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Abstract

A system of collisionless neutral gas contained in a rigid vessel is considered as a simple model of
field-reversed configuration (FRC) plasma reflected by a magnetic mirror. The rebound coefficient of
the system is calculated as a function of the incident speed of the vessel normalized by the thermal
velocity of the gas before reflection. The coefficient is compared with experimental data of FIX
(Osaka U.) and FRX-C/T(Los Alamos N.L.). Agreement is good for this simple model. Interesting is
that the rebound coefficient takes the smallest value (~ 0.365) as the incident speed tends to zero and
approaches unity as it tends to infinity. This behavor is reverse to the one expected for the system
with collision dominated fluid instead of collisionless gas. So, by examining the rebound coefficient,
it can be successfully infered whether the ion mean free path in FRC plasma is longer or shorter than
the plasma length.
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1 Introduction

There have been many experiments of translation!'~8 of field-reversed configuration(FRC)
plasmas(®. Motivations of these experiments are briefly reviewed in ref.9: adiabatic com-
pression heating, preventing decay of external magnetic field, diagnostics, fuelling by
pellet injection and for FRC reactor studies. As for the last one, a more concrete aim has
been added recently: realization of a process proposed in a D — 3He fuelled FRC fusion
reactor ARTEMIS-L[19,

FRC plasma is of a long cylindrical shape and an extremely high-£ configuration which
contains a purely poloidal magnetic field. In translation experiments, the FRC plasma
is formed in a source region and launched into a confinement region. It goes along the
magnetic field of the confinement region at a speed of the order of thermal velocity of the
FRC source. The speed is usually more than 100 km/s. Subsequently, the FRC plasma

‘hits against the magnetic mirror at the downstream end of the confinement region and

reflected towards the magnetic morror at the upstream end. It usually settles down with
only a few times of reflection without severe degradation of confinement. That is, the
rebound coefficient is considerably smaller than unity, being favorable for any purpose.
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It had been reported that the rebound coefficients experimentally observed were con-
sistent with MHD calculation for the FRX-C/T experiment at Los Alamos N. L. I, Since
the classical ion mean free path (1.4 ~ 2.2m) is less than the plasma length (~ 4m), it
1s natural for MHD to have been adequate for explanation of this experiment. However,
it is not yet clear whether the rebound coefficient can be small or not for the plasma at
translation stage in ARTEMIS, where the ion mean free path is to be several times the
plasma length. It may be, therefore, worth to study such a simple model of reflection of
collisionless FRC plasma as shown in Fig.1.

We consider a gas composed of neutral collisionless particles contained in a rigid cylin-
drical vessel with length ! and cross-sectional area S. The mass of the vessel is assumed to
be zero because it stands for the magnetic field inside the separatrix of FRC. The vessel
initially moves with velocity ug in & direction toward a rigid wall which has infinite mass
and is located at z = 0. The system hits upon the wall at a time ¢ = 0, being reflected
at a time ¢ = t;(> 0) with velocity @; of center of mass. The particles are assumed to
have at ¢ = 0 the Maxwellian velocity distribution of a temperature Ty (K) shifted by the
velocity ug.

In the next section, the rebound coefficient e = |i;|/up and the time t, of contact with

the rigid wall is exactly calculated as a function of Uy = ug /v where vgo = VksTo/m
with kg the Boltzman constant and m the mass of each particle. In §3, quantities relevant
to reflection are calculated and graphically shown to understand what take places during
the time ;.

The rebound coefficient takes the minimum value (~ 0.365) as Uy — 0, monotonically
increases with Uy and tends to unity as Uy — oco. Therefore, unless Uy > 1, small rebound
coefficients can be expected in case of long mean free path too. This feature of collisionless
gas contrasts with that of collision dominated fluid. In §4, we briefly study for comparison
a system of collision dominated fluid contained in a rigid vessel. As a result, the rebound
coefficient is to be unity at slow injection (Uy — 0) and decreases to ~ 0.5 as Uy — oo.
In §5, the rebound coefficients are compared with two experiments, FIX (Osaka U.) and
FRX-C/T (Los Alamos N.L.) and agreement is satisfactorily good for this simple model.
In addition, the data of FIX exhibits the collisionless feature and the data of FRX-C/T
the fluid-like one. Examination of classical ion mean free path supports this observation.
§6 is conclusion.

2 Rebound Coeflicient and Time of Contact

According to the assumption of our model explained in the last section, the particles in
the cylindrical vessel are moving with the shifted Maxwellian distribution

_ m m(v — ug)?
Jo(v) = noyf SriaTe GXP(‘W) (1)

at the instant ¢ = 0 when the vessel hits against the wall. Here, v is the £ component
of the velocity of particle and ny the number density of particles at ¢ = 0 assumed to be
uniform in the vessel.

