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1 Introduction

The main objectives of the collaboration during the last year have been: -
¢ testing of microstrip detectors of close to LHC specifications, fabricated ‘in-house’ and commercially
o understanding of the properties and limitations of these detectors
o continued investigation of alternative wafer materials and detector fabrication technologies
¢ evaluation of the radiation-hardness of GaAs detectors to charged particles as well as to neutrons
e continued efforts to develop a detailed understanding of the costs of commercial detectors
o evaluation of GaAs pixel detectors, fabricated ‘in-house’ and commercially

GaAs microstrip detectors are now very close to achieving the performance goals for operation at the
Large Hadron Collider in terms of low temperature operation, signal to noise ratio, speed and spatial
resolution. Optimisation of the detector strip geometry is now possible, using data obtained from a range
of prototypes. Operation at low temperatures, compatible with the requirements of silicon microstrip
detectors, has been shown to present no problems. Pixel detectors have also been successfully tested.
Recent results indicate a greater sensitivity to radiation damage by pions and protons than expected,
however. Further investigation of this sensitivity is now in progress.

2 Material and Processing Issues

The incomplete collection of the charge released by ionising radiation in GaAs Schottky diode detectors
has been studied using a variety of experimental techniques. The results are all consistent with an
approximately linear growth in the sensitive thickness with increasing reverse bias {1, 2]. This behaviour
has been successfully simulated in a Monte Carlo model [3] based on the effect of deep traps close to the
Fermi Level in the middle of the bandgap. Band bending at the metal-semiconductor boundary leaves
these traps ionised and the resulting space charge creates an electric field distribution which differs from
that found in silicon junction devices. The measured signal from a detector is then due to the efficient
collection of charge released in the ‘high-field’ region next to the Schottky contact, with relatively poor
collection from the remaining ‘low-field’ region.

Efforts continue, however, to try to improve our understanding of the charge collection process using
simple, pad detectors. The Prague and Freiburg groups have utilised Van de Graaf accelerators as
sources of variable encrgy protons and deuterons with which to probe the variation with depth of the
charge collection efficiency (c.c.e.). Systematic studies have also been carried out aimed at identifying the
optimum substrate material, based on measured correlations between detector performance and material
characteristics. Figure 1 from the Sheffield group, for example, shows the measured correlation between
wafer resistivity and the c.c.e. for illumination of a simple, pad detector by an alpha particle source.

Detailed investigation of the nature of the charge trapping centres in the substrate have been carried
out within the collaboration and elsewhere,[4, 5, 6]. Models have also been developed of the charge
collection inefficiency, involving EL2— EL2* transitions within the high electric field region of the reverse-
biased diode detector[(3, 7]. As yet, no outstanding feature has been found which would unambiguously
identify the optimum material, although the last year has revealed more encouraging signs of some
correlations between detector performance and certain material properties.

The Freiburg group has also tested detectors fabricated on liquid-phase epitaxial (LPE), high purity
layers with charge carrier concentrations of < 10'/cm3. 1t is difficult to reach this quality in the layer
thicknesses of 1004:m or more desirable for high energy physics applications, however, and the high quality
of surface finish required for good detectors has also proved difficult to achieve in a consistent way.

Improved fabrication technology of GaAs detector electrodes has been demonstrated by the Modena
group with Alenia SpA, Rome, using ion implantation and also non-alloyed ohmic contacts [8]. The
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Figure 1: Variation of c.c.e. with GaAs substrate resistivity

reverse bias operating range has been substantially extended thereby, and maximum charge collection
efficiency achieved more reliably.

3 Charge Transport and Collection in Simple Pad Detectors

As shown in Figure 2, it is now possible to achieve 100% charge collection efficiency in simple Schottky
barrier detectors on standard semi-insulating, undoped (SIU) GaAs wafers even with standard electrode
metallisation, although more reliably with the methods referred to in the preceding paragraph.

