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Abstract 

The horizontal and vertical coherent oscillations excited on a beam 

being kicked horizontally or vertically are analysed in detail in the 

vicinity of the difference coupling resonance. It is pointed out that 

there are some difficulties with the frequency measurement and that the 

measurement of the amplitude modulation is preferable. The coupling coef­

ficient of the difference resonance can be obtained quickly and precisely 

by observing simultaneously the following two quantities of the oscilla­

tions excited by a horizontal kick: the period of the amplitude modula­

tion in the vertical plane and the ratio of the minimum to the maximum 

of the modulated amplitude in the horizontal plane. The proposed method 

was tested successfully on the ISR. An electronic measurement system 

based on the proposed method is also suggested, which will be helpful 

to machine operation. 
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1. INTRODUCTION 

The ISR are normally operated with the hori zontal and vertical 

betatron oscillation frequencies close to each other (Q - Q = � 
X Z 

' 

with� small), in order to avoid the presence of non-linear resonance 

lines over the wide tune spread required for beam stability. For such 

choices of the operation line, a difference coupling resonance may have 

a significant effect on the beam and a lowering of the luminosity may 

occur from a blow-up of the vertical emittance via the coupling to the 

hori zontal emittance. The extent to which we can approach the diagonal 

in the tune diagram depends on the strength of the coupling coefficient K 

between the hori zontal and vertical betatron oscillations. The smaller 

the coupling coefficient K, the closer we can approach the diagonal 

(i.e. the smaller we can make�). 

Furthermore, there is a future program to install a solenoid in­

clined to the beam axis for physics experiments and it may be necessary 

to correct the coupling effects caused by the solenoid by using the cor­

rection skew quadrupole magnets. The efficiency of such a correction can 

be monitored by measuring the coupling coefficient K .  The currents of the 

correction magnets can be set so that the coupling coefficient is minimi zed. 

Thus, an operational method for measuring the coupling coefficient 

is required, which tells us the strength of K quickly and precisely. In 

addition, if an electronic measurement system for the coupling coefficient 

is feasible, it will be helpful to machine operation. Fur such an elec­

tronic system to be designed, we must first have a method of measurement 

which is suitable for this application. So far, 

the ISR have been investigated several times by 

the covpling effects in 
. 1 2 3 4) different methods ' ' ' , 

one of which consisted in kicking the beam in one plane and observing the 

resultant coherent coupled oscillations. In this report, the observational 

potentialities of the kick method are thoroughly analyzed. The character­

istics of the stimulated coherent motion are examined in detail and the 

parameters of the coupled oscillations, which should be measured in order 

to obtain the most accurate results, are determined. 
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The proposed method of measurement consists in kicking the beam 

horizontally by a kicker and observing the following two quantities 

simultaneously: the period of the amplitude modulation in the vertical 

plane and the ratio of the minimum to the maximum of the modulated am­

plitude in the horizontal plane. From these two data taken after a single 

kick, we can calculate the unperturbed Q-separation (i�I) as well as the 

coupling coefficient (IKI). A vertical kick of the beam is equally valid 

but then the above two quantities have to be measured in the horizont al 

and vertical planes, respectively. 

After a review of theories of the difference coupling resonance in 

Section 2, some general features of the difference coupling resonance 

are described in Section 3. In Section 4 ,  we shall derive the expressions 

for the coherent coupled oscillations excited by a kick and in Section 5 

we shall examine the quantities to be measured. Section 6 describes a 

test experiment on the ISR and Section 7 a possible electronic system 

based on the proposed method. 

2. A REVIEW OF A LINEAR THEORY FOR THE DIFFERENCE RESONANCE 

In this section we shall give a review of the theories for the 

difference resonance in order to provide a theoretical background for 

the succeeding discussions. A linear theory of coupli ng resonances (sum 

resonance and difference resonance) is described in a book by KolomenskyS) , 

in which the fundamental equation for the coupling resonance is derived by 

solving the equations of motion. A more elaborate theory has recently been 

given by Guignard
6) , using the Hamiltonian method. Here, we shall start 

our review according to Ref. 5, since a manipulation of the equations of 

motion seems more familiar to most of us than the Hamiltonian method, but 

at the end of the section, we shall find that we must have recourse to the 

Hamiltonian method in order to have a correct description of the coupling 

resonance. 
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The linearized equations of betatron oscillations in the presence 

of the skew quadrupole fields ab /ax, ab  /az and the azimuthal field b 
X Z S 

may be written in the following form: 

x" + 1-n --x p2 

Z
TI + n 

;;z z 

1 
B P 

1 
B P 

[-
abz 
az 

z + 

[ 
ab 
___.!. x - b ax s 

b s z'] (2.1) 

x•] (2. 2) 

where x, z denote the horizontal and vertical displacements of a particle 

from the equilibrium orbit and the prime ' a differentiation with respect 

to the distance s along the equilibrium orbit; the coordinate system is 

taken in such a way that s, x, z form a right-handed system; n denotes 

the field index of the ideal guiding field, P the radius of curvature of 

the equilibrium orbit, and B the z-cornponent of the ideal magnetic field 
0 

at the equilibrium orbit; ab /ax, ab /az, and b are also taken at the 
X Z S 

equilibrium orbit. 

