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Abstract

Using the factorization method, four kinds of raising and lowering operators of three-
1
dimensional (3D} and two-dimensional (2D} isotropic harmonic oscillators were derived,

and the corresponding selection rules and conserved quantum numbers were discussed.

PACS numbers: 03.65.—w, 03.65.Ge.

I. INTRODUCTION

The factorization method for treating the energy eigenvalue of a one-dimensional (1D)
harmonic oscillator and the concept of raising and lowering operators were introduced by
Schrédinger |1] and extended by Infeld and Hull {2], which have been discussed in many
textbooks of quantum mechanics [3]. The factorization of the Hamiltonian and the raising
and lowering operators are extended further in the supersymmetric quantum mechanics
[4-7], (for a recent comprehensive review see ref. [8]). The supersymmetric quantum me-
chanics i restricted to the one-dimensional (1D) system, and also applied to treat the radial
equation of a particle in central field [9-11]. It is well known that the bound states of a
particle in a regular 1D potential are nondegenerate, so there exist only one kind of raising
and lowering operators, However, the bound states of a central potential are in general
degenerate. In particular, for the potential having certain dynamical symmetry, e.g., the
Coulomb field (04 Symmetry) and the isotropic 3D-harmonic oscillator (SUs symmetry),
there exist additional degeneracy {I-degeneracy). Therefore, there may exist various kinds
of raising and lowering operators. To our knowledge, no systematic investigation concerning
this problem is reported. In this paper, we will use the factorization method to investigate
the four kinds of raising and lowering operators of the 3-dimensional and 2-dimensional
isotropic harmonic oscillators and the corresponding selection rules and conserved quantum

numbers.
II. 3D ISOTROPIC HARMONIC OSCILLATOR

For a particle in 3D isotropic harmonic oscillator potential V(r) = %szrz, the energy
eigenequation (in spherical coordinates) is
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where 1 is the angular momentum operator. ¥ may be chosen as the simultaneous eigenstate

of the complete set of conserved observables (H, iz, 1), ie.,
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‘ where Yin(#,¢) is the spherical harmonic function, and x;{r) satisfies the radial equation

(using the natural units A= M =w =1)

DMxi(r) = Aalr), M=-2E
' | x(0) = 0, (3)
]
D() = ;’_—2_1(‘;1)_,1.

' Now, we may define two kinds of [-dependent operators

d I+1 d
Al =g -——*n Al=gri-n ®

: d 1+1 d |
B+(l)=2;—~—r——f, B-(l):-d—r+;+r (5)

It is easily verified that these operators satisfy the following factorization relations,

A+ 1)A() = DO+ (2 +3),  Ap{l~ DA-() = D)+ (2 - 1), (6)

B_(1+1)Be(l)=D{) - (21 +3), Bill-1)B-()=D() - (21 - 1). )

Using (8), (7) and (3), one may prove

DAL = Dxi-a] = (-1 + A4 (= Vxi-1, (8)
DMA-(+1xana] = (Mar = 2A-(1+ Nxia,
DO)(B+(t - a1l = (M1~ 2)Bell = D)xi-1, ()
DUB-(1+ Dxer1] = (rr+2)B-(+ xis1.

From (8) we may see that if x;—; is an eigenstate of D(I — 1) with eigenvalue A, then
A4 (I-1)xi_1 is an eigenstate of D(I) with eigenvalue A;_1 +2, i.e., the corresponding energy
eigenvalue (see (3)) is decreased by 1. Therefore, the effect of A is to increase the angular
momentum of an eigenstate by 1 and simultaneously decrease its energy eigenvalue by 1.
Similarly, the operation of A_ will decrease the angular momentum by 1 and simultaneously
increase the energy eigenvalue by 1. Similarly, from (9) we may see that the effect of By
"(B-) is to increase (decrease) the angular momentum by 1 and simultaneously increase
(decrease) the energy eigenvalue by 1. To clearly indicate the effects of these operators, we
r’nay relabel these operators as follows (see Fig. 1):

d 1
A ACLNY = 5 (10)

A~ AQLNT) = —+--7,

d
B = BUTLNT) = == (11)
B-(l)—-‘B(ll,Nl) = '—;1;+é+r,

where N is the quantum number characterizing the energy eigenvalue (see appendix 1),
E=N+3/2, N=1+2n,,and n, =0,1,2,--+, is the number of nodes of the radial wave
function (r =0, co excluded).

