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Abstract

The difference in the bandhead moments of inertia between the yrast superdeformed
{SD) band ***Hg(1) and the two-quasiparticle SD bands **¥Hg(2,3) was investigated
using the particle-number-conserving treatment for the cranked shell model Hamilto-
nian, and the pairing interaction strength in SD nuclei is estimated to be much weaker

than that in normally deformed nuclei.

PACS numbers: 21.10Re, 27.70+q, 21.60-n.

1 Imntroduction

Since the discovery of the superdeformed (SD) band ' Hg (yrast) [1}, an impressive exper-
imental and theoretical effort has been devoted to exploring the underlying physics of SD
bands in the mass A ~ 190 region. To date, about fifty SD bands in 17 nuclei have been
reported in this mass region. A strikingg difference between the SD bands near 4 = 190
and those in the other regions is that the vast majority SD bands near 4 = 190 display

"the similar rise in the dynamic moment of inertia J(2) as a function of rotational frequency
[2} (~ an increase of 30-40 % over the frequency hw ~ 0.1-0.4 MeV), which is ascribed
to the successive alignment of neutrons and protons in the presence of pairing correlation
[3-5]. Calculations with no pairing correlation give essentially no frequency dependence of
J3), 50 the inclusion of pairing is crucial for reproducing the smooth increase of J(2 with
frequency.

On the other hand, it has been well known that for the ground bands of normally
deformed (ND) nuclei, the rise in J(® (below bandcrossing) with frequency is much steeper
than that in SD nuclei. For example, for the ground band of 233U, the bandhead moment
of inertia is about J((w = 0) & 70A*MeV~!, but J((w » 0.25MeV) = 210AMeV -1,
i.e., there is an increase of about 200 % over the frequency range hw ~ 0-0.25 MeV. This
may be considered as an evidence that the pairing interaction strength in SD nuclei near
A = 190 may be much weaker than that in ND nuclei.

Another striking feature of the SD bands is that the transition energies of many SD
bands are almost identical [6]. Since pair correlations play an important role in the A = 190
SD nuclei as mentioned above, the observation of so many bands in even and odd mass
nuclei with similar moments of inertia is surprising. Of course, it should be noted that the
“identity” of some SD bands was established only within certain frequency range; e.g., the
excited SD bands 1°*Hg(2,3) are identical to the yrast SD band 19?Hg(1) only within the
frequency range Aw ~ 0.20-0.40 MeV, but at lower frequencies (Aw ~ 0.1-0.2 MeV) the
moments of inertia of '®*Hg(2,3) are systematically larger than that of ??Hg(1) (see also
Figs. 1 and 2). Similarly, the J(3)'s of the yrast SD band %4Hg(1) at lower frequencies
are systematically smaller than those of the excited bands '%*Hg(2,3), which have been
ascribed to the two-quasiparticle excitation ([512]5/2 + [(624]5/2) 3]. In this paper, we will
show that the differences in the moments of inertia in SD nuclei at low frequencies may be
considered as another evidence of pairing interaction in SD nuclei, and valuable information
on the pairing interaction strength may be extracted from these observed differences.

As has been pointed out by Chasman (7] that the single-particle level density near the




Fermi surface of a SD nuclei is small, which means that the pairing correlation energy is

weak. He also emphasized that a BCS treatment of pairing is not correct in this limit, hence
is not appropriate for SD states.

Moreover, in a previous paper (8] for treating the microscopic mechanicsm of the odd-
even difference in the moments of inertia of ND nuclei, it has been demonstrated that this
difference is crucially connected with the proper treatment of blocking effect. In fact, all the
odd-even differences in various properties of nuclei are originated from the blocking effect
on pairing. Liang et al. (9], found that the dynamic moments of inertia J() of two SD bands
in 19271 are almost constant with the rotational frequency Aw, and pointed out that this
constancy may be understood in terms of the blocking of low-01 intruder orbits by both the
odd proton and the odd neutron (double blocking). Later, two SD bands in **Pb {10| and
in 15Pb [11], whose dynamic moments of inertia are nearly constant as a function of Aw,
were reported, which was also considered as an evidence of the blocking of N = 7 intruder
orbits. As Rowe emphasized (12}, while the blocking effect are straightforward, it is very
difficult to treat them in the BCS formalism, because they intraduce different quasiparticle
bases for different blocked levels.