The solutions for the homogeneous equations of Eqs. (2.1) and (2.2), 

which describe the betatron oscillations in the ideal guiding 
. 1 d h l) · given by the we 1-known Courant-Sny er t eory . Representing 

x or z, we have: 

y a w cos (Q <P + o) = 1 A W e 
iQ,P + CC 

where: 

field, are 

by y either 

(2. 3) 

w=/s,,P Jds/Q8 and Q denotes the number of betatron oscilla-

tions per revolution. The term cc denotes the complex conjugate. The 
io arbitrary constants a, o or the complex constant A = a e are determined 

from initial conditions. 

Assuming that the skew quadrupole and azimuthal fields are small com­

pared with the ideal guiding field, we shall seek a solution of Eqs. (2.1) 

and (2.2) in the following form: 
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1 iQ<I> y = -A w e + cc 2 (2. 4) 

y' 
1 

(w '  i iQ<I> = -A + -) e + cc 2 w (2.5) 

Here the complex quantity A, which is a constant in the case of the ideal 

guiding field, has to be considered now as a function of s. The functional 

form of A will be determined by the usual method of variation of constants. 

Note that, in writing the expression for y', we have put an additional 

condition on the function A: 

iQ$ A' e + cc = 0 (2. 6) 

This is possible becau se the function A is complex and contains two un­

known real functions. The expression for y" is given by: 

y" A
' i iQ$ 

-e w (2. 7) 

Substituting x, x', x", z, z', z" having forms given by Eqs. (2,4), 

(2,5) and (2. 7) into Eqs. (2,1) and (2.2), we have: 

dA X 
de 

= =--- w e 
2iB p X 

0 

-ix X -iQ e X e 
ix 

+ b (w• + L)� A e z 
s z w z 

z 

iQ e z e 

dA z 
de 

= R =--- w e 
2iB p z 

0 

-ix 
z 

Here we have introduced an azillllthal variable 8 and betatron phase 

variables x , X given by: 
X Z 

e = s/R 

Q$ = Q8 + X 

(2.8) 

iQ e X e 

( 2. 9) 

(2.10) 

(2 .11) 
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where 211R denotes the length of the equilibrium orbit. In the sinusoidal 

approximation for betatron oscillations, we have X = 0 and so X may be 

interpreted as representing the difference of the betatron phase advance 

from the sinusoidal motion. 

A difference coupling resonance occurs when: 

Q - Q 
X Z 

t, + k (:, « 1 k : integer ( 2 .12) 

Using the principle of the averaging method, we average the right-hand 

sides of Eqs. (2.8) and (2.9) with respect to 8. When the resonance con­

dition (2 .12) is satisfied, the first terms in the { ..•• } brackets of 

Eqs. (2.8) and (2.9) vary slowly with respect to 8. But the cc terms 

oscillate rapidly with 8 and can be considered to give an average of 

zero in the first approximation of the averaging method. Thus we have: 

dA 
X 

d8 

dA z 
d8 

with 

K = z 

K 
X 

-it.8 A K e z z 

ill8 A K e 

R 

2iB p 
0 

R 

2iB p 

X 

(w 
X 

[- �w 
dZ z + b 

[
ab 

(w ---2!.w - b  
Z dx X S 

s ( 

. 

)] 
-i(X -x )-ik8 

I i X Z 
> w + - e z w 

z 

(w� 

. 

)] 
i (x -x )+ik8 

i X Z 
) +- e w 

X 

Here <g(e)> denotes an average of the periodic function g(8) with a 

period of 211: 

211 

<g(8)> = �11 f g (8) d8 

0 

(2.13) 

( 2. 14) 

(2.15) 

(2.16) 

(2 .17) 
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The quantities K , K 
Z X 

are not independent but are linked by Max-

well's equations. In fact, by using div b = 0 at the equilibrium orbit 

it can be shown that K + K* reduce to: 

-6 

Z X 

( b 2B p s 
w 

X 
w 

z e 

-i (X -X ) -ik6 
X Z 

> ( 2. 18) 

We notice that this quantity is small in comparison with K , K when 
Z X 

6 is small. To the first approximation with the averaging method, one 

can simply put: 

K 

z 
K 

Thus, we have the fundamental equations describing the difference 

coupling resonance. 

dA -iM X A K e 
d6 z 

dA i66 z -K·/: A e d6 X 

(2.19) 

( 2 . 20) 

( 2. 21) 

To be theoretically rigorous, the above formulations) 
is valid 

only on the resonance, i.e. 6 = 0. When /::, 1= 0, we have K '/= -K* in 
Z X 

Eqs. (2.13) and (2.14). This condition admits the possibility of having 

coupling stronger one way than the other, which is non-symplectic and 

gives a wrong description of the coupling,  as discussed by Guignard
6) . 

