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Abstract

Spectral analysis has been used to study emittance growth due to chro-
matic effects in future linear colliders. This formalism allows to study the
effects of static initial misalignments, as well as the effects of magnet dis-
placements produced by ground motion, the latter described adequately by
the two dimensional power spectrum P{w, k). The effectiveness of correc-
tion techniques, envisaged in long linacs to recover the small required emit-
tance has been also evaluated by this spectral approach. For illustration,
analytical predictions for the “one-to-one” algorithm and the “adaptive
alignment” method are given and compared to numerical simulations.
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1 Introduction

Ground motion is of major concern in future linear colliders because it will dis-
place focusing magnets, which, in turn, will dilute the beam emittance in the
linac through dispersive effects. Beam-based alignment techniques will recover
either the proper alignment of the elements or the “gold” trajectory, which min-
imizes dispersion, nevertheless steering feedback loops are needed to control the
chromatic dilution on a continuous-time basis against the ground motion. The
beam-based alignment correction, which requires measurements of the beam or-
bit with different quadrupole settings, will be used periodically, with some rather
long time intervals, while steering algorithms will be applied continuously in be-
tween.

In this paper, a spectral analysis is presented which evaluates the final dis-
persive error for initial misalignments, but also after alignment or trajectory
correction techniques. Furthermore, this spectral approach makes use of the 2-
dimensional power spectrum [1, 2], which gives a complete description of ground
motion — including time and space dependence of displacements — and permits
not only static (e.g. initial misalignment), but also dynamic study of the effec-
tiveness of alignment algorithms. For illustration, the method is applied first to
the so called “one-to-one” algorithm (see (3], for example), when simple steering
dipoles are used or when quadrupole can be mechanically moved, second to the
“adaptive alignment” method proposed by V. Balakin [4]. Analytical predictions
giving the quadrupole spectra and the final dispersion are compared to numer-
ical simulations. The limitations of the presented spectral approach are finally
discussed.

2 Spectral analysis of chromatic dilution

Beam emittance growth, induced by chromatic effects, can be studied with the
help of the spectral approach. When we consider static initial misalignments of
focusing magnets, or displacements produced by ground motion, the chromatic
dilution is simply given by an integral involving the power spectrum of the dis-
placements and a spectral response function describing the transport line. We
will show that this formalism can be extended also for the case when correc-
tion techniques become operative, provided that the correlation between space
harmonics, which now arises, is correctly taken into account.

On the Fig.1, showing some focusing quadrupoles of a linac, z;(t) = z(¢, s;) is
the transverse position of the i-th element, measured relatively to the reference
line, a; is the BPM reading, s, is the longitudinal position s; = i¢L. L is the
quadrupole spacing. If r,ps(2, s) is the coordinate measured in an inertial frame
and the reference line passes through the entrance, then the transverse position

is x(t,8) = Tans(t,3) — Tans(t,0).
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Figure 1: Misaligned quadrupoles. Here z; is quadrupole displacement relative
to the reference line, a; is the BPM reading.

Dispersive errors arise because particles having different energies in the bunch
are deflected differently by the misaligned quadrupoles. Although the offset at
the exit z*(t) is not strictly a linear function of the relative energy deviation §,
we will consider henceforth only the linear term, defined as 7,(t) = dz*(t)/dd, for
the estimation of the chromatic dilution.

Let b; and d; be the first derivatives of the beam offset and of the beam
dispersion at the exit of the linac with respect to the displacement of the element
t. The final offset, measured relatively to the reference line, and dispersive error
are given by the summation of all the deflections experienced by the beam

z*(t) = Ruzin(t) + an;m.(t) + Zb,— zi(t) (1)
N
Nz(t) = Th16Zini(t) + Ti2eTini(t) + _}:di z;(t) (2)

Here N is the total number of quadrupoles, the R and T are the first and second
order total matrixes of the considered transport line. The values ziyj(t) and zi;(t)
are the position and the angle of the injected beam at the entrance.

We assume that the beam is injected along the reference line. In practice it
means that the beam is menaged to pass through the center of some element,
say a beam position monitor, placed at the entrance, i.e. at s = 0. In this case

ZTinj(t) = 0 and z{;(t) = 0 and the formulae (1, 2) can be rewritten in this way

N
o (t) = Zbi z:(t) (3)
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N
nz(t) = _V_,_jd‘- zi(t) (4)

Assuming that the beam can be re-aligned at the exit, we will now focus on
the final dispersion only. While the mean value of the dispersion (n;(t)), averaged
on realizations, is zero, the mean squared value gives the dispersive error:

() = T3 did; (zi(t)z;(0)) (5)

The displacement z(¢, s) is a 2-dimensional function of time and position along the
linac. One can introduce the spatial harmonics z(t, k) of wave number k = 27/,
with A the spatial period of displacements:

£/2

z(t, k) = / z(t, s)e™**ds (6)
-C/2

The function z(t, k) is complex, with a symmetrical real part and an asymmetrical
imaginary part, relative to k = 0. The displacement z(¢,s) can be written using
the back transformation:

s(ts) = [ 2(t, k)™~ 1) ()

which ensures that at the entrance z(¢,s = 0) = 0. The dispersive error (5) can
then be written

i ] s ks dk, dk
(1)) = D did; / /(I(t,kx)f (8, ka)) (€15 — 1)(e™%2% — 1)2—7:.,—7: (8)
v —oc —20 -
This general form allows the eventual dependence of spatial harmonics. We first
consider the case of initial misalignment or {(and) ground motion, where all spatial

harmonics are assumed to be independent. The dispersive error becomes

0

(20) = X X dds [ Pt (R -1 (e - 9)

t —20

One can rewrite (9) in the way, which separate lattice properties and displace-

ments properties
[

() = [ PleR)GE) S (10)

Here G(k) is the so called spectral response function of the considered transport
line

G(k) = g2(k) + g2(k) (11)
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with

N N
gc(k) =Y di(cos(ks;) = 1) and g,(k) = Y disin(ks;) (12)
=1 =1
The spatial power spectrum of displacements z(¢, s) is defined as
c/2 2
P(t,k) = lim ~a(t,k)z"(t,k) = lim ~ [ =t s)eta 13)
’ - C-l-roo C ’ ’ - C—)ooﬁ / y S (
c/2

it is a real function.