We make further assumptions that the particles are elastically reflected by the wall
of the vessel and that the momentum and the kinetic energy of each particle in the =z
direction are not exchanged with the ones in the other directions. Consequently, the




kinetic temperature and velocity distribution in the other directions are unchanged in the
process of reflection. As for the z component of the velocity of each particle, its absolute
value [v(t)| can be considered as a virtual constant of motion as long as the vessel is in
contact with the rigid wall at z = 0 although, exactly speaking, it is not a constant of
motion because it vanishes at the walls of the vessel.

Now, let us suppose for the moment that the vessel is fixed at rest for ¢ > 0, and
calculate the distribution function f(z, v, t) for ¢ > 0. First, it can be confirmed that
every particle for which z +(k+ 1) > vt >z + klat ¢ (k=0,+1,+2,- -} collides with

either of the left or right wall of the vessel |k| times during the interval from 0 to ¢. Then,
we have

fl@v,t)=fo(v) for z4+2k+1)I>vt>z+2k —I<z<0
f(z,v,t)= fo(—v) for T+2kl>vt>c+(2k-1)1 —-l<z<0 (2)

because f(z(t), v(t), t) and |v(t)| are constants of motion. That is, f(z,v,t) = fo(v) for
(z,v) being in the white stripes of the phase space shown in Fig.2 and f(z,v,t) = fo(—v)
for (z,v) being in the shaded stripes. Exactly speaking, the distribution function can
not be defined for ¢ = —1, 0 and vt = = + kl. Glancing at Fig.2, one can easily see that
lim,_._; f(z,v,t) and lim,_q f(z,v,t) are even functions of v, and then, the mean velocity
of particles vanishes on the walls of the vessel.

Utilizing the distribution function just obtained, we calculate the force F(i)z att >0
exerted on the vessel by the contained particles. Note that this force is equal to the one
exerted by the vessel on the wall at z = 0 since the vessel has no mass.

F(t)= Sm{/ojz’v v? lim f(x,v,1) - /0:1@ v? liml f(a:,v,t)}

r—0 T— -
(2k+1)t 2kl
t t 2
=2S5m kz__:oo{/# dv v? fo(v) — /2k:1 dvv fo(v)} . (3)

Defining non-dimensional quantities as ® = F/nokpTyS and 7 = t vy, o/!, and using eq.(1),
we have

g = 52 Z_Up ) Y/ 6‘2
O(r,Up) = P Z {[(f + QUQ)eXP(_E)} - (14 UO)/;M-UO d¢ exp(—?)

k-_-—OO £2I"T_ll—[j()
+2(1 + UE) . (4)

As for limiting cases, we have

hm (7, Up) = \/g Uy ex (_E‘i) +(1+ U""’)/0 d¢ exp(—£—2) (5)
=0 1o w o P 2 0 -Uo 2
lim &(r,Ug)=0 . (6)
In Fig.3, ® vs 7 are shown for values of U : (a) for Uy = 1.0 and (b) for Uy = 5.0.
As it can be seen from the figures and eq.(5), @ is always positive for sufficiently small

7. Let us denote by 7; the value of 7 at which ® vanishes for the first time. The vessel
continues in contact with the wall during 0 < 7 < 7; but lift off it just after 7 = 7; since a
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negative force can not be exerted on the wall. So, we call t; = 7 [/vg0 the time of contact
or lift-off time. 7 is a function of U, as shown in Fig.4. It decreases monotonically as U,
increases. From the figure, it seems to tend to zero as Uy — oo and this conjecture will
be confirmed mathmatically later.

The rebound coefficient e is now calculated in the following way. Since the gas contained
in the vessel has given the wall the momentum f;' F(t)dt, it has gained the same amount
of momentum with negative sign from the wall. Since it had initially the momentum
S I ng mug, the total momentum at ¢ = ¢; is determined, and the velocity i, of the center
of mass for ¢t > t; as well. So , we get

|| SV F(t)dt — Slngmug o O(r)dT — Uy

In Fig.5, the coefficient e vs U is shown for the range 0 < Uy < 50. In Fig.9, it is shown
for the narrow range 0 < Uy < 10. It takes the minimum value 0.365 as Us — 0, and
monotonically increases with U,. From the figure, it seems to tend to unity as Uy — oo.
This can be confirmed mathematically by noticing that fo(v) with a fixed uo becomes
close to ngd(v — ug) as vy — 0, where § means Dirac’s delta function. In this case, F is
easily calculated to be equal to 2Snymu? for 0 < t < t; = l/ug, and then, e is equal to
unity . By the way, we have 7y = tjvno/l = vino/uo = Us' . Therefore, the conjecture
from Fig.4 has been confirmed.