With the use of the Hamiltonian method, Guignard succeeded in deriving 

the symplectic equations even for /::, 'F' 0: 

dA -iM R X (b2 s > A K e A + 
d6 z 8B2p2 s X X 

0 

(2.22) 

dA i66 R z (bz s > A -K* e A + 
d6 X 8B2p2 

s z z 
(2.23) 

0 

where the coupling coefficient K is given by: 



R 
K = 

2iB p 
0 
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[ 
1 

( 

ab ab 

) 

b 

( 

a a 

) 
(

W, 
- _2. ___ z 

+� ___2:. _ _2 + X Z 2 ax az 2 S S 
X Z 

[6 
s 

exp i t_J :
s 

0 X 

s 

+ f :s
] > 

0 Z 

i 
:

s 

(t + 
�z)

] 

(2, 24) 

The reason why we could not get the symplectic equations by solving 

the equations of motion may be attributed to the wrong choice of the 

trial function, Eq. (2. 5), for s olving the perturbation problem. There 

we have assumed that the perturbed motion in the presence of coupling 

will be described by x, z, x', and z' having the s ame functional forms 

as the unperturbed s olutions. Mathematically, we can start with any 

trial functions. In fact, if we start with trial functions x', z' 

having the following forms 

x' l A 
(
w: + :

x) 
e 

iQ cf> b 
X X  s 

2 X 
+ cc + 2B p z 

0 

(2.25) 

z' l A 
(w�

+
�

z
)e 

iQ cf> z z s 

2 z 
+ cc - 2B p X 

0 

(2. 26) 

we are led to the symplectic equations(2.22) and (2. 23). The trial 

functions (2.25) and (2. 26) may seem abrupt at a first glance, but they 

jus t correspond to the momenta conjugate to x, z in the Hamiltonian 

method. Thus, we find that there are s ome ambiguities in the choice of 

trial functions with the method of solving the equations of motion and 

that in order to get a correct description of the coupling phenomena, 

we must have recours e to the Hamiltonian method. 
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3. GENERAL FEATURES OF THE DIFFERENCE RESONANCE 

In Eqso (2.22) and (2 o 23), the second term on the right-hand side 

of the equation has no relevance to coupling and produces only a frequency 

shift of the second order in the perturbation. In fact, putting: 

~ 
A A 

X X 

~ 
Qx 

= Qx 

where: 

R e: = 
X 

we have: 

dA 
X 

d8 K 

dA z 
-K* 

d8 

ie: e 
X 

e 

+ e: 
X 

A z 

Q z 
= 

= � + e:  - e: 
X Z 

<b
2 e ) 
S X ' �z 

= 

~ 
-iM ~ 

e A 

iM 
A e 

ie: ~ z 
A e z 

Qz + e: 
z 

(3 .1) 

(3. 2) 

(3 .3) 

(3.4) 

In the following, we shall omit the wavy sign in A ,  A ,  Q , Q , � in 
X Z X Z 

order to simplify the formulae, with the understanding that the effects 

of e: ,  e: are to be incorporated into the unperturbed frequencies. 
X Z 

From Eqs. (3.3) and (3.4) we have: 

X 

d82 + = 0 

This is a second order differential equation for 

ficients, the general solution of which is given 

= 
X 

where: 

(3.5) 

A with constant coef­
x 

by: 

(3 .6) 
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Tl (3. 7) 

and A, B are complex constants to be determined from initial conditions. 

Substituting Eq, (3,6) into Eq. (3.3) , we have the general solution 

for A :  z 

A z 
= 11-t. i 

2K (3. 8) 

In Eq. (306) we notice that the horizontal betatron oscillation, 

which has a monochromatic frequency Q in the absence of coupling, is 
X 

given by a superposition of two oscillations having the frequencies 

= 

l 
Q + - 2 (11

-t.) X 
= 

• 

l 
Qz + 2 (n+t.) 

Qz - ½ (11-t.) 

(3 .9) 

(3.10) 

The situation 1s identical for the vertical betatron oscillation which 

is also given by a superposition of the two oscillations having the 

frequencies Q1, Q
2

• The two frequencies Q1, Q
2 are the so-called normal 

mode frequencies of the coupled oscillator8) . In the presence of coupling, 

the horizontal and vertical oscillations are given by superpositions of 

the two normal mode oscillations; only differing from each other in the 

mixing racio of the two normal modes. Figure l shows the to-dependence 

of the normal mode frequencies. 

Besides the coupling of frequencies, there also occurs coupling of 

amplitudes between the horizontal and vertical oscillations. Since the 

difference between the two frequencies Q1, Q2 is small compared with 

both Q
1 

and Q2 (Q1 
- Q 2 

= 11) , the horizontal and vertical oscillations 

are expected to show amplitude beating. The envelopes of the beat oscil­

lations are given by IA I and IA I, apart from the factors of /a" and 
X Z X 

le. z 
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[A [2 
X 

[A[2 + [B[ 2 + 2 [AB*[ cos (ne +arg AB*) (3.11) 

[ A  [2 
z 

= [B[ 2 - 2 [AB*[ cos (ne + arg AB*) 

(3. 12) 

From Eqs., (3. 11) and (3.12), the horizontal and vertical oscilla­

tions show an amplitude modulation with the period of 8 = 0 : 

0 

We may regard the [A [2 and [A [2 as the energies of horizontal and 
X Z 

(3.13) 

vertical oscillations, although they do not have the correct dimension 

of energy since we are dealing with the amplitudes without the factors 

/rl, 18 .. Then the total energy of the coupled oscillation is a con-x z 
stant of motion. 