In Russia, the Tomsk group has continued to develop the fabrication technology which creates a so-
called = — v region inside the wafer thickness by in-diffusion of deep-level dopants of iron or chromium[9)].
Early versions of these detectors were shown to possess excellent radiation hardness against neutron
irradiation, but were not sensitive through the full thickness of the wafer. More recent samples have
‘dead’ layers which are less than 10% of the total thickness and also provide a good c.c.e., as shown in
Figure 3.

4 Microstrip Detectors

Our aims in test beam running this year were firstly to investigate commercially produced microstrip
detectors and secondly to continue studies of microstrip detectors fabricated in our own laboratories. Our
studies focused in particular on defining the optimum strip pitch and aspect ratio, position resolution
achievable and the effects of wafer and processing variations in detector fabrication.

Microstrip detectors, typically 25mm wide and 25 or 52mm long were made ‘in-house’ in the Univer-
sities of Glasgow, (Department of Electrical and Electronic Engineering), Sheffield, Aachen and Freiburg.
Commercial prototypes were produced by EEV (Chelmsford), Alenia SpA (Rome) and the SPTI (Tomsk).
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Figure 2: C.c.e. vs. reverse bias for a 510um thick Glasgow pad detector, at 20°C (solid squares) and
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Figure 3: Pulse height distribution from mips in a recent Tomsk pad detector, measured with a NICON
fast preamplifier. The most probable charge signal is around 17000 electrons for 300V bias

The Freiburg detectors were the first GaAs microstrip devices to be tested in the H8 test beam with
LHC-compatible electronics, using the Premux 128 front end chip with a shaping time of 45 nsec to
read out the charge signals. One EEV detector with 11mm long strips, tested by the Melbourne group,
was read out by a DIHARP chip. The other microstrip devices tested were all read out using Viking
VA2 read-out electronics [10]. These had strip lengths of 25mm or 52mm and a 50um pitch, apart from
the Aachen detectors which were tested with 50GeV/c electrons in the X3 beam and used 200um pitch
microstrips with 100pm wide electrodes.

The Glasgow, EEV and Alenia detectors used a ‘punch-through’ bias strip, placed close to the detector
strips. One short strip version was A.C.-coupled to the VA2 read-out electronics using a silicon nitride
dielectric layer between the two layers of strip metallisation. The semi-insulating substrates were thinned
and carefully polished to 200 pm thickness. The strip electrodes were 30 um wide on a 50 um pitch. The
other detectors were biased using R-C decoupling chips between the strip electrodes and the preamplifiers.
Tests were also made with 50;:m pitch detectors having 10um, 25um and 40um metallic strip widths, to
study the influence of the interstrip capacitance on detector performance.

The detectors were operated in high energy particle beams at bias voltages close to breakdown,
chosen to optimise the charge collection efficiency. The beam was defined by a silicon microstrip detector
telescope with a spatial resolution of around 3 pm [11].

Figure 4 shows the signal to noise ratio and cluster size obtained with the Aachen detector as a
function of the angle of incidence of the test beam electrons on the microstrips and of the (metal/pitch)
aspect ratio of the electrodes.

Eta distributions and cluster pulse height information obtained with the 50um pitch Freiburg detectors
with Premux128 read-out are shown in Figure 5.

Similar results were also obtained with Alenia, EEV and Glasgow detectors using the slower peaking
time read-out with VA2. In each case, the spatial precision achieved was at least as good as (pitch/\/(12).
The signal-to-noise ratios varied with the strip length, but it is difficult to make a detailed comparison
among the different detectors because of the differences in beam particle type, read-out shaping time and
system noise associated with the different test beam environments. Figure 6 shows one example of the
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Microstrip Detector Performance
Bias Method Detector Strip length(mm) | 7(nsec) | S/N | o(pm)
Punchthrough A.C. Alenia 25 300 15.5 9
Punchthrough Long Alenia 52 400 8.0 12
Punchthrough Glasgow (G114) 25 300 18 14
R-C EEV 12 1400 20 13
R-C Freiburg (premux128) 25 50 19 n.a.
R-C Tomsk-Protvino 25 1400 | (>6) | na.
R-C EEV (DHARP) 12 45 n.a. n.a.