Now, let us consider the case of finite Uy. If we rewrite the definition of 71 as 1, =
vino/ (I/t1), 1 gets a new meaning : the ratio of the width vy, of the initial distribution
function fo(v) to the vertical width of the stripes in Fig.2 at ¢t = ¢;. Note that this ratio
decreases from ~ 0.55 to 0 as Uy increases from 0 to oo. Similarly, if we rewrite 7,Ug as
U = uo/(1/t1), U, gets a meaning : the vertical position of the center of symmetry of
fo(v) in the phase space normalized by the vertical width of the stripes at ¢ = ¢;,. From
Fig.4, it can be confirmed that 7,U; the relative position of the center of symmetry of
fo(v) change from 0 to unity as U increases from 0 to co. From these observations, it
can be seen that the smaller Uj is, the more symmetric f(z, v, ;) is with respect to v.
Therefore, the smaller Up.is, the smaller the rebound coefficient e = |ii;|/uo is, where
= fvf(z, v, t))dvdz /ngl.

According to the Boltzmann’s H theorem, the entropy of our system of collisionless gas
does not change in the process of reflection. So, it may be necessary to explain why the
coeflicient e could be less than unity for the system without dissipation. When e < 1, a
part of the incident kinetic energy is temporarily transformed into a free energy associated
with the deviation from the Maxwellian distribution. After a long while, it may eventually
be dissipated into thermal energy by rare collisions between particles.

€
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3 Quantities Relevant to Reflection

With use of the distribution function obtained in the last section, some quantities relevant

to reflection are calculated and shown in graphs here. The number density of particles
n(z, t) defined as

n(z,t) = [o:cjvf(x, v, t)



can be written as n = no N(X, r; Up) where X = z/l and

X+2k41
N(X,7;Uo) = \/— {/m df exp(——é )+/x|2,, €exp(——€2)} (8)
k=—o00

It can be shown that N(X, 0) = N(X, oo) = N(—3,7) = 1 and that N(X, T) + N(-1-—
X,7) = 2: N —11is an odd function of X + 1/2. This function is shown in Fig.6 for
Up=5.0."1

The average velocity of particles u(z, t) defined as

1 00
u(x,t) = n—(?t)/_oodvvf(x, v, 1)

can be written as u = vyl (X, 7;Up) where

U(XﬁT;UO) Z

Nar - é(é + Uo)exp(—~€2)

—i—+U }

+ €(§ Uo)exp(——§ )

Xi’)k

1 oo X42k+1
T
X2k
T

(9)

It can be shown that limx_o U(X,7) =0 and limx__; U(X,7) = 0 and that
N(X,7)U(X, 1) is an even function of X +1/2. It can also be shown that lim,_o U(X,7) =
Up for ~l < 2 < 0 and lim,_,,, U(X,7) = 0 for —I < 2 < 0. This function is shown in
Fig.7 for Uy = 5.0 .

The kinetic temperature T'(z, ) in the z direction defined as

m

Pt LR IER)

can be written as T' = Ty O( X, 7; Uy) where

T(z, t) =

X42k+1 2
O(X,r;Up) = { /ﬁ& §+U0—U)'-’-exp(_.€_)
L Y
__‘i'_+U 5
X2k f(f UO'“U) eXp(__)} . (10)

This function is shown in Fig.8 for Uy = 5.

Finally, the pressure tensor is diagonal. Two diagonal elements corresponding to the
directions perpendicular to the z axis are equal to kg Ton(z,t) and the element corre-
sponding to the z direction is equal to kg T'(z,t)n(z, ).

4 Brief study of collision dominated fluid

For comparison, we briefly study the rebound coefficient e of the system with collision
dominated fluid instead of collisionless gas. We will consider only two extreme cases that
Us — 0 and that Uy — oo.

1 Of course, egs.(8),(9) and (10) do not hold for 7 > 7, unless the vessel is kept at rest on the wall.



When the z component u of the fluid velocity is very small compared with the sound
velocity Cy at t = 0, u is subject to the D’Alembert’s equation

Pu_ 1o _
9r?  CL otz

where viscosity has been neglected since the viscosity coefficient is proportional to collision
time between particles'®. Qur problem of reflection is reduced to the initial and boundary
value problem with conditions

u{z,0) = ug for —l<z<0
u(—1,t)=u(0,¢) =0 for t>0 . (11)

From the solution, it is seen that u(z, t1) = —up for -l < z < 0 where ¢; = {/Cy. The
velocity of the vessel after reflection, therefore, is equal to —uy and then e = 1.