[A [2 +[A[2 
X Z 

(3. 14 ) 

Thus, 1n the vicinity of the difference resonance, there occurs a sinus­

oidal transmission of energy from one of the directions of oscillation 

to the other and back, but the amplitudes remain limited even exactly on 

the resonance. 

4. COHERENT COUPLED OSCILLATION EXCITED BY KICK 

Let us consider the coherent betatron oscillations of the beam in 

the horizontal and vertical planes, when the beam is kicked horizontally 

by a kicker. We can also kick the beam vertically and then the oscilla­

tions will be described by simply interchanging the roles of x and z in 

the following expressions, together with the transformations: 6 + -6, 

n + -n, K + -K* .. The induced coherent oscillations will be detected by 

the horizontal and vertical beam position monitors,, 
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Before being kicked, the particles in the beam perform their in­

dividual betatron oscillations around the equilibrium orbit. In the 

vicinity of the difference resonance, the individual betatron oscilla­

tions are the beat oscillations, as described in Section 3, and the beam 

envelope will also show beats. The centre of the beam, however, can be 

assumed to move on the equilibrium orbit. It is just the motion of the 

beam centre which is relevant to the measurements by kick methods. 

Then, the coherent oscillation excited by a horizontal kick will 

be derived by imposing the following initial conditions: 

x(o) = 0 

z ( o) 0 

X I (o) = e 
X 

z'(o) = 0 

( 4 .1) 

( 4. 2) 

Here, 8 denotes the angle of the horizontal kick and the origin of the 
X 

azimuthal variable s or 8 is taken at the kicker position. 

With this choice of the origin of s or 8, we have: 

x(o) 1 = 
2 

Ax(o) 

x' (o) 1 
2 

A
x 

(o) 

where: 

A (o) = A +  B 
X 

w (o) + cc 

[w�(o) + wx�o)] + cc + 
b (o) s 
2B p 

0 

and the similar expressions for z(o), z' (o) with: 

z(o) 

Then, the complex constants A, B are determined as follows: 

A = -i n+
ti e .� 

2TJ x""x'v' 

B 

(4.3) 

(4.4) 

(4.5) 

( 4 .6) 

(4. 7) 

(4.8) 

Thus, the coherent oscillations excited by the horizontal kick are 

described by: 
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1 [ ½<n-t.) e + n-t. ;½<n+t.) eJ ff:" iQ � X X  
(4.9) X = - A e e + cc 2 T)+,l X 

� i(n�t.) [ e½(n+t.) e 
e-½<n-t.)8]� 

iQ � 
A z z 

( 4 .10) z = e + cc 2 2K 

where: 

A is given by Eq. (4 o 7). 

Note that the vertical oscillation is given by a superposition of the 

two normal modes Q1 and Q2 with one-to-one mixing ratio o On the other 

hand, in the horizontal oscillation the normal mode Q1 is dominant for 

t. > O, and the normal mode Q2 is dominant for /;< O. Exactly on the 

resonance, t; = O, the two normal modes have equal contributions to the 

horizontal oscillation. 

When the above equations are expressed explicitly in terms of real 

quantities, we have: 

X = 

where: 

I) J\ sin2 2 J 
sin [Q � 

X X 

t. - - e + 2 

( 4 .12) 

arg K denotes the argument of the coupling coefficient K, and the 

phase factor 1(8) is given by: 

tan 1(8) = /; I) 
ll tan 

2 
e ( 4 .13) 

Figure 2 shows an illustration of the coherent coupled oscillations 

excited by a horizontal kick. The envelopes of the amplitudes are given 

by IAxl and IAZ\' omitting the factor of rs. 

IA 1 2 
X 

IA 1 2 
z 

92 S (o) 
X X 

92 S (o) 
X X 

41 KI 2 
[ 1)2 

-1)2 4 I KI 2 

4IKl 2 
sin2 .!l e 1)2 2 

. 2 I) s1.n -
2 

e] (4.14) 

(4 o l5) 
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The total "energy" of the oscillation is: 

= e2 s (o) 
X X 

We can define the fraction F of the energy interchanged between the 

horizontal and vertical oscillations and the total energy as: 

F = 

(4.16) 

(4.17) 

Exactly on resonance, we have F = 1, which means that the horizontal 

energy given by the horizontal kick is completely transmitted to the 

vertical oscillation and back in the course of the coupled oscillation. 

Another interesting quantity of the amplitude modulation is the 

ratio R of the minimum to the maximum of the horizontal envelopes. 

R = (4.18) 

Exactly on resonance we have R = 0 and far away from resonance we have 

R = 1. 

The frequency of the vertical oscillation is easily found from 

Eq. (4.12) , since arg K does not depend one. The tune shift t.Q caused by 
z 

coupling is: 

t.Q z 
t, 
2 

and the perturbed frequency is: 

Q + t.Q 
z z 

= 
Q + Q 

X Z 

2 

(4.19) 

(4 .20) 

In the case of the horizontal oscillation frequency, however, an account 

should be taken of the phase factor �(0) .  Then, the tune shift t.Q caused 
X 

by coupling is: 

t.Q 
X 

t, 
- - + 

2 

1 [�( 0+2 rr) 
2 1T 

t, d� - - + -2 d0 
t, t, - - + 2 2 

(4.21) 

n
2 

(4. 22) 



In obtaining Eq. (4 .22) we have assumed that the increment of t(0) per 

turn is small. The horizontal tune shift ll� is dependent on 0 and 

varies periodically with the period of e 2rr/n. 

