy eigenfunction may be

chosen as the simultaneous eigenstate of the complete set of conserved observables (H, I, =

e (o)
_mectm¢ m = v, 49
¥ = N . 0,%1,+2 (42)

and xm(p) satisfies (A= p = e = 1),

& mi-o1/4 2
(‘m - 7—/ + ;) xm{p)
_ (% _(m- 1/2/)’£m+ 1/2) + ;) ‘onlo)

= '\me(p)y (43)
xm(0) = 0, An=-2E (44)

Comparing (43) and (24), it is seen that there exist great similarity between 3D and 2D

hydrogen atoms, and the correspondence between the parameters is
{+1) & (m—1/2)(m + 1/2) = (Im| - 1/2)(Im| + 1/2). (45)

8




Considering the asymptotic behavior of Xm(p) as p— 0and p — ©0, we may put

Xm(p) = pIm 1/ 2e=Amoy (), (46)
u(p) satisfies
P+ [2lm| + 1 - 2v/X pju’ - [@Im] + 1)V, - 2Ju =0. (47)

Let ¢ = 2/X ), (47) is reduced to the confluent hypergeometric equation

2y u
E%Hﬂmlﬂ—f)%-(lml+1/2—\/}\_)u:0._ (48)

m
The solution (satisfying xm(0) = 0) may be expressed as the hypergeometric function

Flayy,6),

1
a=|m|+1/2 - —=, T=2m| + 1. 49
! v (s9)
For bound states, it is required that a = Ry, 1y, =0,1,2,---. (number of the radial wave

ll'um:l‘.ion xm(p)). Thus, /X, = (Iml+n, +1/2)71, and the energy eigenvalue is

E=En=-pr n=iml+n, +1/2=1/2,3/2,5/2,... (50)

The corresponding radial wave function is
Ximin(r) ~ p™e=#/"F(—n, 2/m| + 1,20/n)
x et p(_n, 2lm| 4 1,6,), €, = 2p/n, (51)
and the degenercy of the level E,is 2n=1,3,5,.-..

Using the factorization method similar to 3D hydrogen atom, we may construct the
:

raising and lowering operators of a 2D hydrogen atom, for m >0,

d m+1/2 1
Ay(m) = F 7 e 1 vk (52)
) _ d m - 1/2 1
A_(m) = E;‘f‘*“—p “.—m-l/il'
It is easily verified that
! A-(m+1)A,(m) = D(m)- 1/(m+1/2)%, (53)

Arlm=1A-(m) = D(m) - 1/(m - 1/2)%,

and

D(m) [A+(m = Dxmet] = Amos [As(m = Dxmei], (54)

Dm)[A-(m+ Vxme1] = Amps (e (m+ Dxmsn] .

It is seen that the effect of A, (A-) is to increase (decrease) the magnetic quantum number
by 1, but keep the energy eigenvalue unchanged. Thus Ag are the angular momentum
raising and lowering operators and may be relabelled as A(m T,n), and A(m lin).

Using the radial wave function X|min (0), (see (51}) and the recurrence relations of the
confluent hypergeometric function (31)(36), one may derived the other three kinds of

raising and lowering operators in addition to A4, which are summarized as follows {m > 0):

Lo d m1/2 1
A(m1,n) = d_p--‘“p' m—z, (55)
_ d m-1/2 1
Almlm) = e Yok
d P n
B(m,ﬂ” = [pd_;_n+l+n]M(n+1>’ (56)
B(m,n|) = [Pgdp--l-nfl-l-n]M(njl),
Clmtnt) = {[(]m|+1/2)(n+1)+p]%—#
(Iml+1/2)*(n + 1) n
- $+(n—m—l/2)}M(m), (57)
C(ml,nl) = {[(m—l/Z)(n-l)+p|£+ﬁ
(m—1/2)*(n - 1) n
+ Mp —n+m——1/2}M(n_1>,
Dimint) = {[(m—1/2)(n+1)—p]%+"+;1
(m~ 1/2)2("+ 1) n
+ _\p —n——m+l/2}M(n+1), (58)
Dim1,n]) = {[(M+1/2)(n—1)—p]:§;—ni1
(m+1/2)%(n ~ 1) n
. - Ep_*+n+m+l/2}M(n—l)'

Because only the absolute value of m is involved in the energy eigenequation (43), we
have A_,, = A, X-mn = Xmmn. Therefore, the expressions of these operators for m > 0

may be easily extended to m < 0 cases. Because m is not involved in the expression of B,

10




(56) remains unchanged for m £ 0. As for the operators C and D, we have

C-m) Tt = =Dim L 1), B((om) Lnl)=-Dimt,nl),

(59)
D{(-m) I,n1) = -C(m1,n1), D((-m)t,n]) = ~C(m {,n|).
For the operator A, we have

A((-m) 1,n) = A(m Lin),  A({(-m) |,n) = A(m T,n). (60)

The selection rules and the conserved quantum numbsers of the operators A, B,Cand D

for a ZD’hydrogen atom are summarized in Table 2.
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. Table Captions

Table 1 The selection rules and conserved quantum numbers of four kinds of raising and

lowering operators of a 3D hydrogen atom.

Table 2 The same as Table 1, but for a 2D hydrogen atom.
I

Table 1
raising and lowering n= conserved
operators { n, l+n,+1 quantum number
A{l 1,n) l—=1l+1|n —n,~1 n—n n, l+n,
A(l |, n) l>i-1|n —=n,+1 n—n
B(l,n1) [ n—n.+1|n—-n+1 !
B(l,n ]) =1 n—n.—1|n—on-1
Cit,n1) I=i+1 n, —n, n—n+1 n,
Cll,n]) [ | n, — n, n—n-1
D@ {,n|) l=i-1|n —n,+2 n—n+l n+i, 20 4n,
D(lt,nt) =i+l n—n-2|non-1]
Table 2
raising and lowering n = conserved
operators m n, Iml+n,+1/2 | quantum number
A(m t,n) m—m+1lin,—n,-1 n—n n, Iml+n,
A(m [, n) m—=m-1|n,—-n,+1 n—n
B(m,n1) m—m (n,—>n,+1 n—n+l m
B(m,n |) m -+ m n,—n,~1 n—n-1
C(mt,nt) m-—m+ 1 n, —n, n—n+1 n,
C(m{,n|) m-—m- 1 n,—n, n—n-1
D(m {,nt1) m—=m-1|n,—-n,+2 n—n+1 n+|m|, 2/m| +n,
D(mt,n|) m—m+1in,—n,-2 n—n-1
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Figure Captions /18 3
Fig. 1 The energy levels of a 3D hydrogen atom and four kinds of raising and lowering Vs 2
operators. -Operator A connects states with the same energy but different angular i
]
momenta. B connects states with the same angular momentum but different energy. :
C connects states with the same radial quantum number n, and D connects states
' i
with the same n +1 (or 2{ + n,).
Fig. 2 The same as Fig. 1, but for a 2D hydrogen atom.
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