In the present paper, to account for the differences in the moments of inertia between
the yrast SD (quasiparticle vacuum) band '®*Hg(1) and the excited (two-quasiparticle) SD
bands '**Hg(2,3), we adopt the particle-number-conserving (PNC) treatment (13,8] for the
eigenvalue problem of the cranked shell model (CSM) Hamiltonian, in which the blocking
effects are treated exactly and the number of particle are conserved from beginning to end.
For convenience, a sketch of this PNC formalism is given in Sect. III A, and the calculated
results and discussions are given in Sect III B and C. Béfore this microscopic calculation,
in Sect. II we will give a Lrief review of the phenomenological analysis of the SD bands in

182,194 ¢ 1o extract some reliable informations on their moments of inertia.

2 Brief review of a phenomenological analysis of the SD

bands “?Hg(1) and *Hg(1,2,3)

The 7 transition energies in the yrast SD band ®?Hg(1) have been reported in a series of
papers by Becker et al. (14|, Ye et al. [4], Janssens et al. {2] Lauritsen et al. [15], Gall et al.
[16] and Fallon et al. [5]. The yrast SD band '%*Hg(1) and excited SD bands **Hg(2,3) were
reported in papers by Riley et al. [3], Beausang et al. (17}, Cullen et al. {18] and Cederwall
et al. [19]. Because the spins of the levels in each SD band has not been observed directly

in the experiment, usually only the dynamic moment of inertia J®)(I) = 4A?/AE, (I} =
4R} [EL(I+2 — I) = E;(I » I —2)] is addressed. There have been several approaches
to address the spin assignment of SD bands [20-23). The spin assignment of the SD band
197Hg(1) has been given in the papers by Becker et al. [20], Ye et al. [4], Janssens et al. (2],
Stephens et al. [6] and refs. {21-23]. The spin assignments of the SD bands '?*Hg(1,2,3)
have been given in the papers by Beausang et al. [17), Cullen et al. [18], Stephens et al.
(6] and refs. [20-23]. It is noted that the spin assignments for the SD bands %2Hg(1) and
194Hg(1,2,3) are consistent with each other in these papers. Though some comments on the
uncertainty of these spin assignments were raised [24], considering the spins of the lowest
levels observed in these SD bands are rather low, in this paper we assume that the spin
ass‘ignments (sée Table 1) made in these papers are correct. Instead of the usually adopted
Harris 3-parameter expression of the rotational spectum and moment of inertia [20}, in this
paper we use a more convenient and accurate expression for the rotational spectrum, i.e.,

the abc expression [25]

E(I):a‘[\/1+bl([+l)—l]+c1([+l). 1)

Putting ¢ = 0, the abc expression is reduced to the ab expression, which was suggested
empirically by Holmberg and Lipas {26} and was derived from the Bohr Hamiltonian for
a well deformed nucleus with small axis asymmetry (sin? 3y <« 1) [27]. The last term on
the right side of (1) is introduced by considering the effect (to the first order perturbation)
of higher order (k%) term in the potential energy of Bohr Hamiltonian. The last term is
a small correction (|c| « a) and ¢ may be positive or negative (according to the sign of
k). Considering the very large quadrupole deformation and small axial asymmetry of SD
nuclei, it is expected that the abc expression is especially suitable for the SD bands. The
corresponding expressions for the kinematic and dynamic moments of inertia are
h? ab h? ab