It is an average frequency taken over some region of 8 that c�n be 

measured. Hence, let us define .6.Q ('r) by the average tune shift taken 
X 

from e 2nrr/n-T toe = 2nrr/n+T, where n is an integer (Figure 3 ) .  
+ 

Here, 0 2nrr/n corresponds to the maximum of the horizontal amplitude 

modulation. 

LIQ (T) = 
X 

= 

LI 1 - - + - [phase advance 2 2T 

LI 1 - - + tan 
2 T 

-1 [ 
LI n - tan-;; 
n L 

of � from e to e ] 
+ 

T] (4 .23) 

When the average is taken over the region of multiples of the beat 

oscillation period, T = mrr/n with m being an integer, we have for the 

average tune�=� + LIQ : 
X 

Q
x 

LI + .!!. Q
l 

for LI> 0 = 

Qx (
T ;

rr
) 

2 2 
= = ( 4. 24) 

LI .!!. 
� 

= Q2 
for LI< 0 

2 2 

The 6-dependence of the horizontal tune shift LIQ and the average 
X 

tune shift LIQ is illustrated in Figure 4, for the typical two cases of 
X 

LI/\KI = 2 and 1. The smaller the LI, the larger the variations of LIQx 
and LIQ 

X 
withe become. When the average is taken over a large number of 

beat oscillation periods, LIQ converges to \(n-LI) for LI> O, and to 
X 

-\(n+LI) for LI< O. 

for LI> 0 
Q(T +oo) (4. 25) 

for t,< 0 

In this context, however, it must be noted that the coherent oscil­

lation damps gradually which is mainly due to a finite Q-spread in the 

beam9 • 1O) (Landau damping) .  In the absence of coupling, we can get an 

idea of the damping effect by writing the oscillation in the following 

simplified form: 



X = iQe e + cc 
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and assuming that the Q-spread in the beam is given by a Gaussian 

distribution: 

f(Q)dQ = 

where: 

Q mean value of Q 
0 

a = r.m.s. width in the Q-distribution. 

Then, the coherent oscillation with a finite Q-spread is given by: 

x = f dQ f(Q) y 

The wider the Q-spread, the more rapidly the oscillation damps. 

In the presence of coupling, from Eqs. (4.9) and (4.10) we may 

write the oscillation in the following simplified form: 

X = n+ll 
Tl 

1 z = 

i 
2(�+Q

2
+n)6 

e 

i 
2(Q +Q +n) e 

X Z e 

n-ti + --
i 
t(Q +Q -n)e 

X Z e 

1 ½<Q +Q -n) e 
X Z e + cc 

Tl 

+ cc 

(4.26) 

(4. 27) 

( 4. 28) 

(4. 29) 

(4.30) 

Here, 

tion. 

(Q +Q )/2 and ti or Tl =  /ti2+4\K\2 have some spreads in the distribu­
x z 

In this case, not only the frequency factor but also the amplitude 

factor have contributions to the decay of the coherent oscillation. Thus, 

its mathematical analysis is inevitably complex and beyond the scope of 

this report. Anyway, in order to get data of high-quality, one has to 

reduce the Q-spread in the beam to a certain tolerable amount and make 

measurements in a time interval before the signal is deteriorated by the 

damping effects. 
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5. QUANTITIES TO BE MEASURED 

The horizontal and vertical coherent oscillations excited by a 

kicker are detected by the hori zontal and vertical position-sensitive 

pick-up (PU) electrodes and the signals on the PU electrodes are fed to 

d. d. . . h ll) · a irect-rea ing, automatic Q-meter in t e ISR . The signals on the 

PU electrodes contain a series of frequencies w 
n 

w = 2nf\ n-q\ 
n n + 0, 1, 2, •.••.. (5. 1) 

where, q is a non-integer part of the betatron oscillation frequency 

and f is the revolution frequency of the beam. The amplitude function 

of the spectrum w depends upon the shape and length of the kicker pulse, 
n 

When a rectangular kicker pulse with its length equal to the revolution 

period is applied on a debunched beam, 

the spectrum w follows the form9) 

n 

G (w) n 
I sin ,r (n-q) I 

,r (n-q) 

the amplitude function G(w) of n 

(5. 2) 

The amplitude function G(w) decreases with oscillations as \n-q\ in­n 
creases and only the two lowest modes of w are used for Q-measurements 

n 
in the ISR. The input processors and filters of the automatic Q-meter 

extract these two modes (q and 1-q), Since the filter output signals are 

available for general observations besides the Q-measurement, the measure­

ment of the coupling coefficient will be made using either q or 1-q 

filter output signals. 

