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ABSTRACT
Feymann integrals in the noncovariant Coulomb gauge, ~∇ · ~Aa(x) = 0, are regulated with a novel
procedure, called split dimensional regularization, which employs two complex- dimensional parameters.
The new technique leads to well-defined integrals , and yields a local Yang-Mills self energy, Πµνab, that
respects the corresponding BRS identity. Ghosts play an essential role. The method of split dimensional
regularization may be applied to both Abelian and non-Abelian gauge theories.
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1 Introduction

Although the Coulomb gauge, ~∇ · ~Aa(x) = 0, and
the axial gauges, n · Aa(x) = 0, are both bona
fide members of the set of noncovariant gauges,
their mathematical properties and computational
requirements seem to be almost orthogonal to each
other. (Here, Aµa(x) denotes a massless gauge
field, with a = 1, 2, ..., N2 − 1, for SU(N), while
nµ ≡ (n0, ~n) is a fixed four-vector.) In the case of
the axial-type gauges, the spurious singularities of
(q ·n)−1 can be handled by the nµ∗-prescription1,2,
or its generalization3,4, where nµ∗ = (n0,−~n), µ =
0, 1, 2, 3.
For the Coulomb gauge, on the other hand,
progress has been much slower, especially in the
context of non-Abelian theories.5,6,7,8 To see the
source of the difficulties, we just need to look at
the Coulomb-gauge propagator Gµνab(q),

Gµν
ab(q) =

−iδab
(2π)4(q2 + iε)

×
[
gµν −

n2

~q2
qµqν +

q · n
q2

(qµnν + qνnµ)
]
,

nµ = (1, 0, 0, 0), q2 = q0
2 − ~q 2,

ε > 0, (1)

which is seen to contain both (q2)−1 and (~q 2)−1.It
is the absence of q02 in ~q 2, (0 · q02 − ~q 2)−1 ,
that is responsible for a loss in damping power
and, therefore, causes the ambiguities in the dq0-
integrations. The problem becomes particularly
acute for certain integrals which appear for the
first time at two and three loops.9,10 As shown
by Doust and Taylor9,10, the divergences of those
integrals cannot be regulated consistently by stan-
dard dimensional regularization.
In this talk, I shall present a new method for regu-
lating Coulomb-gauge integrals, confining the dis-
cussion strictly to one-loop examples, such as

∫
d4q{

[
(q − p)2 + iε

]
~q 2}−1,∫

d4q{(q2 + iε)~q 2(~q + ~p )2}−1, etc. (2)

2 Coulomb-gauge integrals: a new ap-
proach

2.1 General Procedure

Consider the Minkowski-space integral

IM =
∫Mink

dq0d
3~qf(q0, ~q; p),

qµ = (q0, ~q ), µ = 0, 1, 2, 3, (3)

where pµ is an external momentum. The high-
lights of the new technique may then be stated as
follows:
(1) We perform a Wick rotation on IM , q0 =
iq4, ~q = ~q, to obtain the Euclidean-space integral

IE ≡
∫ +∞
−∞ dq4

∫
d3~qf(q4, ~q; p),

qE
2 = q4

2 + ~q 2. (4)

(2) In order to help us regulate the troublesome q4-
integral, we employ two complex-dimensional reg-
ularization parameters, σ and ω.11 Splitting d4q
into two factors d4q = dq4d

3~q, we write each of
these factors as

dq4 = d2σS|σ= 1
2
+
, d3~q = d2ω ~Q|ω= 3

2
+
. (5)

In Minkowski four-space, σ and ω satisfy (σ +
ω) = 2. We call this procedure split dimensional
regularization.11

2.2 Example

To illustrate the new approach, let us evaluate the
Euclidean-space integral I,

I =
∫

d4q q4
2

q2(~q + ~p )2
, (6)

by employing the exponential representation with
Schwinger parameters α, x. Thus

I =
∫

(α, x)
∫ +∞
−∞ dq4 q4

2exp(−αxq42)

×
∫
d3~q exp[−α(~q 2 + 2~q · ~p(1− x))]. (7)

Applying the method of split dimensional regu-
larization, as outlined in Section 2.1, we readily
obtain
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I = lim
σ→ 1

2
+

lim
ω→ 3

2
+

∫
(α, x)

×
∫
d2σSS2exp(−αxS2)

×
∫
d2ω ~Q exp[−α( ~Q 2 + 2 ~Q · ~P (1− x))], (8)

where ~P is now the 2ω-dimensional version of ~p.
Before proceeding with the momentum integra-
tions, we note that the coefficients of S2 and ~Q2

in the two exponentials are actually different (in
contrast to covariant gauges, where the coefficients
are the same!). Therefore, rescaling the S-vector
according to xS2 = R2, with d2σS = x−σd2σR,
we finally get, in the limit as σ → 1

2

+
, ω → 3

2

+,

div

∫
d4q q4

2

q2(~q + ~p )2
=

2
3
~p 2π2

Γ(1− ω − σ)
∣∣∣∣σ= 1

2
+

ω= 3
2
+
.

(9)

Before leaving this example, we should stress that
the parameter integrations in eq.(8) impose several
constraints on σ and ω, namely Re(ω+σ) < 1 and
{Re(ω + σ) > 0, Reω > 1}. Accordingly, there
exists a region D in the complex ω-plane, where
the α- and x-integrals are indeed well defined.
The technique of split dimensional regularization
permits us to compute all one-loop Coulomb-
gauge integrals in a consistent manner. It turns
out that some of these integrals are actually
nonlocal.11

3 Application

In order to test the method of split dimensional
regularization on a nontrivial example, we decided
to calculate the Yang-Mills self-energy Πµνab(p)
to one loop11, and to check the result against the
BRS identity

pµΠµν
ab(p) +

(
gµνp

2 − pµpν
)
Hµab(p) = 0, (10)

where Hµab(p) represents a ghost diagram. For
Πµν

ab we obtained

Πµν
ab(p) = cab 11

3 [(gµνp2 − pµpν)
− 8

3 (gµνp2 − pµpν)
− 4

3
p·n
n2 (pµnν + pνnµ)

+ 8p2

3n2nµnν ]I∗, (11)

which is seen to be strictly local, despite the
appearance of nonlocal integrals at intermediate
stages of the calculation, while the ghost-diagram
yielded the non-vanishing expression

Hµab(p) =
4
3
cab
(
pµ − p · n

n2
nµ
)
I∗. (12)

Here, nµ = (1, 0, 0, 0),

cab = g2cYM
δab

4π2
,

cYMδ
ab = facdf bcd, and I∗ ≡ pole term ∼ Γ(2 −

ω − σ). It is easily checked that Πµνab and Hµab

together satisfy the theoretical BRS identity.

4 Concluding remarks

In this paper we have described a new approach
of quantizing non-Abelian theories in the physical
Coulomb gauge. As with axial-type gauges, the
primary goal in the Coulomb gauge is to find a
sensible prescription for the spurious singularities,
i.e. to succeed in computing all Feynman integrals
in a consistent, unambiguous manner.
What has become clear from earlier work on the
Coulomb gauge is that such a prescription is un-
likely to exist in the framework of conventional di-
mensional regularization.12 Split dimensional reg-
ularization, on the other hand, appears powerful
enough, at least to one-loop order, to cope with the
various divergences,specifically those arising from
the dq0-integrations. The fact that split dimen-
sional regularization respects the BRS identity for
the Yang-Mills self-energy is another positive sig-
nal, of course, but it still is no guarantee that the
new method will work to all orders in perturbation
theory. What we really need to do next is com-
pute some typical two- and three-loop integrals in
Yang-Mills theory or QCD.
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