O S Mg R OE T 0 T A erg e opn e (2)

and at the bandhead both J() and J() tend to Jy = A3/(ab + 2¢). It has been shown
[25] that the large number of ND rotational bands in the rare-earth and actinide nuclei
can be reproduced very well up to very high spin (below bandcrossing) by (1). In Table
1 the observed transition energies E (I) = E([) — B( - 2) in the SD bands '®?Hg(1),
1%4Hg(1), and '9*Hg(2,3) are used in the least squares At to (1). It is amazing that all
the E.'s in each SD band are reproduced unusually well with root mean square deviations

x < 1073, It is well known that the transition energies E.’s are observed with very high




precision, but the error in their difference, AZ,(I) = E,(I + 2) — E,(I), is larger by an
order of magnitude, hence the uncertainty in the dynamic moment of inertia J(?) extracted
by JE)(I} = 4h*/AE,(I) is rather large. In view of the fact that the observed tramsition
energies are reproduced so accurately by (1), it is expected that the kinematic and dynamic
moments of inertia can be faithfully reproduced by the corresponding analytic expression
(2). In Fig. 1 is given the comparison between the moments of inertia calculated by (2) and
those extracted directly by the difference-quotient equations J((I-1) = A%(2/ - 1)/ E,(])
and J3)(I) = 4A3/A E, (). It is seen that the J(1)’s extracted by both approaches coincide
with each other very well, but there exist some small Auctuations in the J(?)’s extracted by
4h?/AE, (due to the large uncertainty in A E,) around the smooth curve extracted by the
analytic expression (2).

In Fig. 2(a) is plotted the w variation of the differences in J{1) and J(2) between the SD
bands '%Hg(2,3) and '9?Hg(1). It is seen that, just as has been pointed out by Stephens et
al. [6], §J) = J(H(194Hg(2,3)) — J(I(192Hg(1)) ~ O over the frequency range hw = 0.2-
0.4 MeV, which is just the reason why *Hg(2,3) and '9?Hg(1) are called to be identical.
However, it is obviously seen that in the frequency range hw = 0.1-0.2 MeV and in the
range Aw < 0.1 MeV (not yet observed), §J3) > 0. A similar plot given in Fig. 2b
is for the differences in J11) and J(3} between the excited SD bands 194Hg(2,3) and the
yrast SD band !9*Hg(1). Also it is seen that at the lower frequencies hw < 0.2 MeV,
JI(194Hg(2, 3)) > J(}(1%Hg(1)). However, for the difference in the kinematic moment of
inertia, both J((®4Hg(2,3)) — S (192Hg(1)) and JI(191Hg(2,3)) — JIN(194Hg(1)) are
always positive, and decrease monotonically with increasing frequency. At the bandhead,
both J and J@) tend to Jo and the extracted differences in the bandhead moments of

inertia are (see also Table 1)

Jo(***Hg(2, 3))|av — Jo('*Hg(1)) 5.04h*MeV !

Jo(***Hg(1)) - Jo('**Hg(1))

1.60A*MeV 1,

Il

3 Microscopic calculations and discussions

Now we make the microscopic calculation of the moments of inertia of the SD bands 192 Hg(1)
and **Hg(1,2,3) using the PNC treatment {8,13] for the eigenvalue problem of the CSM
Hamiltonian. For convenience, a sketch of the PNC formalism is given in Sect. IIL.A, and
the calculated results (without and with pairing interaction) and discussions are given in

IIL.B and C.

3.1 Sketch of the PNC treatment

The CSM Hamiltonian of an axially symmetric nucleus is
Hesym = Hsp —wJ. + Hp = Ho + Hp, (3)

where Hgp is the single-particle (e.g. Nilsson) Hamiltonian, —wJ, is the Coriolis interaction,
Hp is the pairing interaction, Ho = Hsp — wJ; is the Cranked Nilsson (CN) Hamiltonian,
which is a one-body operator. Ho = 3_; ho(1}), ho = hsp — wj, is for a single-particle. Let
holu) = e€uln), |u) is the cranked Nilsson orbit with energy eigenvalue ¢, parity x, and
signature r, = ¢~ = %i, (a, = F1/2). For an n-particle system, the eigenstate |1) of
Hy, Holf) = E;}i), may be described by the occupation of n particles |i) = |uypuz---pa),
E; = 3 %=1€u, |1) is called a cranked many-particle configuration (CMPC), characterized
by E;, parity x and signature a = 3_}_; a,,. The eigenstate of Hcsar, ¥}, Hosmly) =
E|y), can be expressed in the CMPC space as ‘