Then, the time variations of the filter output signals for the 

horizontal and vertical oscillations excited by a horizontal kick in the 

presence of coupling may be expressed by: 

V (t) 
X 

V (t) z 

= 

= 

✓ ill [ n2 G 8 S  (o)S 4\ \Z 
sin2 nfnt 

]1 
sin [ 21rf (qx X X X X n K 

sin 1Tfnt sin [2,rf (q +t,Q )t z z 

(5.3) 

(5.4) 



- 17 -

Here, we have assumed that the damping of the coherent oscillation is 

negligible. 

oscillation 

q and q are non-integer parts of the unperturbed betatron 
X Z 

frequencies and 6Q and 6Q are the tune shifts caused by 
X Z 

coupling. The above expressions correspond to the q filter output and in 

the case of the 1-q filter output, the terms q + 6Q have to be replaced 

by 1 - (q+6Q) . The factor ✓8(0 should be evaluated at the kicker posi­x 
tion and the factors i8 and fil at the PU position. The 

X Z 

G denote an overall sensitivity of the detector system, z 

factors G and 
X 

including the 

PU electrodes' sensitivity, the transfer characteristics of the filters, 

etc. The origin of time t is taken in such a way that t = 0 corresponds 

to the zero of the vertical signal envelope and o , o are the phase 
X Z 

factors. 

With the above expressions for the filter output signals, we are 

now in a position to list the possible quantities that can be measured 

and to examine the suitability and accuracy of each measurement. 

5.1 . . . 1,4) The period T of the amplitude modulation 

T 1 0 
2nf 

(5.5) 

This quantity is easily measured by taking photographs on an oscil­

loscope of the vertical oscillation signal, since its envelope crosses 

zero level. The amplitude of the signal has no relevance to the measure­

ment of T. Since the value of f can be known accurately and easily from 

other sources, we can calculate n = /62+4]K1 2 from this measurement. 

5. 2 The horizontal and vertical betatron frequencies 

The direct-reading, automatic Q--meter for the ISR tells us the non­

integer part of the betatron oscillation frequency, by counting the number 

of waves of the q or 1-q mode. Therefore, one might be tempted to suppose 

that the Q-meter will give results of high accuracy, without preparing 

special devices for coupling measurements. As has been pointed out in 
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Section 4, however, the horizontal betatron frequency varies according 

to the position where we measure it along the beat oscillation. By 

choosing appropriately the time interval in which the Q-meter counter 

gate is open, or by taking a long-term average of the frequency provided 

the coherent oscillation continues long enough, we can measure 
1 1 1 1 
- (q +q ) + - n for�> 0 or - (q +q ) - - n for�< 0. From the 2 x z  2 2 x z  2 

vertical signal we can find -
2
1 

(q +q ) .  In this case, however, the Q-meter 
X Z 

counter gate should be set in such a way as to avoid the interval when 

the envelope of the vertical signal crosses zero level, since the Q-meter 

cannot count the number of the q or 1-q waves correctly for too small 

amplitudes. From these two measurements we can calculate n by taking the 

difference between the two data 

+ .11 
2 

where, the upper sign is for�> 0 and the lower sign for�< O. 

(5 .6) 

It should be noted that n is measured far more easily by the measure­

ment method described in 5.1. Furthermore, in the frequency measurement, 

the tune shift caused by coupling accounts for only a small fraction of 

the measured quantity. Namely, in most cases the values of IKI will lie 
-3 in a range of 1 - 5 x 10 . Then, the unperturbed component predominates 

in the tune shift by about a factor of 100. In general, it is not good 

practice to measure a quantity in which the desired information accounts 

for only a small fraction of the total quantity. 

5. 3 Fraction 

vertical 

F = 

of energy interchanged 
. . 4) oscillations 

�2+4IKl 2 

between horizontal and 

(5. 7 ) 

This quantity defined by Eq. (4.17 ) or its square root, If, may be 

measured by comparing the peak values of the horizontal and vertical 

signals, with corrections for the factors /i3 and G in Eqs. (5.3) and (5.4) .  
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The correction for the factor /swill not present any trouble, but the 

correction for the factor G may prove to be very tedious and the method 

does not seem practical. An alternative way of measuring the IF consists 

of observing the /:,.-variation of the peak value of the vertical signals. 

G e ✓ a (o) a x • r; 
Z X X Z "� 

(5. 8) 

The factor in front of IF on the right hand side of the above equation 

can be determined experimentally by measuring v exactly on resonance z 
6 = o. 

5. 4 Ratio of minimum to maximum of the horizontal envelope 

R = 

✓ t,.2+41 K 1 2 
(5.9) 

This quantity, which is already introduced by Eq. (4.18), is easily 

measured by taking photographs on an oscilloscope of the horizontal 

oscillation signal. Since we take the ratio only in one plane of the 

oscillations, the corrections as needed in the measurement method 5.3 

are no longer necessary and a direct reading of the ratio on an oscil­

loscope gives the value of R. 

Now, for the coupling measurement we need some device to vary 6 

and bring the operation line to the vicinity of the resonance. Let us 

refer to this device as 6-varying quadrupoles. Far away from the reso­

nance, the coupling effects are negligible and we can know the unper­

turbed tune � and Qz from the Q-meter. In these regions, we can cali­

brate the effects of the 6-varying quadrupoles, namely have a table 

of 6 versus the current of the 6-varying quadrupoles. From these cali­

brations in large positive 6 and negative 6, we can interpolate the 6 

in the vicinity of the resonances. With this knowledge of the relation­

ship between 6 and the 6-varying quadrupole current, we can know the 

coupling coefficient IKI from one of the measurements mentioned above. 