Next, let us consider the case that the incident mach number M, is much greater than
unity, where My = uo/Cy = Uy/ V¥ with 7 the ratio of specific heats. A uniform flow
with velocity ug and pressure py = nokgTy is formed in the vessel at t = 0. The upstream
end of it becomes a rarefaction wave the tail of which continues to the vacuum region.
The width of the rarefaction wave is equal to Cyot(7+1)/(y—1), so that the upstream end
of the uniform flow can be considered as being sharp cut when M, > 1. The downstream
end of the uniform flow is a front of shock wave. The fluid between the shock front and
the right wall of the vessel is at rest and of pressure pgy(y + 1)M2/2. The velocity of the
shock front is equal to —(y —1)ug/2, so that the shock front reaches at ¢ = 21/{(y + 1)uo}
the upstream end of the uniform flow at = = —I(y — 1)/(v + 1) .

Then, a rarefaction wave spreads from there, and its left and right fronts reach the left
and right walls of the vessel at the same time ¢t = ¢/ where

oA y-1
) 12)

A new shock wave, then, emerges at the left wall, where the pressure increases and reaches
the one at the right wall at ¢ = ¢, the lift-off time. We, therefore, obtain a lower bound
of the rebound coefficient e :

e> 1=t _ 0447 for =2 (13)
2y 3
using #' instead of ¢, in eq.(8).
An upper bound of e is obtained by assuming that all the work done by adiabatic
expansion of the fluid from the volume S{(y—1)/(y+1) to the full volume S!is transformed
into the kinetic energy of translation after reflection. That is, we have

v — 1\ 5
e < 1—(’7_+—T) =0.777 for 7T=73- (14)

Any way, the rebound coefficient of collision dominated fluid decreases as the incident
parameter Uy increases. This is a tendency reverse to the one of collisionless gas.



5 Comparison with Experiments

In Fig.9, rebound coefficient vs Uy’s estimated by us from papers of two experiments
are plotted together with the curve calculated in §2. The circles have been marked
on the basis of FRX-C/T experiment at Los Alamos!® and the squares on the basis
of FIX experiment at Osakal®l. It, however, was necessary apriori to assume that the ion
temperature T is equal to the electron temperature T, because these papers provide only
the total temperature T; + T,. Except for this assumption, The black circle has been
plotted with direct use of Figs.5, 6 and 7(a) in ref. 5, and the black square with direct
use of Figs. 5, 7 and 9 in ref. 8. For the other marks, rather indirect methods were
necessary. For the white circle, the total temperature was estimated from the datum on
table I , eq.(3) and the average value of v, for By = 4.5kG on Fig.5 in ref.5. Here, v, is
the velocity of translation corresponding to our ug, and B, means the magnetic field in
the confinement region in absence of plasma. The two white squares have been plotted
with use of the average data for the highest and the lowest value of By on Figs. 5 and 7
in ref.8, which were assumed to correspond to the averaged data of first transit in Fig. 11
for the highest temperature and the lowest one, respectively.

Agreement between experiments and calculation is satisfactorily good for simplicity
of our model. Furthermore, it can be seen from the figure that the rebound coefficients
observed in FRX-C/T are greater than the calculated ones and their dependence on U,
is reverse to the curve calculated for the collisionless gas but has the similar dependence
as that of the collision dominated fluid. The ion classical collision mean free paths!!] for
FRX-C/T are estimated to be 1.4 ~ 2.2m, which are slightly shorter than the plasma
length (~ 4m). Thus, the fluid-like character suggested by the dependence of the rebound
coeflicient on the incident speed has been supported by estimation of the ion collision mean
free path.

As for FIX experiment, it can be seen that the rebound coefficients observed are less
than the calculated ones and their dependence on U, is similar to the curve calculated for
the collisionless gas. In this case, estimation of the ion mean free path is not unique on
account of abrupt increase of the total temperature 7} + 7. at the time of reflection. This
phenomenon was explained as rethermalization by formation of a shock wavel®l. In fact,
the incident Mach ’s numbers were greater than unity in this experiment. If we use the
temperature just before reflection , the ion mean free paths are estimated to be only 0.08 ~
0.41m, being much shorter than the plasma length ~ 4m. If we use the temperature just
after reflection and assume that only the ions are heated by shock formation, the ion mean
free paths are estimated to be 2 ~ 6m and comparable with the plasma length. These
estimation of the mean free paths, however, is not suitable for examining adequacy of our
collisionless gas model. Since the Mach’s number is greater than unity, particles reflected
at the rigid wall should be regarded as the test particles” with velocity 2ug incident
into the "field plasma "1'¥l with the temperature before reflection. Then, the ion mean
free path are estimated to be 4.3 ~ 15.6m and longer than the plasma length®. Thus,
in this case too, the collisionless character suggested by the dependence of the rebound
coefficients on the incident speed has been supported by estimation of the ion collision
mean free path.