¥) = 3_Cili). (4

For the yrast and low lying excited eigenstates of Hcgar, the accurate solution of |) can
be obtained by diagonalizing Hosar in a sufficiently large CMPC space, (E; — £) < E,,
Ey is the energy of the lowest CMPC, [ip), and E, is sufficiently large. Asin [8,13], E, is
chosen to be 0.85 hwg in the calculation, and in this case, over twenty Nilsson orbits near
the Fermi surface are involved. Calculation show that all the main CMPC (weight > 10~3)
have been involved in our calculation, so the calculated low-lying eigenstates are accurate
enough.

The angular momentum alignment of the state |¢) is {|J:|¢). According to the CSM,

the kinematic and dynamic moment of inertia of |¢) is

W) = 29I, IDE) = L, (5

Using (4), we get the expression for J{1)
m_ 1 T AT UL g
T = =3 IGI Gl + = 3 CICitilela), (8)
i i<j
and similar expression for J{3), Because J; is a one-body operator, {i|J;|} is nonzero only
when [i) and |5) differ by one particle occupation. Suppose that after certain permutation
of creation operators, [i} and |j) are brought into the form [1) = (=)Mi|u...} |5) =

(=)Niv|is-- ), where the ellipses stand for the same particle occupation and (—)Mi =




1, (~)Nir = 11, according to the permutation is even or odd. Thus, J can be expressed

in terms of the single-particle picture as

I = ) = S g+ Y I, )
Sdw = L Tl TP = L Sl ®)
B B i “

T = Dl TG, (i) (9

where n, = ¥, [Ci|*P,, is the particle occupation prabability of the CN orbit |1} in the state
|¥) and P, = 1,if [u) is occupied in |}, and P, = 0 otherwise. If the pairing interaction is
missing (G = 0), only one CMPC appears in |} and all the interference terms Juv vanish.
For example, for the lowest CMPC la),

R AN ST IR (10)

w sloce. in |ig))

which, in general, is near the rigid-body value, but shows significant shell effects.

In {8,13] the PNC treatment was used to calculate the moments of inertia of the ND rare-
earth nuclei. It was found that the experimently observed bandhead moments of inertia of
the ground bands in even-even nuclei and the odd-even differences in the bandhead moments
of inertia can be reproduced very well by the PNC calculation, in which only the monopole
pairing interaction is involved and the pairing interaction strength is determined by the
observed odd-even mass differences. In [8,13], a CMPC truncation energy E. = 0.85hwg
was adopted, and it was found the pairing interaction strength G = 0.030-0.040 hwy.

However, it has been noted that, although the smooth rise in the dynamic moment
of inertia (of the SD bands in the A4 = 190 region) as a function of rotational frequency
can be associated with the successive alignment of neutrons and protons in the presence
of pairing interaction, the CSM calculations with monopole pairing interaction have not
been able to reproduced both the low and high w dependences of J(2) at the same time
{28]. According to the CSM calculations for the SD bands in Hg nuclei [3,7,29], after the
quasiparticle alignments have taken place J will exhibit a downturn with increasing Aw
(at hw ~ 0.30 MeV) towards the rigid-body value. Indeed, the decrease in J(? (at hw > 0.4
MeV) was recently observed in the yrast SD bands %Hg(1) [19] and 92Hg(1) [5,16]. It is
believed that to account for the evolution of J(?) with Aw over the whole frequency range
observed, particularly for the observed flattening of J(2) (at Aw > 0.4 MeV), the inclusion

of quadrupole pairing seems necessary (28,30]. Our PNC calculation also confirmed the

downturn of J(?) near Aw ~ 0.30 MeV if only the monopole pairing interaction is involved
in the CSM Hamiltonian (3), and in the calculation with both the monopole and quadrupole
pairing interaction the postponement of the downturn of J(2) was found. However, the aim
of the present paper is to compare the pairing interaction strength in SD and ND nuclei, we
focus our attention to the difference in the moments of inertia at low frequency, particularly
to the bandhead moment of inertia, in the following calculations only the monopole pairing
interaction is involved. The problem of the evolution of J(2) with frequency is left to a
separate paper [31], in which both the monopole and quadrupole pairing interactions are

considered.