The power spectrum of displacements P(t, k) can be easily found as far as
initial misalignment or ground motion are concerned. For example, assume that
the focusing elements are perfectly aligned along the reference line at ¢ = 0 and
then are moved by ground motion. The evolution of the power spectrum can be
described by the following expression [1, 2):

P(t,k) = / P(w, k) 2[1—cos(wt)]g% (14)

where the two-dimensional power spectrum P(w, k) characterizes ground motion
properties, including both spatial and temporal correlation information. Several
models of P(w,k), based on measured data, have been proposed in [2]. The
diffusive ground motion, leading to large displacements after long time intervals,
is usually described by the “ATL law” [5]. Its power spectrum P(w, k) is simply:

A
A typical value of the coefficient A is A = 107°um?~'m~!. Though any type
of P(w,k) can be considered, we will keep only this particular motion for the
estimation of the dispersion throughout this paper.

When correction procedures interfere, spatial harmonics can be not any more
independent and correlation of phases between two harmonics with different wave
numbers can arise. In principle, the phase of a given k-th harmonics may be
linked to all other harmonics. This correlation, which is lost through the power
spectrum P(t, k), may change the result significantly. Therefore one have to use
expression (8) in the general case.

We will see below that for a regular linac with constant quadrupole spacing L
the formula (8) may be simplified for some correction techniques, in particular for
those we have considered in this paper. In fact, phase correlation will appear in
such a way that only (z(¢, k) £*(¢,k — kmax)) in (8) should be taken into account,
thus all functions become one-dimensional. Thus, in this simplified case, the
mean squared dispersion is

kmax=kmin
my =2 [ (PRGR) +P(tEGE) ) S (16)
kmin
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Figure 2: Spectral response functions G(k) (solid line) and absolute value of G(k)
(dashed line, this function is negative). FODO linac, L = 10 m, N=128, u = =/2.

where we used the notations

P(t,k) = Jim %x(t,k)z'(t,-ic) = lim %x(t,k)z(t,l;:) (17)
and ) X
G(k) = g.(k)g.(k) — g,(k)gs(k) (18)

In our case P(t, k) is a real function.

Here and below & = kpax — & and the value k,ax = 7/L corresponds to the
shortest wavelength A = 2L, which can be produced by misalignments of an
infinite regular lattice with spacing L. We take into account in Eq.(16) that the
range of integration on k is limited in practice. For the finite regular lattice with
spacing L

kmin < Ikl < kmax - kmin (19)

where kmin = 27/(V L). Taking integral (16) only for positive k& we doubled the
result.

One should note that the ground motion spectrum may have any k and the
limits in Eq.(10) are infinite, while the spectrum of quadrupole displacements
is defined only in certain finite range. This peculiarity is not a contradiction,
because, as we will see, all harmonics of ground motion effectively act as if their
wavelength values belong to the finite allowed band.

Spectral functions can be easily calculated numerically and even analytically
in some cases (see Appendix 1 for more details). A typical plot of G(k) and G(k)
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is shown on Fig.2. In this example we choose a regular linac without accelera-
tion, the quadrupole spacing L = 10 m, the number of quadrupoles N=128, the
phase advance per FODO cell is 4 = 7/2, beta function have maxima in odd
quadrupoles.

In short, the spectral response functions G(k) and G(k) describe the properties
of the focusing channel, while the power P(t,k) and the self correlation P(t, k)
spectra will depend on the applied method of correction, initial misalignment and
ground motion.

3 Spectral properties of correction techniques

Our aim now is to describe an alignment procedure in terms of evolution of
spatial harmonics and then to apply the spectral formalism to different correction
techniques.

We consider first the well known “one-to-one ” steering algorithm, where
BPM readings are used to steer the beam through BPM centers. A variant of
this scheme, where the quadrupoles are moved towards the beam line instead
of using dipole correctors, is also studied. The “shunt” technique, which can
alternatively be used to suppress the BPM offsets is also discussed. Finally the
“adaptive alignment” method proposed by V. Balakin [4] will be considered. This
method uses BPM readings to repetitively realign quadrupoles to some smooth
line.

Some notations have to be introduced before going through the correction
methods in more detail. We define z(g)(k) as the k-th harmonics of the vector
of initial quadrupole displacements in k-domain, it can be complex. In space
domain its components are real values

T(0)i «x cos(ks; + @) (20)

”»

This vector describes the initial misalignment of the elements at ¢t = 0. The
correction is performed on at ¢t = At and the resulting quadrupole displacements
just after correction are described by harmonics z(;)(k), the value just before
correction is z(;_j(k). If correction procedures will be repeated iteratively, one
will have z(,)(k) where the index n is the iteration index, which is connected to
the time through ¢, = nAt.

The vector of the BPM offset errors, relative to the quadrupole centers, can be
described by the harmonics z(k). These quantities are identical for any iteration
n, but are different for different realizations. Last, the vector of BPM resolution
errors, due to measurement noise, consists of the harmonics §,)(k), it is different
for different n but its spectral properties remains the same.

The eflect of ground motion will be given by the harmonics 9, (k) of the
vector of quadrupole displacements between the times t,_; = (n — 1)At and
t, = nAt.



Initial
' displacements BPM errors @

Final displacements \@

Figure 3: Evolution of spectral harmonics due to alignment procedure.

