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Consistent relativistic treatment of the structure of the
deuteron and its electromagnetic interactions!

Franz Gross
College of William and Mary, Williamsburg, VA 28185, USA
and
Continuous Electron Beam Accelerator Facility
12000 Jefferson Ave, Newport News, Virginia 28606, USA

Abstract

Relativistic calculations of deuteron static properties, the triton binding
energy, and deuteron form factors are reviewed. The results show that the
covariant formalism is capable of replacing nonrelativistic quantum mechan-
ics, at least for the description of two and three body systems, and that some
significant new insights emerge when the dynamics is described relativistically.

I. THE QUIET THEORETICAL REVOLUTION

Let me begin by giving a personal overview of the recent progress in the development of
relativistic theories for the treatment of few nucleon systems.

For purposes of this discussion, I will identify four major “schools” or approaches to
this problem. The first is the the Hamiltonian Dynamics scheme popularized by Keister
and Polyzou [1]. In one application of this approach, the instant form, the interaction is
included in the hamiltonian, H, while the generators of translations (the momentum oper-
ators P) are chosen to be independent of the interactions. This implies in turn that the
rotations (generated by the angular momentum operators J) are also free of interaction
terms, but that the generators of the pure boosts (denoted by K) contain interaction effects
which can be found from the commutation relations of the K'’s with H, P, and the J’s. In
another application, the front form, the interaction is included in the light-front generator
P_=H —1i-P, so that the light front three-vector with components P, = H — i - P, and
Pr = P—ii-P 1 is independent of the interaction. It then turns out that the four generators
K,=0-K, J,=1-J,and Er = K7 + i X J are also independent of the interaction and
that two additional generators involving rotations are dependent on the interactions. The
light-front choice has the advantage that the interaction enters into only three generators
(as opposed to four in the instant form), and that the generator for boosts in one direction
is interaction-free, so that some problems can be solved exactly using these operators. The
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Issues hamiltonian covariant

instant front BS spectator
exact angular momentum conservation \/ X \/ \/
exact treatment of boosts X vV Vv v
connection to some underlying (field)
?
theory % v v

convertional QM with a Hilbert space

with a positive definite metric v v X X
realistic NN dynamics V4 X ? Vv
complete 3N bound state Vv X X Vv
smooth nonrelativistic limit Vv ? X Vv
current operators consistent with 2
?
dynamics and Gauge invariance only to (v/c) ) v v
: : fter Wick
singularity free kernels a X
& y v v rotation

Table 1: Strengths (/) and weaknesses (x) of various relativistic methods.

remaining two methods I will discuss are manifestly covariant, so that all amplitudes can
be transformed to any frame exactly. For these cases practical applications require the
development of a whole new covariant dynamics, and this has been carried out using the
Bethe-Salpeter equation [2], or the Spectator (or “Gross”) equation [3].

My assesment of the strengths and weakness of each of these methods is summarized in
Table 1. The disadvantage of the hamiltonian approaches is that they do not give results
which are exactly covariant (either rotations or boosts must be treated approximately).
Furthermore, they depend on phenomenology, and have no connection with any fundamental
theory (except, possibly, for some approaches based on rapidly developing light-front field
theories). On the other hand, both covariant methods give results which are derivable from
field theory (using approximations which can be clearly defined even if they can’t always
be fully justified) and are exactly covariant. The disadvantage of covariant approaches is
the appearance of negative energy states which require redefinition of both the space of
quantum mechanical states and the meaning of the scalar product (it can no longer be a
probability density). The covariant method therefore lies outside of conventional quantum
theory, and requires the development of new physical principles before it can be defined in
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its most general form. My own view is that this latter problem is not as serious as the first
three, and that therefore covariant theories are to be preferred on theoretical grounds.

Furthermore, new results show that the phenomenology of few nuceon systems (including
the deuteron) can be very well described by modern covariant theory, particularly if the
spectator equation is used. This recent development, displayed in the last 5 rows of Table 1, is
the quiet revolution I refer to in this section. Recent advances in the description of low energy
NN scattering, prediction of the three body binding energy, and the incorporation of gauge
invariance into electron-hadron interactions mean that covariant spectator theory is now
a mature research tool. In addition, the close correspondence between the relativistic and
the nonrelativistic equations means that the origin of any new effects can be examined and
connections made with all previous work. The only remaining problem with the spectator
method is the presence of spurious singularities in the spectator kernels. But the numerical
effect of these singularities is small in all cases which have been studied so far, so this may
be largely an esthetic problem.