In the cases of measurements described in 5.1 and 5.2, we can do with-
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out any precise calibrations since we can know j K j  by seeking the 

minimum of n as� is varied appropriately by the �-varying quadrupoles. 

A simple and precise measurement of the coupling coefficient is, 

however, possible if the measurements described in 5.1 and 5. 4 are 

simultaneously made. A knowledge of T and R enables us to get not only 

j K j  but also j b j . 

I b l  

1 
2fT 

R 
fT 

(5.10) 

(5 . 11) 

Precise calibrations of the �-varying quadrupoles and procedures for 

seeking the minimum of n as� is varied are then no longer necessary. 

Once � is set somewhere in the vicinity of the resonance, we can know 

j K j  from a single measurement. The measurement of T and R will not pre­

sent any trouble, at least when we take photographs on an oscilloscope. 

Furthermore, an electronic measuring system based on this method seems 

to be possible, as will be described in Section 7 .  

Let us examine the accuracy which is to be expected from the pro­

posed method. Since n and R may be considered to be independent quan­

tities that are measured separately , the relative errors of j K j  and 

j � j  may be expressed by: 

(5 . 12) 

(5 . 1 3) 

Thus, it is clear that we should make the measurement at as small a� 

as possible, in order to get data of high accuracy. Exactly on resonance, 

the error oR has no influence on the accuracy of the coupling coefficient. 

for � 0 or R = 0 (5.14) 
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In practice , t will be set somewhere in the region of J t J / J K J  � 2 or 

R � 0. 7 by observing the variation of R as the t-varying quadrupole 

current is varied. Then, we have: 

� for l�I � 2 or R � 0. 7 

Even allowing relatively large errors 6n/n c:e 3 % and 6R/R ,:,, 5 % ,  we 

can expect 6 J KJ / JKJ  � 6 % in the region of R � 0. 7 , which will be a 

sufficient accuracy for most practical purposes . 

(5 .15) 

So far , we have been concerned solely with the measurement of the 

magnitude JKI  of the complex quantity K. In some cases , it will be de­

sirable to know the argument of K in addition to the magnitude J K J , or 

to know the real and imaginary parts of K separately. Now , the arg K 

is contained only in the phase factor 6 in Eq. (5. 4) but it will be 
z 

hard to detect with the kick method of the beam being kicked horizon-

tally or vertically. For a possible method of measuring the real 

and imaginary parts of K by kicking the beam in the inclined plane and 

observing the oscillations also in the inclined plane, see Ref . 8. 

6. A TEST EXPERIMENT ON THE ISR 

In order to confirm that the proposed method for coupling measure­

ment works well in practice , a test experiment was made on the ISR 

Ring 1. A CPS  pulse of protons of momentum 26. 6 GeV/c was injected into 

Ring 1 ,  accelerated and deposited on central orbit. Measurements were 

made by kicking horizontally this debunched beam and taking photographs 

on an oscilloscope of the horizontal and vertical coherent oscillations 

which were given by the 1-q filter output signals of the Q-rneter. 

Figure 5 shows an example of photographs taken . 

The basic operation line of the Ring was set to the 8C26 line with 

a slight modification to suppress the Q-spread. The suppression of the 

Q-spread to about a half of the basic value was necessary , since in the 
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basic 8C26 line Q' = 1.62 which was too large for the coherent oscilla­

tion to continue long enough for the measurement. The transverse beam 

feedback system was switched off, The unperturbed Q-separation 6 was 

varied by TDl (the first series of the Terwilliger quadrupoles) and the 

coupling coefficient K was varied by the skew quadrupoles Q2 (the second 

series of the correction skew quadrupoles). 

Figures 6.a and 6.b show the data obtained when 6 is varied with the 

other conditions fixed. Here, the abscissae denote the percentage of 

maximum current in the TDl. The skew quadrupoles Q2 were switched off 

and the first series of the skew quadrupoles Ql were excited at -2.06 % 

of their maximum current. Figure 6.a shows the variations of n and R ,  

where n is obtained from the period measurement of the vertical signal 

envelope and R is obtained from the ratio measurement of the horizontal 

signal envelope. The obtained data of j K j  and l ti l  are collected in 

Table 1. Note that the values of j K j  for different readings of the TDl 

current coincide with each other quite well. The average value of j K j  

is found to be I K I  
av 

-3 
= 2.95 x 10 and the spread of the data around 

the average value is found to be 0.7 % at r,m,s. The ti-dependence of the 

j K j  and j ti j / j K j  is plotted in Figure 6.b , From this data it is con-
av 

el uded that we can calculate the coupling coefficient accurately from 

a single measurement provided the t,-varying quadrupoles are set at an 

arbitrary value within the range of R � 0.6. 