According to the physical meaning of the operators A and B, we may construct the
other two kinds of operators C and D (see Figs. 1(b) and (c)). Using (10}, (11} and (3), it

is easily verified that

d 2
D(I)—2r:i;+2r -1, (12)

d
! — ?2_ .
D()+'Zrdr+2r 1

A(+) LN DBUTLNT)

B((I+1) LN AT, N )

Eq. (12) operating on the energy eigenstate |{N) and using (3), we get

A((L+1) LN BT, N IN)

d 2
-2 ('E" +N+2) vy, (13)

B+ LN DACLN DIN) = 2(r2 47 = N - 1) .

According to the physical meaning of the operators A and B, the effect of the operator
A((I+1) },N 1)B(l 1,N 1) is to increase the energy (N} by 2, but keep the angular
momentum unchanged. Similarly, the effect of the operator B({I-+ 1) |,V DAL, N |)is
to decrease the energy (N) by 2, but keep the angular momentum unchanged. Therefore,

we get the following kind of operators

CUN T =rs =4 (V42), OLN W =rf+r-(N+1. ()

Similarly, it can be proved that

20-1d HUA-1
D(l)+‘—r—'a-;+(r2 ),
2043 d I+1)(20+3
D{l) - " 3—;+( )(2 )

A=) LN NBELN L)

A+ LN DBUTNT

(19)

Operating (15) on the energy eigenstate [[N) and using (3), we get

1d | 2N+3
A(-1) LNDBULNDIN) = (21-1) [?E*’F“th_ [INY,




1d [+1 2N+43

AQFD LN DBELN DMy = —@+) [FE - R T

[tN). (16)

It is noted that the effect of the operator A((I — 1) |, N 1)B(l |, N ]) is to decrease the
angular momentum by 2, but keep the energy unchanged, and the operator A({I+1) 1,N |
YB(I 1, N 1) is to increase the angular momentum by 2, but keep the energy unchanged.

Therefore, we get another kind of operators

1d ! 2N +3 1d I+1 2N +3
D(l |},N) = (;$+r_’__fr—_1—)’ D(l11,N) = (;E-‘—;r*'“m)- (17)

It should be noted that the expressions of the operators C and D given in (14) and (17)
also can be derived from the recurrence relations of the confluent hypergeometric function
(see Appenéix 1).

Thus, we have obtained four kinds of raising and lowering operators A, B, C and D (see
F‘ig. 1). The corresponding section rules and conserved quantum numbers are summarized
in Table 1.

Considering the effect of the operator A(l 1, N |) (see Table 1) and the fact n, > 0, we

get
d 1+1
QTN Dm0 = (g =~ 1) o) =0. (1)
The solution is
. xm(r)~r'“e_'2/7, 1=0,1,2,---, (19)

which is the lowest energy eigenfunction with angular momentum [ and without node (n, =

0). A((I + 1) |, N 1) operating on (18) and using (8), we get

[D() + 20 + 3)) xz0 = [Aro + (20 + 3)] x10 = O.

Thus, Ao = —(2! + 3), and the energy eigenvalue is
|
EKO=(I+3/2)1 I=011’2)"') (20)
which is the special case (n, =0, N =1) of the general expression of the ehergy eigenvalue
E = N + 3/2 (see App. 1). Successive operations of the operators A(! |, N 1), A((I - 1) |
,N 1), ---, on x,otr), one may get all the radial eigenfunction x;_11(r), xi-z2(r), ---
xoi(r), 1 =1,2,3, ).