The correction techniques, which are investigated in this study, introduce
phase correlations only between harmonics & and k= kmax — k, by the following
way. If a term with a phase ¢ arises in the k-th harmonics after correction, some
term with a phase —¢ arises also in the k-th harmonics. An extension to the
more general case can be of course done for other correction methods, which
could introduce more complex phase correlations.

We have to express now the change of the harmonics of elements displace-
ment due to a correction procedure (see Fig.3). The coefficients r;(k) and ry(k)
relate the k-th harmonics of the quadrupole position after correction to the k-th
and k-th harmonics in the initial state. The coeflicients r3(k) and r4(k) give the
contribution of the k-th and k-th harmonics of the BPM errors to the k-th har-
monics of the quadrupole position after correction. In our case these coefficients
are real. The k-th harmonics of the quadrupole displacement just after the first
correction, at ¢t = At, can then be written as the following

zy(k) = ri(k)z)(k) +ra(k)zigy (k) +ra(k)z(k) +ra(k)z"(k)

+ra(k)Ey (k) + ra(k)En)(R) +ri(k)way(k) +ra(k)uly (k)  (21)

Assuming that the only correlation originates from the correction procedure, the
variance of the quadrupole position after the first correction is

(lzl) = rillz@l®) + 72l +ril=?) +7(z7)

+r3(J€1%) + F3(IE%) +rf(¢(1)u9('1)) +7:§<U3(1)”;'('1)> (22)

We used abbreviations such as r; = ry(k) and 7; = r2(k) henceforth. For the self
correlation spectrum one gets:

(i) = mirallzol) + fiallEe ) +raralzP) + Fra(l37)
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+rara(l€°) + FaFa(IE]7) + rira(vuyvy,) + Fira(Yaydiy)) (23)

Similar equations can be written after many correction processes (n > 1).
We have to take into account, however, that BPM offset errors of different n are
totally correlated, BPM resolution errors are uncorrelated, and ground motion
terms ¥(.)(k) of different n may have some correlation.

We assume Gaussian distributions for the initial misalignments and BPM
errors and will use spectra instead of variances. The spectra of initial misalign-
ments, static BPM errors (offsets) and stochastic BPM resolution errors are,
respectively

Pi(k) = Log; = L{lz()|) (24)
P.g(k) = Lo2g = L{|z|?) (25)
Pres(k) = Lo, = L{|¢}*) (26)

The term corresponding to ground motion Q; (k) = L(w(,-)(k)t,b(‘j)(k)) can
be expressed with the help of Eq.(14). We use the identity

1
(z) — z2)(z3 — z4) = 2 [(1‘1 - 1‘4)2 + (z2 — 13)2 ~ (1 - 1'3)2 —(z2 — 1'4)2] (27)
to expand Y(:)¥(;), remembering that the value ¢(,)(k) in k-domain and the value
Tabs(tn, $) — Zabs(tn-1, 5) in space domain are equivalent. The ground motion term

1s then

Quak) = [ Plw, k) lcos(w(ti = 1)) + cos(eo(tics — t,-1))

—cos(w(t; = t;_1)) — cos(w(ti—y — t;))] gw; (28)

This expression assumes that k can run from —oo to +oco, while the regular
lattice with spacing L cannot produce harmonics with very short or very long
wavelength. The spectrum of quadrupole displacements has therefore a bounded
range. The harmonics of ground motion have hence to be redistributed within the
allowed band. For instance, the harmonics with large wave number mkpa, + Ak,
where m is a positive integer, will effectively appear as knax — Ak. On the other
hand, it is known that long wavelengths do not affect the beam quality and the
harmonics with |k| < kmin can be simply neglected. The ground motion term is
then

Quyk) = /(P(w,k) + 2L / P(w,k)%)

-0 kmax



a) b)
__,J[/, ~ b

i o i
i-1 i+1 i-1
Figure 4: The one to one alignment technique with steering by the previous
quadrupole a), and with changing of position of misaligned quadrupole b).

x 2(1 — cos(wAt)) cos(w(t; —t;)) %w_’ (29)
T

where we assumed that the time interval At = t; — t;,_, is constant. For the

special case of the “ATL law”, the expression (29) can be given in a closed form

AAtL . . o
Quank) = (1 Ko + 1/R) (i =5+ 11+ = = U =20 = jI). (30)

In the next chapters, a few correction techniques are studied in more details.
The expressions for the resulting power spectra of quadrupole displacements af-
ter correction, as well as the final dispersive errors are calculated. Finally, the
method is illustrated by some actual examples, which are all based on a same
fictitious linac: the number of quadrupoles N=1024, quadrupole spacing L = 10
m, phase advance ¢ = 90°, no acceleration, beta function has maximum in odd
quadrupoles, beta function at the exit Sy = 5.86 m.

4 “One-to-one” correction techniques

The “one-to-one” algorithm consists in zeroing the BPM measurements. This can
be done by steering the beam by means of dipole correctors (Fig.4a) or by moving
the misaligned quadrupoles towards the beam (Fig.4b). These two methods give
different results, they are studied separately.

4.1 “One-to-one” by steering

It is more convenient to our formalism to replace deflections given by dipole
correctors by displacements of the associated quadrupoles.