Table 1: Summary of preliminary analysis of microstrip detector performance

measured signal-to-noise obtained with the 12mm long strips of the EEV detector in the H8 pion beam.

Preliminary analyses of the test beam data are summarised in Table 1. (Results are all preliminary
- n.a. indicates that even the preliminary analysis is not yet complete.) Optimisation of the biasing
geometry will continue with the production of further commercial prototype detectors incorporating a
range of test structures.

5 Pixel detector tests

16 x 64 GaAs pixel detector arrays with pixel size 75 um x 500 gm were fabricated on a polished 200 um
thick semi-insulating substrate and bump-bonded to CERN Omega 2 read-out chips [12] at GECMMT,
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Caswell Labs. Figure 7 shows the measured beam profiles and a single event obtained from this first,
three layer GaAs pixel detector telescope in a high energy test beam. An innovation in these tests was
the use of the charge signals from the back ohmic contact of the pixel detector for triggering purposes.
This has potential advantages in the use of GaAs pixel detectors for medical X-ray imaging [13]. The
spatial resolution of the GaAs pixel detectors measured by the Genoa group in the RD19 test beam is
illustrated in Figure 8. The variation of track-finding efficiency across the array, also shown in this Figure,
illustrates the uniformity of the response [14].

6 Radiation Hardness Studies

Simple Schottky barrier pad detectors have been exposed to ~ 1MeV neutron fluences of up to 1013¢m=2
at the ISIS irradiation facility, RAL [15]. The variation with neutron fluence of the most probable signal
from minimum ionising particles (mips) is shown in Figure 9.

The signal from GaAs detectors operated for ten years of LHC running is likely to fall by roughly a
factor of two from its initial value, with no change in bias voltage. Evidence from the Sheffield group
that the loss in signal charge is associated with a large drop in the hole component is shown in Figure 10,
where the signal from alpha particles illuminating the back, ohmic contact is shown as a function of
reverse bias. Since the alpha particle range is only around 20 gm in GaAs, almost all of the observed
signal is due to holes in this case.

The increase in reverse bias leakage current, around a factor of three, is much less than the correspond-
ing change in silicon detectors. Figure 11(a) shows the reverse bias current-voltage (I-V) characteristic
and the c.c.e. of a nentron-irradiated pad detector. The c.c.e. plateau begins at a bias voltage close to
the onset of ‘soft’ breakdown of the detector. As seen in Figure 11(b), the 1/C? — V characteristic, where
C is the capacitance measured at 120 Hz, shows the same trend.

Samples of Schottky barrier pad detectors were exposed to 24 GeV protons from the CERN PS at the
level of ~ 10'c¢m™=2. The degradation in charge signal with dose, also shown in Figure 9, is significantly
worse than that observed for comparable neutron fluences. In Figure 12(a), which shows the reverse
bias I-V curves for 160um and 500um thick GaAs detectors, there is little difference between the curves
up to the onset of ‘soft’ breakdown in the thinner detector, suggesting that surface, rather than bulk
effects may be more significant in the damage process. It is also worth noting that there is a noticeable
increase in reverse bias leakage current after only ~ 1013p/cm?, after which the leakage current appears
to stabilise, as shown in Figure 12(b). Such an effect is not observed in typical silicon detectors.

The sensitivity of the c.c.e. in GaAs to high energy protons has also been observed by the Aachen,
Freiburg, Protvino and Shefficld groups, as illustrated for example in Figure 13. This sensitivity is also
in marked contrast with the behaviour in silicon detectors [16].