3.2 Calculated moments of inertia without pairing

It is well known, when the pairing correlation is neglected, the calculated moments of inertia
are, in general, near the rigid-body value. However, the calculated moments of inertia show
significant shell effect. For a closed shell configuration, {J;} = 0, so no contribution to
the moment of inertia comes from a closed shell. For the SD nuclei near 4 ~ 190, no
contribution comes from the neutrons and protons in the closed major shells, N = 0,1,2,3.
Calculation shows that for neutrons the main contributions come from the N = 5,6 and 7
shells.

The cranked Nilsson orbits for neutrons in the vicinity of the Fermi surface of the SD
Hg nuclei are displayed in Fig. 3, which is similar to the single-particle level schemes given
by Bengtsson and Ragnarsson [32], Mayer et al. (33), and by Riley et al. [3] and Satula et al.
(34] in a Woods-Saxon potential. Calculations shaw that the calculated moments of inertia
depend closely on the CMPC, but do not depend sensitively on the detailed distribution of
these orbits. Calculations using the Nilsson level scheme given by [32] were also made and
the results are quite similar to the results given below. The calculated bandhead moments
of inertia for the SD bands !92Hg(1), 1%4Hg(1) and '**Hg(2,3) are given in Table 2, from

which some features can be observed:

(a) The contributions from the neutron N = 5,6 and 7 shells are approximately 15-16%,
42-43%, and 41-42%, respectively. For G,, =0, N = 4 shell is also closed and gives

no contribution to the moments of inertia.

(b) Though the calculated bandhead moments of inertia are similar for these SD bands, but
there still exist small difference, i.e., the calculated Jo(*9tHg(1)) > Jo(!%4Hg(1)) >

J(*%*Hg(2,3)), which is just contrary to the situation extracted from the phenomeno-




logical analysis.

(c) The reason why Jo(***Hg(1)) < Jo(***Hg(1)) is the negative contribution to the mo-
ment of inertia from the two neutrons in 194y, occupying the highest neutron orbits
[512]5/2 (& = #1/2) immediately below the Fermi surface. Similarly, due to the
different negative contributions to the moments of inertia from the neutrons in the
orbits [512[5/2 and [624)9/2, Vuu((62419/2) > |J,,,.([512]5/2)| (see Table 1), we get
Jo(***Hg([512]5/2 + (624]9/2)) < Jo(***Hg(1)).

The calculations without pairing shows that the difference in the moments of inertia
is almost constant with rotational frequency. The calculated results for Gp = 0 are also

displayed in Fig. 2; i.e., for G, =0
§J(*Hg(2,3) - Hg(1)) ~ —24A*MeV™!
SJ("Hg(2,3) - Hg(1)) ~ -1.5A*MeV=!
Therefore, merely to account for the observed difference in the moments of inertia for these

SD bands at low frequency (Aw < 0.2 MeV), the inclusion of pairing interaction is absolutely

necessary.

3.3 Influence of pairing interaction on the bandhead moments of inertia

Now we take into account the influence of pairing interaction on the moments of inertia.
Because in this paper we focus our attention to the moments of inertia of SD bands at low
frequency, we consider only the monopole pairing interaction. The calculated bandhead
moments of inertia (in units of AMeV ™) of the SD bands in % Hg and their difference §.J;

for various neutron pairing interaction strength G, are as follows:

Gn (hwon) Ja('™Hg(1)) J.(**Hg(23)) 6Jp

0 79.512 77.973 ~1.539
0.005 76.231 75.554 -0.667
0.010 71.222 72.723 1.501
0.015 64.441 69.486 5.045
0.020 57.866 65.980 8.114
0.025 52.999 62.524 9.525
0.030 49.723 §9.554 9.831

It is interesting to note that, though for G,, = 0 the calculated bandhead moments of

inertia of "*Hg(2,3) is smaller than that of 194Hg(1), with increasing the pairing interaction

strength, J,('*'Hg(2,3)) becomes gradually larger than Ja('**Hg(1)). Here the blocking
effect on the pairing plays an crucial role. PNC calculations show that increasing the pairing
interaction strength will decrease the moments of inertia at low frequency. However, due
to the blocking (anti-pairing) effect, the influence of pairing correlation on the moment
of inertia is significantly reduced, i.e., the slope |dJ,/dG | for the two quasiparticle SD
bands ¥Hg(2,3) is much smaller than for the quasiparticle vaccum band ™Hg(1). It
is seen that for the neutron pairing interaction strength @, = 0.015Ahwg,, the calculated
6Jo = J,(***Hg(2,3)) - J.(**Hg(1)) ~ 5.0A*MeV ™!, is close to that extracted from the
phenomenological analysis.

To illustrate the underlying microscopic mechanism, the contributions to the moments
of inertia from each neutron major v shells (N =4,5,6,7) for Go, = 0.015 huwp, are given
in Table 3. Comparing Tables 2 and 3, it is seen that when the pairing interaction is taken
into account, the diagonal part, 2, Juu, changes only a little, which can be understood from
the slight change in the particle occupation due to pairing interaction [8]. For example, for
19 Hg(1), T, Juu = 79.512 (for Gn = 0) is changed to 78.577 (for G, = 0.015hwg,), and
for '"4Hg(2,3), 2y Juuw = T77.978 (for G, = 0) is changed to 77.827 (for G, = 0.015kwq,).
However, when the pairing interaction is taken into account, a large number of CMPC’s are
mixed into the lowlying excited eigenstates of Hcsm, hence emerges the off-diagonal part
Juv (1 # v, see (9)), which, in general, is negative due to the destructive interference effects
[8,13], so the calculated moment of inertia is significantly reduced. Physically, considering
the anti-alignment effect of pairing interaction, this result is easily understandable. In
particular, when 4 and v are the high-7 intruder orbits near the Fermi surface, |J,,| is
especially large (e.g., uv = [T701/2 [761]3/2; [T61]3/2 [752]5/2; [633]7/2 [624]9/2; [640]1/2
1631]3/2; [642]3/2 [6335/2; etc.), and, in fact, the reduction of moments of inertia due
to pairing correlation mainly comes from these orbits (for details, see the discussions in
[8,13]. It has been well known that for normally deformed nuclei, the moments of inertia of
the ground bands of even-even nuclei are reduced due to pairing cotrelation by a factor of
about 1/2 (see [13]); i.e., the calculated bandhead moments of inertia with pairing is about
one half of that without pairing. From the calculation given above, in contrast with the

situation in ND nuclei, it is seen that,

79.4%

J(*PHg(1); G, = 0.015hwg,)/ Jn (***Hg(1); G, = 0)
Ja(***Hg(1); G = 0.015hw0,)/ Ju(**Hg(1); G, = 0)

it

81.0%
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i.e., the reduction of moments of inertia due to pairing correlation in SD nuclei is much
smaller than in normally deformed nuclei. This may be considered as an indication that the
pairing interaction strength in SD nuclei is much weaker than in ND nuclei. This reduction

is even smaller for the two-quasiparticle SD band 192Hg(2,3)
Ja(*MHg(2,3);G, = 0.015hwon)/Jn(*** Hg(2,3); G, = 0) = 89.1%

which is understandable from the blocking effects on pairing correlation.

In fact, from the systematic analysis of the odd-even mass differences of the ND even-
even rare-earth nuclei {13, it was found that the neutron pairing interaction strength in
ND nuclei G,, ~ 0.030-0.040 hwon for E, = 0.85hwg,. Therefore, we came to the conclusion
thadt the neutron pairing interaction strength in the SD nuclei near A = 190 is about only
one half of that in ND nuclei, i.e.,

Gn(SD) ~ %G,.(ND).