If we suppose the i-th quadrupole is misaligned, three additional angles are
needed to re-align the beam. The equivalent quadrupole displacements, which
should be subtracted from their initial positions, are then

Az; = ——— and Aziy, = Azi_, = ——-— (31)



Here K; is the ry; coefficient of the quadrupole transport matrix. The algorithm
can therefore be expressed in this way

1
z; > T + ff{': (2z; — zip1 — Zimy) (32)

We assume a regular FODO lattice, where the signs of the quadrupole strengths
alternate, K; = —K;;,. We can write it alternatively

K; = K cos(s;w/L) = K cos(kmaxSi) (33)

where s; = iL are the locations of the quadrupoles. Taking z; = cos(ks; + ¢) and
using the identity

cos(ks; + @) cos(kmaxSi) = cos(kmaxsi — ks; — @) (34)

we note that a k-th harmonics of the initial misalignment will produce two har-
monics of quadrupole displacements after the correction: k-th and (kmax — k)-th
with opposite phase. The coefficients ri(k) and ry(k), showing the change of
the harmonics k& and connection with the harmonics kpax — & of the quadrupole
displacements after correction, are

2
ri(k) =1 and ro(k) = TK (1 —cos(kL)) (35)
The coefficients r3(k) and r4(k), showing the effect of BPM errors, are
r3(k) =1 and ry(k) = Z%(l — cos(kL)) (36)

The power spectrum of quadrupole displacements after correction, with ground
motion, described by the “ATL law”, is thus

P(k) = L(aizni + crezn) (1 + (L—QI-{->2 (1+ cos(k[,))2)

1 1 2 \? 2
+ AAt ((E‘i-}-a) + (L—E) (14 cos(kL)) (5—2-*_1‘7,;”)) (37)

2
m

In the same way, the self correlation spectrum is

4
—_ 2 2y _
P(k) - L(axm + Uen’) L[\’

2AAL 1 1
+ TK ((1 —cos(kL)) (ﬁ + %

max

) + (1 + cos(kL)) (Elg + k—j—)) (38)

max
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Figure 5: Initial power spectrum (a), and spectra after one to one correction by
steering, power spectrum (b) and self correlation (c). Simulations in comparing
with analytical results (smooth curves). Initial misalignment o;;; = 100um. No
BPM errors. The spectra here, as well as on the others pictures showing spectra,
are doubled in comparing with formulas in the text.
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Figure 6: Power spectrum just before (a) and after one to one correction by
steering (b — power, ¢ — self correlation). Ground motion by “ATL law” with
AAtL = 107! m?. No initial misalignment, no BPM errors.
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Figure 7: The mean squared dispersion for the “one-to-one” correction by dipole
steering, a) and b) - with initial misalignment iy = 100 pm solely (before and
after correction), c) and d) - with “ATL” ground motion solely (before and after
correction), 7 = 107*? m? /(AL).

The quantity o, means here the total rms BPM error, including both BPM
offset and BPM resolution (02, = o2z + 02,).

One can note that, without ground motion, the power spectrum after correc-
tion does not grow for small k£, meaning that the smooth deviation of the line of
quadrupoles, a typical feature of the other correction methods, is not significant
for this correction technique. On the other hand, the power spectrum of the
quadrupole displacements is larger after correction than before correction.

Taking ground motion into account, we reasonably assumed that the time,
required for the change of the corrector settings, is smaller than the character-
istic time of the emittance growth due to ground motion. When the correction
procedure is iteratively repeated, the spectra are still given by the expressions
(37) and (38), but the ground motion terms have to be multiplied by n. A few
examples of spectra obtained with analytical formulas and compared to numerical
simulations are shown on Fig.5 and Fig.6.

The dispersion can be found by use of (37,38), provided that injection condi-
tions are correctly specified (see Appendix 2). Alternatively, one can show that
for the “one-to-one” corrections the dispersive error can be written

a0y =2 [ Ple, k) Gty

min 271'

(39)
where G(k) and P(t, k) are the effective spectral response function and the ef-
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fective spectrum of quadrupole displacements before correction respectively. The
G(k) is built according to (11,12) with new dispersive coefficients

d; = di + (2d; + di41 + di—1) /(LK) (40)
and P(t,k) is given by
P(t,k) = L(of; + ol) + AAL (1/R +1/K2,,) (41)
It is useful to note that if there is no acceleration, then
d; = - K.}, (42)

The rms dispersive error versus time can then be calculated with the formulae
(107) or (39), they give the same result. For example, Fig.7 shows the results
obtained with analytical formula (straight lines) and with numerical simulations
with particle tracking (symbols): on the fictitious linac, previously described:
with initial misalignment solely (curves a and b, before and after correction), and
with ground motion solely (curves ¢ and d, before and after correction). These
last curves can help to choose the needed repetition rate of the re-alignment of the
linac, once the maximum allowed emittance growth is fixed. The analytical re-
sults exhibits the following approximate dependencies before and after correction,
respectively:

(n?) = (o2, + 0.5AAtL)0.3N3 (43)

(n?) =~ (of; + 02, + 0.5AAtL)1.2N (44)

These equations are in fact particular cases of the following general expressions,
which can be obtained using Eq.(39) and formulae shown in Appendix 1. The
dispersion error in the linac without corrections:

(n2) = (00 + 0% + AtL/2) (Bmax + Brmin)On K? tan*(u/2) N*/16 (45)

The dispersion error in the linac with corrections, at the moment just after cor-

rection:
() = (0 + 02 + AtL/2) (Bmax + Bumin) In K2 N/4 (46)

They are valid without acceleration, however similar formulae can also be found
with the help of Appendix 1 taking acceleration in the linac into account.

We see from these expressions that “ATL” ground motion causes linear growth
of the dispersion error with time. If corrections are applied, the dispersion error
is reduced by the factor of N? approximately, but still grows linearly with time.
Thus, after some time, some beam based alignment technique should be used to
realign the quadrupoles.