Measurements of the extent of pion-induced damage in GaAs at PSI, Zurich, have shown similar
sensitivity, as illustrated in Figure 14(a) in which the charge signal from pion- irradiated detectors appears
to reach a limit after irradiation which is independent of the physical thickness of the detector. The
corresponding mean free path for charge carriers is shown in Figure 14(b). The electron and hole mean
free path after irradiation may also be obtained from comparisons of the measured response to alpha
particles with predictions of the Monte Carlo model of charge transport and trapping referred to above.
The predicted evolution with pion dose of the signal due to minimum ionising particles is shown in
Figure 15. A summary of the range of substrate materials and detector thicknesses tested by the Aachen
group is given in Figure 16,

Characterisation of irradiated detectors using techniques such as PICTS, CTS and TSC is also in
progress, together with an evalnation of the potential benefits of various annealing treatments.

Investigations ol the trapping centres in neutron-irradiated Schottky diode detectors have recently
been reported [1, 6, 17]. No single trap has yet been unambiguously identified as responsible for the
degradation in detector performance. Nevertheless, there is some evidence of the influence of the EL2t
level on detector performance,[6, 7, 17].
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Figure 7: Beam profile obtained from a telescope of three GaAs pixel detector arrays coupled to Omega 2
read-out chips
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7 Requests to LDRB

Commercial production of GaAs microstrip and pixel detectors by more than one source has been suc-
cessfully achieved this year. Discussions with some manufacturers concerning the probable costs of large
scale production of these detectors lead to optimism that the final costs can be competitive with those for
silicon detectors. The resources allocated to RD8 for further purchases this year of commercial prototype
detectors have not yet been used, because of our desire to extract as much information as possible from the
first generation of commercial detectors and also because of the unexpected sensitivity to charged particle
irradiation which was discovered early this summer. When a thorough review of the latter measurements
has been made, we plan to place orders for at least one production run of microstrip detectors during
this year, to allow continued development of commercial production of these detectors. Detailed tests of
these detectors would entail test beam running, which we plan to incorporate in ATLAS, CMS and RD19
test beam periods. In addition, we propose to carry out further proton irradiation tests with 24 GeV
protons at the PS and pion irradiation at the P.S.I., Zurich. We bid in addition for consumables costs,
associated with the ‘gencric’ part of our activity in pixel detector development and extended radiation
hardness studies. These costs are associated with wafer and mask purchase and processing in our own
labs. and particularly for development of double-sided detectors using the Tomsk fabrication technology
and commercial bump-bonding of a further sample of 10 pixel detectors to the new Omega3 read-out
chips.

We bid also for a modest allocation of computing time on central CERN computers, to allow the
partial analysis of our test beam data.

Summary of requests
Consumables, (Wafers,Masks,Bump-bonding etc.) 10kSfr
Total 10kSfr
Computing time VXCERN 10hrs
CERNVM 10hrs
I PS irradiation test beam time [ 10 days |

8 Conclusions

GaAs microstrip and pad particle detectors are now close to achieving the performance specifications
required for LHC operation. Microstrip detectors of an area close to that needed for the ATLAS forward
tracker wheels, for example, are now available commercially. Further developments are required to optmise
the detector geometry and fabrication technology. Choices of single- versus double-sided detectors, A.C.-
versus D.C.-coupling and simple Schottky versus ‘Tomsk’ technology have still to be resolved on the basis
of continuing detailed evaluation of more refined prototypes. It has been demonstrated experimentally
that the read-out electronics for GaAs detectors can be identical to that used for silicon and that operation
at the lower temperatures required for silicon presents no real difficulties. A test beam telescope made
up of GaAs pixel detectors has been successfully used for the first time. The X-ray imaging potential of
GaAs has also been demonstrated.

The radiation damage induced by high energy protons and pions in GaAs has been shown to be more
serious than that due to 1MeV neutrons and represents our major cause for concern at present, since
pions represent the main source of irradiation damage at the LHC. Our priority in the next few months
is to carry out a more comprehensive, quantitative evaluation of the magnitude of this problem and
to examine possible explanations for the sensitivity and potential methods for alleviating the problem.
Microscopic characterisation of the damaged substrate material may provide clues to the detailed nature
of the damage and suggestions for improving the response.
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