This result is consistent with the analysis for the dI® fdw, ie., [dJ(?) /dw| is much steeper
in the ND rare-earth and actinide nuclei than in the SD nuclei in the A = 190 region.
In fact, the PNC calculation shows that decreasing the pairing interaction strength will
increase the value of J(2) at Jow frequency and reduce the slope in J(2,

This work was supported by the National Science Foundation of China, and the Post-

Doctorial Foundation of China.
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Table 3 The contributions to the moments of inertia (in units of A2MeV™!) from neu-
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quasiparticle SD bands "™ Hg([512|5/2 + (624]9/2). The pairing interaction strength
Gn = 0.015 hwg,.
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Table 1

Table 2

192Hg(1), a =0

¥Hg(1),a =0

Hg(2), a =0

'9Hg(3), a =1

192He(1), =0

YiHg(1), a =0

1%Hg(2,3), a = 1

TEy(I = 1~2),keV|E\ (I — I-2), keV Ey(I = 1-2)keV|E,(I+1— - 1), keV
expt. [16] cale. |expt. [17] calc. [expt. (19] cale. [expt. [19] calc.
10 2149 214.8 201.2 201.3
12| 2s8.2 258.1 254.3 254.3 242.6 242.7 262.6 262.6
14| 300.4 300.5 296.2 296.4 2835 283.5 303.0 303.1
16| 3417 341.8 33717 337.8 323.8 323.8 342.9 342.9
18| 3820 382.2 371.8 377.8 363.5 363.4 382.1 382.0
20] 421.2 421.4 417.1 416.9 102.4 402.3 420.4 420.0
22| 4505 459.6 455.2 455.1 440.5 440.4 458.3 458.1
24| 496.8 496.7 492.3 492.2 4719 471.8 495.1 495.0
26| 532.8 532.9 528.3 528.2 514.5 514.3 531.2 531.1
28] 5680 568.1 563.6 563.3 550.0 550.1 566.3 566.4
30| 6025 602.4 597.3 597.4 585.0 858.0 601.2 601.0
32| 636.1 635.9 630.5 630.6 619.1 619.1 635.2 634.9
34| 669.0 668.7 662.4 662.9 652.1 652.4 667.5 668.0
36| 7009 700.7 693.8 694.3 684.8 684.8 700.0 700.4
38| 7322 732.1 725.4 725.0 716.2 718.5 731.9 732.1
40| 762.8 762.9 754.6 754.9 747 4 T47.5 763.2 763.2
42| 793.0 793.1 783.9 784.1 7775 777.6 793.5 793.6
44| 8225 822.8 812.9 812.7 807.6 807.1 823.9 823.5
46| 852.1 852.1 841.0 840.7
x |3.17 x 1074 4.19 x 1074 275 x 1074 3.49 x 10~4
J0]86.99 (A*MeV~!)  (88.59 (AMeV~-!) |03.56 (h’Mev-l) 93.69 (h*MeV~1)
@ 16.7141 x 10° keV  |1.0860 x 10 keV  [2.1358 x 10* keV 1.4354 x 10° keV
b |8.1432 x 1074 5.7960 x 10~4 3.1609 x 10~4 3.9473 x 10™4
c [3.0140 kev 2.4983 keV 1.9685 keV 2.5038 keV