III. 2D ISOTROPIC HARMONIC OSCILLATOR

For a particle in 2D central potential V (p), the energy eigenequation (in polar coordi-
nates) reads

2 2 2
HW:[ k (a 18 18

——— et =3 \4 ¥ = EV, 21
2 ap1+pap+p=a¢f) ¥ (‘”] 1)
¥ may be chosen as the simultaneous eigenstate of the complete set of conserved observables

(#, I, =-irg),ie,

g=XnPms 04y 42 (22)

N
xm(p) satisfies the following radial equation,
K [ d? 1 m?
————t — - — \s
[ i (dp’ +4p2 p + V(0)| xm(p)

[__rf_ ( & (m-1/2)(m+1/2)
2

2M \ dp? » ) +V(p)] Xm(p) = Exm(p)- (23)

Comparing with the radial equation for a 3D central potential V (r},

2 2
[_;l__-M (% _ l(l + 1)) +V(r)] Xl(’) = EXI("), (24)

72

it is seen that, there exist great similarity between 2D and 3D cases, and the correspondence

between the parameters is
{4+ 1) & (m=1/2)(m+ 1/2) = (jm| — 1/2)(|m| + 1/2). (25)

For the 2D isotropic harmonic oscillator V(p) = 1Mw?p?, the radial equation can be

expressed as (h=M =w = 1).

Dm(P)Xm(P) = ’\mx"t(p)’ Am = —2E, (26)
Xm(o) = 0,
? m— m
by = - Vs

At first, let us consider the m > O case (which can be easily extended to m < 0). Ina

similar way to 3D harmonic oscillator, we may define two kinds m-dependent operators,

d m+1/2 d m-1/2

anm = - TE A= 1, (27)
d +1/2 d m-1/2

Bym) = - - T8 p/ —p B(m=g+ p/ +. (28)




It is easily verified that these operators satisfy the following factorization relations.

A(m+1)As(m) = D(m) +2(m+1),  Ay(m~1)A-(m) = D(m) +2(m - 1),(29)

B_(m+1)By(m) = D(m) = 2(m+1),  By(m—1)}B_(m) = D(m) - 2(m — 1).(30)

Using (29), (30) and (26), we get

' D(m)[A+(m ~ L)xm-1]
D(m)[A_(m + )xm+1]
D(m)[B+(m — 1)xm-1]

D(m)[B_(m+ Dxm+1] = {(Ams1+2)B_(m+ 1)xme1-

(Am—1 + 2)A+(m — Dxm-1, (31)

(Am+1 = 2)A_(m+ 1) xm+1,

(/\m—l - 2)B+(m - l)xm—'lr (32)

From (31) it is seen that the effect of the operator A}, (A-) is to increase (decrease)
the magnetic quantum nurmber m by 1 and simultaneously decrease (increase) the energy
eigenvalue by 1. Similarly, the effect of the operators B, (B_) is to increase (decrease) m
by 1 and simultaneously increase (decrease) the energy eigenvalue by 1. To clearly indicate

the raising and lowering properties, these operators may be relabelled as

Am) = AN ) = ZoTEVEL, (33)
Afm) = AGm AN ) = 2P,
By(m)— B(m1,N1) = ;;—T—“L;ﬂz-p, (34)
d m-1/2
B— b = _
’ (m) = B(m|,N |) dp+ p +p,

where N is the quantum number characterizing the energy eigenvalue (see App. 2, E =
N+1, N =|m|+2n, and n, =0, 1, 2, -+ is the number of nodes of the radial wave
function (p = 0,00 excluded).