14



4.2 “One-to-one” by quadrupole moving

The beam will now be passed through the center of the i-th BPM by moving the
1-th quadrupole. The resulted quadrupole misalignments will not depend on the
initial quadrupole positions, but only on the total BPM errors. If a; is here the
total BPM error of the j-th element, then the position of the i-th element after
alignment will be

T = —a;+ § Ka (s; — s;) (47)

i=1
Considering one harmonics of the BPM errors a; = cos(ks; + ¢) and performing
summation in (47), one gets

KL
2(1 + cos(kL))

z; = —cos(ks;+¢) —

X (cos(mi) cos(ks; + ¢) +icos(kL + @) + (i — 1) cos(®)) (48)

From the spectral point of view the constant or linear on i terms can be neglected.
The coefficients accounting for the quadrupole displacements caused by initial
misalignments are zero:

ri(k)=0, ry(k)=0 (49)
The coefficients accounting for the BPM errors are
KL
ra(k) = =1, ry(k)=- (50)

2(1 + cos(kL))

The power spectrum of quadrupole displacement after correction can be easily

deduced (KLy?
T2
P(k) = Lo?_ (1 + T Cos(kL)),) (51)
In the same way, the self correlation spectrum is
KL
— 2 __ -
P(k) - LaensinZ(kL) (52)

where 0. is again the total BPM error, which includes offset and resolution
errors (02, = o2, + 0%).

Since the spectra after correction do not depend on initial position of quad-
rupoles, and with the assumption that the time, required for moving the quadru-
poles is smaller than the characteristic time of emittance growth due to ground
motion, the correction and the ground motion are here completely dissociated.
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Figure 8: Power (a) and self correlation (b) spectra after one to one correction
by quadrupole moving. g¢r = 100 um.

In order to find dispersion correctly, one need to take into account all terms in
(48), see Appendix 2. In the same way as before, one can alternatively introduce
new coefficients

N
di=—di+ K; ) di(sj —s) (53)

j=itl
to build the effective G(k) The effective spectrum in this case is

P(k) = Lo? (54)
We note that without acceleration the dispersive coeflicient is again

d; = —Kiri, (95)

as for the previous method. However, with acceleration the coeflicients d; for
these two methods are different.

The rms dispersive error can again be calculated with the help of the formulae
(107) or (39). Unlike the corrector steering method, we note that the power
spectrum after correction grows for small k as 1/k*, leading to a smooth deviation
of the quadrupoles line from their original position. It is also seen, of course,
directly from (48). In spite of this spectrum divergence the answer is finite
because the bounds of integration are cut at kmin and kmax — kmin. Moreover,
contribution of this tails mostly cancels in (107) during integration.

The analytical results, confirmed by particle tracking, exhibit the following
approximate dependencies of the dispersive error after correction for our fictitious
linac:

(172) = 0’;""1.2[\/ (56)
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which shows the same dependence on the BPM errors as the previous method.
The previous formula is the particular case of the next general expression, which
is valid if there is no acceleration

(n2) = 0% (Bmax + Bmin) BN K*N/4 (57)

This formula was obtained by using Eq.(39) and formulae of Appendix 1.

One can note that the so-called “shunt” method (used, for example, to align
the FFTB beam line [6]), which suppress effectively the BPM offsets, can be
described by the same equations. This method is rather a beam-based alignment
technique and cannot be used directly as a continuous-time feedback, because
different quadrupole settings are needed. It requires to move a quadrupole in such
a way that changing of its strength does not produce beam shift in the next BPM.
This procedure repeats step by step for all quadrupoles and the final dispersive
error is only limited by the BPM resolution. If the relative strength changing is
dx = 6K/K then the precision of cancelation of the BPM offset is 0ves/(K L 8k ).
The spectra of the quadrupoles after alignment will be defined by Egs.(51, 52,
114 or 54) where the total BPM errors mean now o2, = 02 (1 + 1/(K L §x)?).

5 The “adaptive alignment” method

The algorithm, proposed in [4], calculates from the readings a; of three neighbor-
ing BPMs the change of position of the central quadrupole
1
Az; = o3 (@iy1 + iy — a2 + K L)) (58)
The coefficient co controls the velocity of convergence of the algorithm. This
procedure is normally repeated iteratively.

Let us suppose that only one quadrupole is misaligned with the unity displace-
ment z; = 1 and that the BPMs are perfect, i.e. they have no offsets or mea-
surement errors. One can show that at the first iteration only three quadrupoles
have non zero correction:

1 2
Az = Aziyy = ~3%; Az; = 3% (59)
The position of the i-th quadrupole after the first iteration is then
1
Ty = T(o)i ~ 3% (21(0»‘ — Z(0)i41 — x(o),--l) (60)

The coefficients, accounting for the quadrupole displacements caused by this cor-
rection, can then be deduced

ri(k)=1- §c0(1 —cos(kL)) and ro(k) =0 (61)
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Figure 9: Power spectrum after first iteration of the “adaptive alignment”

method, no BPM errors, numbers shows the value of coeflicient ¢,. Initial mis-

alignment iy = 100pum.

Even after the first iteration, some harmonics, for which r, = 0, will be damped
completely. If the coefficient ¢ is too large (> 3/2), the damping condition
(r; < 1) is no longer valid and the algorithm will finally diverge.

Let us assume now that all quadrupoles are perfectly aligned but BPMs have
errors. A harmonics of BPM signals, a; = cos(ks; + ¢), gives the correction to be
applied at the first iteration:

: 1
Azr; = —%co(l — cos(kL)) cos(ks; + ¢) — 30 K; L cos(ks; + ¢) (62)
We note again that the k-th harmonics of BPM errors will generate two harmonics

(k and (kmax — k)) of quadrupole displacements after the first iteration. The
coefficients accounting for the BPM errors are then:

ra(k) = —%co(l —cos(kL)) and ry4(k) = —é—coKL (63)

If we consider now an arbitrary number of iterations, successive equations
have to be written. We obtain for the k-th harmonics after the n-th iteration
(taking into account the equality r, = 0):

n n
;r(n)(k) = riTo + Er’l‘"rgz + Zr{'"ﬁé'
=1 =1
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Figure 10: Power spectrum versus number of iterations for the “adaptive align-
ment” method, with random and static BPM errors, numbers shows the number
of iterations. Initial misalignment oin; = 100um, BPM errors o, = oo = 10um.