16

H Juu Jup Juu

a=1/2la=-1/2| a=1/2 a=-1/2 a=1/2la=-1/2
[550}1/2 —166.792( 192.629|-166.787| 192.639|—166.787| 192.639
[541[3/2 -5.222 -3.999| -5225] -4.003| —5.225| -4.003
[532]5/2 -2.261 -2.261| -2.263| -2.263| -2.263] -2.963
[541]1/2 51.193| -40.647| 51.197| -40.643] 51.197| —40.643
[523]7/2 —-1872( -1.872| -1.873] -1873] -1.873] -1.873
[s30j1/2 ~2L073; 26473 -21.072 26.475| -21.072] 26.475
[521)3/2 0.353 0.357 0.353 0.357 0.353 0.357
[532)3/2 —1596 -1.881| -1.597] -1.883| -1597| -1.883
[514]9/2 1638 -1.638] —1639| -1640| -1.633] -1.640
(523}5/2 —1487| -1.487) -1.488] -1488] -1.483| 1433
[s21]1/2 34.345) -33.545| 34.348] -33.545| 34.348] —33.545
[50s]11/2 —l464| -1.464] 1465 -1.465| -1465| —1.465
[512}5/2 ~0.4421 -0.442] -0.442
T Juu (N =35) 13.148 12.274 12.716
(660}1/2 218.437) ~184.446] 218.447| —184.432 218.447| —184.432
[651]3/2 —-3.966| -5.792f -3.966{ -5797, -—3.966| —5797
[842]5/2 —2658| -2.658| -2.660| -2.660] -2.660] —2.660
{8s1]1/2 13.677 0.509] 13.682 0.515| 13.682 0.515
(633]7/2 -2123( 2123 -2125 -2124] —2125] —2.124
[640]1/2 —10.018( 14.0s5| —10.017| 14.057{ —10.017| 14057
(642]3/2 0.611 0.810 0.611 0.811 0.611 0.811
(624]9/2 ~1.981
Yoo (N =8) 34.317 34.342 32.361
(170]1/2 ~202.804| 249.477(-202.784| 249.493|-202.784| 249493
[761)3/2 ~8457] -5346| -8.464; -5.349| -8.464| —5.349
Yol (N=T) 32.870 32.896 32.896
In 80.335 79.512 77.973
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Table 3

(a) " Hg(1)

Eu Juu 2u<u Juv sum

N

4 0.0123
5 12.9445
6 33.5722
7 33.1878

-0.0022 0.0101
—1.0152 11.9293
-5.4663 28.1059
~9.4508 23.737

all shells 79.7168

—15.9345 63.782

(b) '**Hg(1)

N Zp Juu Zu(v v sum
4 0.0084 -0.0013 0.0071
5 12.2392 -1.0811 11.1581
6 33.4884 -5.0137 28.4747
7 32.8410 —8.0405 24.8005

all shells 78.577

—14.1366 64.441

(c) **Hg ([512]5/2 + {624]9/2)

Eu Jou Zuo Juv sum

N

4 0.0024
5 12.6553
6 32.3093
7 32.8598

-0.0002 0.0022
—0.2511 12.4042
~2.1573 30.1520
—-5.9325 26.9273

all shells 77.8268

—8.3411 69.486
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Figure Captions

Fig. 1 The w variation of the moments of inertia for the SD bands 192Hg (1) and 4 Hg(1 12,3).
The dynamic and kinematic moments of inertia extracted by using (2) are denoted
by dotted lines for *2*Hg(1) and solid lines for 1%4Hg(1,2,3). The J(?) extracted by
using J?) = 44?/AE, is denoted by open triangle for %2Hg(1) and solid triangle for
194Hg(1,2,3). The J(1) extracted by using J{) = (27 - 1}h?/E,(I — I - 2) is denoted
by open circle for ***Hg(1) and solid circle for 194Hg(1,2,3).

Fig. 2 The w variation of the extracted difference in the kinematic and dynamic moments

of inertia. (a) J(***Hg(2,3)) - J(1¥?Hg(1)); (b) J(*9*Hg(2,3)) ~ J(1*Hg(1)).

Fig. 3 The cranked Nilsson neutron orbits in the vincinity of the Fermi surface of the SD Hg
nuclei. The Nilsson parameters for the neutron orbits are €2 = 0.45, ¢4 = 0.024, v = 0,
and x = 0.068,0.072,0.068,0.065 and p# = 0.390,0.440,0.350,0.300 for N = 4,5,6,7

shell respectively.
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