I will try to persuade you in the following sections that it is no longer sufficient to depend
solely on nonrelativistic quantum theory to provide the theoretical framework for a study
of few nucleon systems. I will show you examples where precision studies have outgrown
the use of nonrelativistic quantum mechanics, and where the use of covariant methods is
required.

Before turning to a review of some of these recent developments, I call attention to work
by Nieuwenhuis, Tjon, and Simonov [4], who have studied the energy of a two-body bound
state which emerges from the assumption that the dynamics is described by the sum of all
ladder and crossed ladder diagrams. They have tested this assumption numerically for 3
theory by summing all ladders and crossed ladders using the Feynman-Schwinger path inte-

gral formalism. When one of the fwo particle masses becomes very large, they find that
& -theory

m,=1, m,=100, T=5, N=25, g’=4.5*10’
101 e Y . v T

N |l kG
Mass

100

0 le+08 2e+08 3e+08 4e+08 S5e+08 6e+08
MC-steps

Figure 1: Convergence of a bound state binding energy calculated from the sum of ladder
and crossed ladder diagrams in a ®3 theory.
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the binding energy approaches the same value that is obtained from a one body relativistic
equation (the Klein-Gordon equation for spin 0 particles) for the lighter particle moving in
the effective, instantaneous potential created by the heaver particle. Their results for one
case when the ratio of the heavier mass to the lighter mass is 100 is shown in Fig. 1. Note
that the exact binding energy (from ladder and crossed ladder diagrams) is very close to the
Klein-Gordon result (labeled KG on the graph) and substantially different from the result
which would have been obtained from the ladder approrimation to Bethe-Salpeter equation
(labeled BS). This confirms that crossed ladders give large numerical results and are needed
in order to obtain the one body limit, as previously demonstrated theoretically [5], and helps
place covariant methods on a firmer foundation.

II. NUCLEON-NUCLEON SCATTERING, THE DEUTERON, AND THE
TRITON BINDING ENERGY

I now want to describe the (relativistic) properties of the deuteron obtained using the
covariant spectator theory, and report on some recent, very exciting results obtained from
our relativistic study of the triton binding energy. The two-body work described here was
done in collaboration with J. W. Van Orden, and the three-body work with Alfred Stadler.
The three-body study lead us to introduce some new features into the relativistic one boson
exchange (OBE) model we use, and I will discuss the implications of this new work briefly.

The two body spectator equations are shown diagramatically in Fig. 2 [6]. One of the
nucleons (either one) is restricted to its positive enrgy mass shell (indicated by the X in the
figure) which reduces the integration over the intermediate four-momentum to a covariant
three dimensional integral. The interaction kernel must be explicitly antisymmetrized in
order to insure that the scattering amplitudes satisfy the Pauli principle exactly.

The covariant spectator deuteron wave function is related to the dNN vertex function,
I'(p, P). This vertex is a function of the total four-momentum of the deuteron, P = p; + pa,
and the relative four-momentum, p = (p; — p2)/2. By convention, particle 1 is on-shell, so

o T e

v - T

—ee

Figure 2: Diagramatic representation of the spectator equations for NN scattering,
the dNN vertex, and the OBE kernel.



that p2 = m?, and, in the rest frame of the deuteron, m2 — p2 = My(2E, — M;), where

E, = /mZ+ p? is the energy of the on shell nucleon in the rest frame and p; = (Ep, p)-
Since the deuteron mass is less that twice the nucleon mass, m? — p2 > 0 and particle 2 can
never be on shell.