+ Z r;"'"r;;f(,-) + Z T;‘—i’ﬂ;é&) + Z T;‘-'.Tld)(,') (64)
=1 1=1

=1
The variance of the k-th harmonics of the total quadrupole displacement after
the n-th iteration is then

n n

(lzml®) = v (lzol®) + ()Y rini712 +(|z|2)iirf“~f—i;3

1=1 j=1 =1 j=1

I 2o rim ™l + () o + Y e, (65)
1=1

=1 =1 j=1

The sums in (65) represent geometric progressions and can be calculated easily.
The spectrum of self correlation can be found in a similar way.

After simplifications, the power spectrum of quadrupole displacements is the
following

. 1—r7)? (1 —rim)
- np . 2 (P ( 1 P 1
oo = P+ s 47y (°“(1—r1)2 M)

+3 3 TG (66)

1=1 3=1
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Figure 11: Power spectrum versus number of iterations for the “adaptive align-
ment” method, numbers shows the number of iterations, Ground motion by “ATL
law” with AAtL = 1072 m? No initial misalignment, no BPM errors.

In the same way, the self correlation is

p(n)(k) = (r3fq + r4f3) (Poﬂ’ (1 _ r;‘) (1 — F?) + P, (1 - (7'17:1)")) (67)

1—7'1 l—Fl 1‘7‘1;'1

For the special case, where the “ATL law” is used to describe the ground motion,
the last term in (66) is

5\ _2n—inj 1 1 1 —p2n
erer Q. = AAL (k2 + ﬁ) r? — 7~12 (68)
i=13=1 max 2

If the coefficient r; is lower than one for any k, then the algorithm is converging
and the power spectrum after an infinite number of iterations can be explicitly
expressed. Taking again the “ATL law” for the ground motion, we obtain the
following power spectrum

- Poﬂ' Pres 1 1 1‘2
ootk = 73+ 71 (2054 25 ) + st (v ) 72 o9

The self correlation spectrum is obtained in the same way

Poﬂ' + Pres )
(I=r)(1=71)  (1-r7)

Plooy(k) = (rafy + T4T3) (
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Figure 12: Spectrum of self correlation P(k) for the “adaptive alignment”
method. Numbers shows number of iterations. Static and random error
oof = 10pm, ores = 10um. No initial misalignment, no ground motion.

The figure Fig.9 shows, for example, the power spectra given by simulations
and by analytical expressions (smooth curves) just after the first iteration. An
initial quadrupole misalignment of oiy; = 100um and no BPM errors were chosen.
One can see a clear divergence for harmonics with small wavelengths when the
control coeflicient cg is too large (> 3/2). An optimal value can also be deduced.
One can show that the ratio of the integral of initial spectrum to the integral of
the spectrum after first iteration has a maximum at ¢y = 1. We assume ¢ = 1
henceforth.

Power spectra with different number of iterations are shown on the figure
Fig.10, where, in addition to a quadrupole misalignment (oiy; = 100um), BPM
offset and resolution errors (oog = 0rs = 10um) have been introduced. As
predicted by Eq.(66), the left side of the figure, i.e. for the long wavelengths,
is dominated by the effects of the offset errors, while the right side, i.e. for
short wavelengths, is dominated by the resolution errors of the BPMs. On the
Fig.11, the ground motion solely is taken into account, without initial quadrupole
misalignment and without BPM errors. For these two figures, we observe that
short wavelength harmonics are quickly stabilized, while more time is required for
the long wavelength harmonics. For two cases, for offset BPM errors or for ground
motion, the power spectrum after a big enough number of iterations scales like
1/k* at small k, like for the “one-to-one” correction by moving the quadrupoles.

The figure Fig.11 shows the self correlation spectrum for different number of
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Figure 13: Mean squared dispersion versus number of iterations for the “adaptive
alignment” method. a) - initial misalignment o;p; = 100um solely; b) - BPM
random errors oces = 10um solely; ¢) - BPM static errors oog = 10um solely; d)
~ the limit at n — oo of the case c).

iterations (without initial misalignment and ground motion, but with BPM errors
Ooff = Ores = 10pum). Numerical simulations and analytical formula (smooth
curves) are in excellent agreement.

When displacements are produced by ground motion solely, the equilibrium
value (i.e. at ¢ = oo or when no dependence on n occurs) of the dispersive error
can be expressed in terms of two other functions F(w, k) and H(w, k), which are
the characteristic functions of the correction method:

~ [ ] @wren + ot R P ZE @

—00 —00

One can find the functions F(w,k) and H(w, k) for this alignment method.
Comparing this with Eq.(66), changing limits of sums and neglecting fast oscil-
lating terms will yield in the following expression

Zr — cos(wAt)) (72)

where we assume that contribution of |k| > kmax can be neglected. It is then

3 (1 — cos(wAt))
2¢o (1 — cos(kL))

F(w, k) = (73)
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Figure 14: Mean squared dispersion versus number of iterations for the “adap-
tive alignment” method, no BPM errors. a) ground motion by “ATL law”
with AAtL = 107'?2 m? solely; b) ground motion and initial misalignment
with oy, = 100um; c¢) ground motion, initial misalignment and BPM errors
Ores = Oog = 10pm.

This function shows again that frequencies w <« 1/At of the power spectrum
P(w, k) damped as w?, while small & increased as 1/k® due to considered align-
ment technique. H(w, k) = 0 for this method. One can also see that for the “one-
to-one” by steering F(w, k) = oo and for the “one-to-one” by moving F(w,k) = 0.

When all power spectra are available, one can use equation (16) with spectral
function based on (12) to find dispersion error. The results of simulations (particle
tracking) in comparing with analytical results are shown in Fig.13 and Fig.14.