The rebound coefficients observed in FIX experiment are smaller than calculated ones.

2In order to obtain these values, we multiplied 2ug by the smaller value of the slowing-down time and the deflection
time, taking account of both ions and electrons in the field plasma.



This may be due to the fact that the magnetic field in the confinement region is very
weak (100 ~ 700G) compared with that of FRX-C/T experiment (2 ~ 4.5kG) while the
magnetic field in the source region (1T) is comparable to that of FRX-C/T(0.6T).

6 Conclusion

We have proposed a very simple model of reflection of field-reversed configuration and
calculated its rebound coefficient together with the relevant quantities. It takes the min-
imum value (~ 0.365) at slow incident speed and increases up to unity as Uy — oco. As
a result, rebound coefficients considerably smaller than unity can be expected for future
collisionless FRC’s unless Uy > 1. A fluid-like model has also been briefly studied and
shown that it has opposite tendency from our collisionless model. The calculation has
been compared with two experiments. Agreement is satisfactorily good for simplicity
of our model. In addition, by examining dependence of the rebound coefficient on the
incident speed, we have been able to make a successful conjecture on whether the ion
mean {ree paths is longer or shorter than the plasma length. This gives us expectation of
diagonostic use of reflection experiment of FRC.
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Rigid wall

x=0

Fig. 1. A model of collisionless FRC reflected
by a magnetic mirror. A rigid cylindrical vessel
without mass and a rigid wall at x = 0 stand for
the magnetic field of FRC and the magnetic mir-
ror, respectively. The cylinder contains a neutral
collisionless gas instead of a plasma and hits upon
the wall with a velocity ug at time ¢t = 0.

@P=F/ngkgToS

0.6 08 1
T=tvyro/l

0 0.2 04 1.2

d=F/, nokaT()S

21/t

1/t

=21/t

Fig. 2. The phase space of single particle att > 0.
The distribution function f(z,v,t) of particles in
the vessel at rest on the wall is equal to fo(v)
for the point in the white stripes and equal to
fo(—v) for the point in the shaded ones. f; is
the distribution at t = 0 and | the length of the
vessel.

40 i

20 +

20

-40

0.6 08 1
T=tvino/l

0 0.2 04 1.2

Fig. 3. The force F(t) at time t > 0 exerted on the wall by the system fixed on it, (a)
for Up = 1 and (b) for Uy = 5. Uy is the incident velocity up normalized by the thermal
velocity vino = \/kgTo/m. S and ! are the cross-sectional area and the length of the vessel,
respectively. ng is the number density of particles. The sufix 0 means values of ¢t = 0.
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Fig. 4.The lift-off time (time of contact) ¢; of the system from the wall, (a) for the range
0 < Up < 10 and (b) for the range 0 < U, < 50. t1 is obtained as the first zero of the force
F(t). See Fig. 3.

1 T T T T T T T T T
[ //////_—’_——__—:
08 r - 1
] /
S 06/} | ]
= /
é“ b // .
$oat/ ]
02} 1
O i 1 4 i 1 4 1 i 4
0 10 20 30 40 50
Up=up/vino

Fig. 5. The rebound coefficient e vs Up. 1t tends to unity
as Uy — 0o. u; is the velocity of the center of mass at the
lift-off time ¢, .
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X=x/

Fig. 6. Evolution of the number density n of particles during the time of contact for
Uo = 5.0. In this case, 1, = 0.186. (2) three dimensional view and (b) the curve numbered
n (0 ~ 5) corresponds to the time r = (n/5)m
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Fig. 7. Evolution of the average velocity u of particles during the time of contact for Up = 5.0. In
this case, 7, = 0.186. (a) three dimensional view and (b) the curve numbered n (0 ~ 5) corresponds
to the time 7 = (n/5)n
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Fig. 8. Evolution of the kinetic temperature T in x direction during the time of contact for
Us = 5.0. In this case, 7, = 0.186. (a) three dimensional view and (b) the curve numbered n
(0 ~ 5) corresponds to the time 7 = (n/5)n
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Fig. 9. Comparison of the rebound coefficient e calculated on the basis of
our model with those observed in FIX experiment at Osaka U.(squares) and
those in FRX-C/T experiment at Los Alamos N.L.(circles). See the text for
difference between black marks and white ones.
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