Using the argument similar to 3D harmonic oscillator, we may construct the other two

kinds of raising and lowering operators C and D (see Fig. 2).

d
C(m,N11) = pa—p2+N+2, (35)
. C(m)Nll) = p:id;"'/’z_N_ls
7

1d m-1/2 2N+3

D = -=

(miLN) = So+ Tl T, (36)
_1d m+1/2 IN+3

D(m TT:N) - pdp P2 2m+2'

Considering only the absolute value of m, is involved in the radial equation (23), we
have X_mn, = Xmn, (see App. 2). Thus, the expressions of the operators A, B, C and D

for m > 0 cases may be easily extended to m < 0. It is seen that

C(_mrN TT) = C(th TT): C(—m,N ll) =C(m1Nll)l (37)
A(-m)LNT) = B(m1,N1), or B((-m),NT)=AmLNT1), (38)
A((—m) t’N l) =, B(m l;N 1)7 or B((_m) er l) = A(m LN l) (39)

As for the operator D, we have

D((-m) 11,N) = D(m ||, N), (m#£1), (40)
but for m = %1, because X1, = X1,n,, We get

D((=1) 11, N) = D(1 }1, N} = I (identity). (41)

Thus, we have obtained the four kinds of raising and lowering operators of 2D isotropic
harmonic oscillator. The corresponding selection rules and conserved quantum numbers for

these operators are given in Table 2.
Appendix 1

Considering the asymptotic behavior of the solution of (3) as r — 0 and r — oo, we

may put the solution of (3) as [3]

xi(r) = rH‘e"’/zu(r), (42)

and u(r) satisfies

2
W+ I+ - (N + A+ 3)u=0. (43)
r
Let € = r?, (42) is reduced to the confluent hypergeometric equation

d*u

du 1
EIE-;+(I+3/2—E)EE——Z[/\(+(21+3)]u=0. (44)




1

The solution u (satisfying x;(0) = 0) may be expressed as the confluent hypergeometric
function F(a,7;7%),
1
a:z(,\,+21+3], '1:l+3/2. (45)
For bound states the infinite series expression of F must be terminated (i.e., F must be

reduced to a polynomial), therefore, it is required that « = —n,, n, = 0,1,2,---, then we

get E= (I +2n,) +3/2,or

E=Eyx=(N+3/2), N=14+2=0,12---. (46)

'

The corresponding radial eigenfunction is
Xin (1) ~ e F (= np L4 3/2,57), (47)

ar‘ld the degeneracy of a given level is fxy = (N + 1)(N + 2)/2.

Using the fundamental recurrence formulas of confluent hypergeometric functions {13].

£FP(e,,3)=2F(a+1,7+1,1),

(v~ a)F(a—1,7,2) - oF(a + 1,7,2) = (v ~ 2a - £} F (e, 7, 7),
(1= 1) F(a,y~1,2) + (v - &) Fa,y + 1,2) = ¥(y = 1 + =) Fle, 1, 2),
1F(a - 1,7,z) + 2F(a,7 + 1,2) = 7F(a,7,2),
(v=1)F(a,y-1,7) - aF(a+1,7,z) = (v - a = 1} F(a,7,2),

(v - Q)zF(a,y+ 1,2) + ayFa + 1,7,z) = 7(a + 2) F(a,7, ),

(v = DF(e,7 - L,z) = (v - &) Fla~ 1,7,z) = (a — 1 + 2) F(a,7,2),

the following recurrence relations can be derived

yF(a+1,7,2) —zF(a+ L,y +1,2) = vF(a,7,2),
(v - e} Fla— Lv,z) - ezF(a+ Ly+Lz)=q(y-a- z)F(e,7,7),
(v - a)F{eyy + 1,2) + aF(a+ 1,7 + 1,2} = 7F(e, 7, 2),

Ay - 1)Fla,y - 1,2} —azF(a+ 1,7+ 1,z) = 9(y = 1) F(e, 7, 7).
I
From these relations, the following formulas can be obtained,

2¢ + 24| Fla,v,22) = 2aF(a + 1,7, 2%), 48
dz

[2(1 —a-z?)+ zf;] Fla,7,2%) = 2(y — a)F{a - 1,7,1%), (49)
[—2—_:’-4-%2‘—‘; F(a,q,z’):%z’i‘(a-k 1,7+2,z%), (50)