TABLE 1 

Measured values of IK I and I 6 I for different readin�s of TDl current 

TDl reading (%) 1.51 2.02 2.50 2.99 3.51 3 ,99 4.50 4.99 

I ti I (x  10
-3) 4.24 3.11 1.67 0.52 1.06 2.29 3.47 4.86 

I K I  (x  10
-3) 2.95 2.92 2.97 2.95 2.95 2.93 2.99 2.95 
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Figures 7. a and 7. b show another set of results which was taken 

by varying the strength of the skew quadrupoles Q2 with the other con­

ditions fixed. The �-varying TDl currents were set at 3.0 % and the 

skew quadrupoles Ql were set at -2.06 %. In Figure 7.a, the coupling 

coefficients are plotted versus different excitations of the skew 

quadrupoles Q2. From the figure it is found that the optimum setting 

of the Q2 is -2.4 % for the Ring conditions investigated, and the cor­

responding minimum of \ K \ is around 0.3 x 10-3 • Figure 7.b shows the 

obtained value of \ � \ / \ K \  in the above experiment. There is a con­

spicuous �-jump observed around the minimum of \ K \ . The observed �-jump 

is 0.0015 and may be attributed to some trivial mistakes in the course 

of measurement, or to small fluctuations in some components of the ISR, 

or it may be explained by some physical effects. Further investigations 

on the coupling phenomena in the ISR will clarify this point. For the 

moment, we can only remark that in spite of the �-jump, the observed 

behaviour of \K\ seems quite reasonable when the strength of the correc­

tion skew quadrupoles is varied. 

7. A POSSIBLE ELECTRONIC SYSTEM FOR COUPLING MEASUREMENT 

In the preceding sections it has been shown that the proposed 

method quickly gives data of high accuracy. We can know the coupling 

coefficient \ K \  and the unperturbed Q-separation \�\ from a single kick 

and measurement sequence. However , if an electronic measurement system 

is possible, which will tell us the magnitude of coupling coefficient 

quickly in the rigorous sense of the term, it will be helpful to machine 

operation. In this section, we shall outline one such electronic system 

for coupling measurement based on the proposed method. Figure 8.a shows 

a block-diagram of the electronic system and Figure 8.b the expected 

waveforms of signals at some points in the system. 

After passing through the buffers, the hori zontal and vertical fil­

ter outputs of the q or 1-q filter of the Q-meter are fed to square-law 

detectors and associated filters, which give signals proportional to the 
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squares of the amplitude envelopes, j A  1 2 and I A  1 2 • The frequency of 
X Z 

the amplitude modulation (1/T) will lie in the range of (1 ~ 10) x 10-3 
f 

in most cases of practical interest and the carrier frequency of the 

q or 1-q filter output will be around 0.25 f or 0. 7 5 f, where f denotes 

the particle revolution frequency. Since a large separation between the 

envelope frequency and the carrier frequency is desirable for the square­

law detection, we should use the filter output which has the higher car­

rier frequency. Then the carrier frequency is expected to be higher by a 

factor of 7 5  ~ 7 50 times than the envelope frequency. 

In the case of a horizontal kick, the horizontal signal 1s applied 

to the R-channel, where the R-filter cuts the high-frequency components 

to extract a signal proportional to IA 1 2
• The vertical signal is applied 

X 

to the T-channel, where the T-filter cuts the high-frequency and d.c. 

components to extract a signal proportional to cos 2nfn t. The output of 

the T-filter is phase-shifted by 90° with an integrator and then sent to 

a zero-crossing detector, where it s positive and negative going zero­

crossing timings, t and t , are detected which corres pond to the maxi-
p n 

mum and minimum of the vertical amplitude modulation. 

The period T of the amplitude is measured by the counter with a 

5 MHz clock, the gate of which is opened during a time interval from 

t to t . For the ISR with f c:: 300 kHz, the period T will lie in the 
pl p2 

range of 0. 3 ~ 3 ms and a 5 MHz clock is sufficient. The counts in the 

counter are fed to a computer for data processing . 

In order to measure the square of the ratio R,  the R-filter output 

1s sample-held at the timing of t and t . The sample-held values 
P n 

a and 
n 

a slow b are analog-to-digital converted and fed to the computer. Since 
n 

decay of the beat oscillation will be present in most cases, the R2 may 

be determined by: 

bl
+ b

2 
2a1 

(7 .1) 
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Of course, a higher precision will be at tained if we process a larger 

number of data a and b , But E q ,  (7.1) will be sufficient for most n n 
cases in which the Q-spread is suppressed to a moderate level. 

From the data of T and R 2 , together with the help of the known 

value of f, the computer calculates the coupling coefficient I K I  by 

Eq, (5.10) .  The obtained value of J K I  is then returned to the system 

and displayed. 

The timings t and t may have small errors due to imperfections 
P n 

in the integrator and hysteresis effects in the zero-crossing detector. 

However, since T is obtained from two timings t and t with the same 
pl  p2 

error, the timing errors do not seem to have an effect on the T-measure-

ment. Also for the R-measurement, the errors caused by the timing errors 

will be negligible, since the maximum or minimum val ue of a sinusoidal 

wave form is only slightly affected by small timing errors. 

In the case of the beam being kicked vertically, we have only to 

interchange the connections of the horizontal and vertical signals of 

the Q-meter to the system , 
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FIGURE 5 - A photograph of the filter output signals of 

the Q--meter. The upper trace denotes the ver­

tical signal and the lower trace the horizontal 

signal. The time base is 0.2 ms/div. From the 

photograph we have I ll I = 3 .11 X 10-3 and 

I K I 2. 92 -3 = X 10 , which correspond to the data 

shown in the second column of Table 1. 
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