One can see that the effect of initial misalignments is damped after some tens
of iteration, the effect of ground motion stabilizes after a few iterations, the effect
of BPM resolution errors is almost constant and the effect of BPM offset errors
requires thousands iterations.

The equilibrium value of dispersion error exhibits the following numerical

dependence
(M¥)eo = (0.3302%, +0.0502; + 0.2AAtL) N° (74)

The analytical expression can also be found by using Appendix 1, however it is
too long to be shown here.

As we see, the dispersion error after the “adaptive alignment” still scales like
N3, as was before alignment, while the “one-to-one” methods give (n?) < N.
The reason is that for “one-to-one” the orbit is really controlled, it is kept close
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to the quadrupole (or BPM) centers. One can imagine that in practice the angle
and position of the injected beam could be adjusted in the “adaptive alignment”
in order to make use of the smoothness of the aligned line thus decreasing the
dispersive errors.

In contrast to the “one-to-one” by steering method, ground motion does not
cause permanent growth of dispersive error if the “adaptive alignment” is con-
tinuously applied. Thus, this method can be used solely, it does not require
periodic realignments of the linac by a special procedure. However, this method
may require more precise BPMs.

6 Conclusion

We have shown that the chromatic dilution in future linear colliders can be calcu-
lated analytically taking all important effects, namely initial misalignment, any
sophisticated ground motion, alignment procedures, into account. The used spec-
tral approach is the natural extension of the P(w, k) spectrum concept, which was
previously introduced to describe ground motion.

A few correction methods, such as well known “one-to-one” techniques, as
well as more recent “adaptive alignment” method have been investigated in the
framework of presented approach. The analytical results are in perfect agreement
with the results obtained by particle tracking. A regular linac, having a constant
spacing of the focusing elements, is the only limitation we saw in this spectral
method. The presented results will help to study alignment techniques of the
future linear collider, to choose a proper technique and determine its necessary
parameters [7].

The most important advantage of the spectral approach is the possibility to
evaluate the performance of correction techniques dynamically.
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Appendix 1

In this section some properties of the spectral response functions are considered.
Presented formulae allow to find approximate values of coefficients b; and d;,
positions of resonances and values in the resonances of the spectral functions.

In thin lens approximation the quadrupole displaced by z; produces an angular
kick # = —Kjz; and the resulting offset at the exit is z* = —ri{,K;z; where K;
is the integrated strength of the quadrupole (in our definition it equals to r;; of
the quadrupole matrix), r}, is the coefficient of the transfer matrix from the i-th
element to the exit. Therefore the coeflicient b; is equal to

b,‘ = —K,' 7‘;2 (75)

The coefficient d; is the derivative of (75) with respect to the energy deviation §:

d d K
4= 5% = 5 (r3574) 7
which is equal to . .
d; = Ki(rj; — ti2) (77)

23



where t},5 is the coefficient of the second order transfer matrix from the i-th
element to the exit.

The coeflicients b; and d; follow certain rules, which can be found in the next
way. By considering a rigid displacement of the whole beam line, it is easy to

find the identity
N N

Zb,’ =1- Ru a.nd Zd, = —Tus (78)
=1 1=1

From the other hand, one can show by tilting the whole beam line by a constant

angle that the coeflicients satisfy for thin lenses to the following identity

N N
Y bisi+ Riz = Sexie and > dis; + Tize = 0 (79)

i=1 i=1

where sy is the coordinate of the exit and we assume that the entrance coordi-
nate is zero so = 0. These rules allow to find behavior of the spectral functions

(12) at small &:
g.(k = 0) = O(k?) (80)

and

gs(k = 0) = —kTiz6 + O(K%) (81)

Behavior at the right allowed edge £ — 7/L can be found by considering the
equivalent lattice (FOFO instead of FODO, for example) at & — 0.

Let us consider now the case of the regular FODO linac and assume that the
quadrupole strength is

K; = K(-1)' (82)

and position of the quadrupoles is
si =il (83)
where ¢ = 1,..., N, the entrance position is zero, the exit position is NL. We

denote p to be the betatron phase advance of the FODO cell, which satisfy to
the following equation

2sin(u/2) = |K| L (84)

The matrix element 7}, from i-th quadrupole to the exit is given by

1 . / i
rie = V3iBn sin(¥;), [ — (85)
IN
where ¢; = u/2(N — 1) is the phase advance between i-th quadrupole and the
exit, 3; and Oy are the beta functions at the i-th quadrupole and at the exit
respectively, and «; is the relativistic Lorentz factor.
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The values of the beta functions for the regular FODO linac are the following

Brssinin = :
T tan(u/2)(1 F sin(p/2))
If K; is positive (i.e. the quadrupole is defocusing) then 3; = Bmin and vice versa.

Since the energy dependence comes mainly from the phase advance and the
beta function variation can be neglected, the coefficient t12¢ 1s given by

, : ' 2
fao  —ria(V = i) ot 2)

The spectral functions (12) can then be explicitly written:

N ad N RS el Ltan(p/2)) .
gs(k) = Z K \/B:Bn sin{;) ;}-v- (1 + (N - z)m) sin(ks;)

=1

(86)

(87)

N
: Yi . tan(p/ 2))
(k)= ) Ki\/B: W — L+ (N —t)——= ks;) —1
ge() 2 3 Ko o/BiBsin(y), | 2 ( (N =)ty ) (eostks) =1) - (88)
One can see that these functions have resonances at the following wavenumbers

kL =nj+p/2 (89)

where j is integer. Only four resonances fit into the allowed band |kl < 7/L, the
first resonance

kL = p/2 (90)

the second resonance

koL =7 — p/f2 (91)

and also the symmetrical ones for negative k. The values of spectral functions at
these resonances can be easily found. Let us split the sum in Eq.(88) in two parts,
with odd index ¢ = 2m — 1 and with even index i = 2m where m = I,...,N/2
(assuming that V is even). The values in the first resonance are then:

gc(kl) = Sin(N/‘/2)(vodd + veven) + COS(NF‘/Q)(wodd + Weven)

gs(k1) = —cos(N/2)(Voda + Veven) + sin(Np/2)(Wodd + Weven) (92)
the second resonance:

gc(k’.’) = Sin(Nﬂ/z)(_vodd + veven) + COS(Nﬂ/Q)(_"wodd + weven)

g,(kg) = - COS(N#/Q)(Uodd - Ucven) + Sin(Nu/z)(wodd - weven) (93)
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Where