[26y - 1) - Mozeptlar 4 2] Playn,s) =20y - )F(a- L7 -2,7%). (1)

Using (48-51), one may derive the expressions for the operators C and D given in (14) and

(7).
Appendix 2

Considering the asymptotic behavior of the solution of the radial equation (26)as p— 0
and p — oo, we may put
xm(p) = pIml=1/2e=0 12y () (52)
and u{p) satisfies
2 1
o+ [L"ll - Qp] W' = (Am + 2lm| +2)u=0. (53)
p

Let € = p?, (53) is reduced to the confluent hypergeometric equation

3

d*u du 1
il - —_— - =0. 5
Tealiml +1- 3 - {Cml 24 D) (54
The solution u (satisfying xm(0) = 0} may be expressed as F(a,v;0%),

1
a= Z(2|m|+2+ Am), v=|m|+ 1 (55)

For bound states the infinite series expression of F must be terminated, i.e., it is required

that @« = —n,, n, =0,1,2,---, then we get
E=Ex=(N+1), N=|m|+2, n,=012,---. (56)
The corresponding radial. eigenfunction is
Xy () ~ P2 F(=n,, |m) + 15 07). (s7)

The degeneracy of a given energy levelis [y = (N + 1}, N=0,1,2,---.
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Table Captions

Table 1 Four kinds of raising and lowering operators of the 3D isotropic harmonic oscillator

and the corresponding selection rules and conserved quantum numbers.

Table 2 The same as Table 1, but for the 2D isotropic oscillator.
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Table 1

raising and lowering = conserved
operators { n, !+ 2n, quantum number
AUTLN )= -4y Isi+1|{n,—=n -1 |N=N-1] {4n, N-n,
A(ll,N'f)é;‘;+§—r l=l-1|n—=n+1[N=N+1
BUt,N)=%-H—r {>1+1| no—»n [N—oN+1

B, N=4+5+r I—-1-1! n,—n |N—-N-1
CUN)=rE-r2+(N+2)| I—=1 |n —n +1 N—N+2
CUNID=rd+r-(N+1)| {—=1 (7, >n-1|NoN-2

DT, N)=12 - W43 V142 in—n -1 NN

DU N)=1d+ L8 i1 -2)n—n+1| NN

Table 2
raising and lowering N= conserved
olperators m n, |m| +2n, | quantum number
A(mT,Nl)=j‘—p—2+—:Q+h mom+1|n,on,—-1|N-N-1]||ml+n, N-n,
AmL N =g+, mom-1|n,—n,+1|N—>N+1
B(mT,]bT):f;—l?B—p m—m+1 n, —n, N—N+1 n,
B(ml,Nl)=ad—’+m——‘—lﬁ+p m—m-1[ n,—n, N-oN-1
C(m,NTT):pd%—pz+(N+2) m-—m {n,—n,+1| N—-N+2 m
C(m,Nll)=p;d;+p’—(N+1) m—-m |[n,—»n,~1 | N>N-2
D(m{f,N) =14 - 22 4 W8\ mt2|n,—my—1| NN N
D(mll,N)tfﬁﬂ-m:lz—g—'}E% m—om-2|n,—n,+1 NN
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Figure Captions

Fig.

Fig.

1 (a) The energy levels of a 3D isotropic harmonic oscillator. Operator A connects
states with the same N + n,. Operator B connects states with the same radial
quantum nubmer n,. Operator C' connects states with the same angular momentum

{. and operator D connects states with the same energy N.

(b) The graphical illustration of the operator C(I, N 11) = A(({+1) |, N 1)B{ 1, N 1)
and C(I, N ||)= B((l + 1) |,N )A(I 1, N }).

(c) The graphical illustration of the operator D({ 11, N) = A(({+1) 1, N 1)B(I 1,N 1)
and D(I |}, N) = A((l-1) LN T)B(L L, N 1).

2 The same as Fig. 1a, but for the 2D isotropic harmonic oscillator.
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