1 ke _
Vodd & '2-ﬁodd\/ BoddBn D 72:;:] 1
mz=1

N/2
Veven =~ = cvenv ﬂevenﬂN Z: 72m (94)
m=1
and
N/2 5
Wodd = — ta.n u/?) Kodd\/ﬁoddﬂN Z N -2m+ 1) 27m L
N
N/2 ~
Weven ~ tan /1/2) Keven V ﬁevenﬂN Z N —2m 72: (95)

The resonance values of G(k) and G(k) are then the following
G(kl) = (vodd + vevcn)2 + (wodd + weven)2

G(kZ) = (Uodd - veven)2 + (wodd - weven)2

g(kl) = g(k2) = - 3dd + vzven - wgdd + wfven (96)
Behavior in the small vicinity of the peaks can be also found. One can show
finally that the peaks can be considered as rectangular ones with full width
2

If the spectral function are built from coefficients d; defined by (40), the
resonance values can be found in similar way. Indeed, one can deduce

a ’ ' ]. A Y
di~ —Kirly + =2 7,/ = \/ﬁ,ﬁﬂman p/2)sin(u/2)(N —1)sin(y;)  (98)

then one can write
N/2

Vodd = —fYodd V :BoddﬁN Z Tam-1
1 Rl Ay [4
+-L—tan Ysin(p/2)\/ BevenBN Z N -2m+1) " :ﬂ L (99)
2m -1 N
& Yam
Ueven = —Keven ﬁevenﬁN Z e
ke —\7 ¥
__tan (1/2) sin(p/2)\/ BoadBv }: N -2m 72"‘ (100)
/2m N

The values in resonances are then given again by (96) with wedd = Weven = 0.
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Appendix 2

We saw in the main text that from the spectral point of view an alignment
procedure can be considered in terms of evolution of spatial harmonics. For the
“one-to-one” techniques the positions of several first quadrupoles of the linac after
alignment do not follow exactly the algorithm (21), which describes evolution of
harmonics. Nevertheless these details of alignment procedures can also be taken
into account within spectral approach.

It is more convenient in this case to start from

N
n:(t) = Thiezini(t) + Zdi zi(t) (101)

=1
where the injected angle assumed to be zero. The spectral function are given

also by (11,18), but they are composed of parts, which are defined in a slightly
different way than in the main text:

N N
ge(k) = dicos(ks;) and g,(k) = > " d;sin(ks;) (102)
1=1 1=t
We start from the “one-to-one” by steering. Let us suppose that Z(1-)i is the

position of i-th quadrupole just before correction and it corresponds to a single
harmonics. In order to find the positions after correction Z(1)i, one should apply
first the algorithm (21) to z(;-);. It will give x?g'., which can be composed of two
harmonics already. Then the injection position and the positions of the first two
quadrupoles should be specified by the following way:

Tinj = Z(1)0 = Z(1-)o (103)
2
2y = 238 + (Toj0 — zaoy)(1 + L_A’l) (104)
. 1
T2 = x(}§2 +(z-)p — I(l—)l)L—Kl (105)

The dispersion after correction is then given by

N
Nr = Tue-’r(l—)o + Za’,- x?i?,-
=1

2 d
+(z-j0 — Ta-)1) (dx(l + -L?f) + f%;) (106)

The rms dispersive error will be finally given by the following expression

kmax —kmin

oy =2 [ (PUIGEK) +PRIG®K) + Pulk)Gin(k) ) 2= (107)

kmin
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where the spectral functions G(k) and G(k) are based on (102) and the additional
functions defined as the following:

1 1
(k) = Lok + o20) + A0t (5 + 1) (108)
Gini(k) = ¢} + g3 + 2(qic + ¢29) (109)
where
=The+ (d(l+—?—-—)+-ﬁg— (1 = cos(kL))
g1 — 14118 1 LK, LK, C
2 ds )
=1{d
q2 ( 1+ LK1)+ LKl)sm(kL) (110)
and

¢ = ge(k) + ro(k)ge(k)
s = —g,(k) + ra(k)gs(k) (111)
Similar consideration can be made for the “one-to-one” by quadrupole mov-
ing. If one has one harmonics of the BPM errors a; = cos(ks; + @) then the
displacements after alignment are given by (48). First, in order to simplify cal-
culations, let us rewrite (48) in the form that will give the same answer for the
dispersion, but will not have liner terms:

KL
2(1 + cos(kL))

z; = —cos(ks;+¢) —

X (cos(m') cos(ks; + ¢) — cos(¢) + %%[cos(a&) + cos(kL + cp)]) (112)

One can see now that we can use Eq.(101) with fictitious zi,; defined as

Ti: = KL (a( Tz -1)+a Tl%)
m 2(1 + COS(’CL)) 0 LTus ! LTUG

The final answer for the dispersive error will be given again by the expression
(107), where the additional functions are defined as the following:

Pj(k) = Log, (114)
The function Ginj(k) is given by (109) with the following coeflicients
q1 = —714(k)(Ti26/ L — Ti16) — m4(k)T126/ L cos(kL)

gy = —7'4(k)T126/L SlD(kL) (115)

(113)

and
¢ = —ge(k) + ro(k)ge(k)

s = —gy(k) = ra(k)gs (k) (116)
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