The mathematical connection between the covariant deuteron wave function, ¥, and the
dNN vertex with one N off-shell was developed many years ago [7]:

1
Yo (Pp) = ———e
2My(2r)3

= w;’,\(P, p) ua(P—p’ AI) + 7»0;/,\(1), p) ’Ua(p—P, Al)

where S is the nucleon propagator, C is the Dirac charge conjugation matrix, and u(p, A)
are Dirac spinors with three-momemtum p and spin projection A. In the deuteron rest frame
the nucleon propagator for the off-shell particle 2 can be expanded in terms of the spinors
u(—p, ') and v(p, X'), reflecting the separation of the propagator into a sum of terms with
positive and negative energy poles. Then the relativistic wave function can be expressed in
terms of four scalar wave functions, two required for ¥ and two for ¢~

m__ u(=p, N)I(P,p)Cu”(p, A)

Saﬂ(P - p) [F(Pa p)C][i’—y ﬂ_’;lyﬂ(p7 )‘)

+ _
vin(0.p) = \/2Md(27r)3 Ep(2E, — My)

= —\/%_ [U(P)m ‘02 — ﬂ(\/%) (301 “poy-p—oy- 02)] X1M
$7,(0,p) = — m (p, N)T(P,p)Cu” (p, \)

V/2My(2m)? EpMgy

3 1 . U .
=\ [vs(p)§(01 —03) P+ —:}—?(al + 02) -p} X1M
The functions v and w are the familiar S and D-state wave functions, while v, and v, are
the spin triplet and singlet P-state wave functions. Fig. 3 displays these wave functions
in momentum space for one of our models (a revised version of the Model IIB of Ref. [6])
described below. The normalization condition satisfied by these wave functions is

oV
8_M;>’ (1)

where (0V/0My) is a term arising from the energy dependence of the kernel (see Ref. [6]).

The OBE models used in the present study include the exchange of two pseudoscalar
mesons [r and 7], two scalar mesons [0 (I = 0) and the § (I = 1)], and two vector mesons
[p and w]. The one pion exchange term arises from the exchange of physical pions, but
the heaver meson exchanges are viewed as a simple way to parametrize an effective NN
interaction, and not necessarily related to the exchange of physical mesons with the same
quantum numbers. The most general form of the vertex for the coupling of scalar mesons
to an off-shell nucleon is

1=/0 p2dp {u2+w2+vf+vf}+(

9o =g [1= 25 (=K +m—R) + 25 (m—K) (m = )| , @)
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where p and p’ are the four momenta of the incomming and outgoing nucleons, and the
couplings proportional to v, and k, do not contribute if the nucleons are on-shell. As far as
I know, these off-shell couplings have never been studied previously, and I will discuss the
importance of the couplings proportional to v, below.

Similarily, the most general form of the vertex for the coupling of pseudoscalar mesons
to an off-shell nucleon is

oty = 95 [1° = 22 [(m = K) 1 +7° (m =) + 125 (m — ¥) 7* (m — ¥)

v
= 1—v 3 + P 5 Ko+ ]
9p [( )Y o) ¥+ kp
where we see that v, = 1 — Ay, where ), is the pseudoscalar—pseudovector mixing parameter
previously discused by us in the context of OBE models [6]. Finally, the most general vertex
for the coupling of vector mesons to off-shell nucleons contains 6 parameters. In our previous
studies we included three of these, and wrote the vector meson vertex function in the form

Ky . Ko(1— Ay ,
ookt = g 1= gio®a, + L2 (g ) o )+

K"’UAU- (1_Av)l</»u
= Gv v 1- v B ad v H
g [[1+K( )]y 2mw q 5 P+ ]

where the original motivation for introducing A, was to allow for a replacement of the tensor
o*q, by a linear combination of y* and P*, as suggested by the Gordon decomposition



(which holds only on-shell). However, we see that the replacement v, = k,(1 — A,) shows
that this mixing could be present even if x, = 0, and that there is no a prori restriction
which we can place on the value of \,. All of these parameters are free to be fixed by the
data.

In addition to the meson couplings (and masses), the models include a universal meson
form factor \ . .
f(qQ) — (Am — /-Li) + Am
(A2, — @7+ A,
where y; is the mass of the ith exchanged meson, and A,, is a universal constant. Since the
nucleon is off-shell, we also introduce a nucleon form factor
) = (k= + (43 = ) -
(A% —m?)? + (A — p?)?
where Ay is another parameter, and we have studied cases in which Ag = An, or Ag = m.

Recently Alfred Stadler and I finished a covaraint calculation of the triton binding energy
using the relativistic three-body spectator equations. These covariant three body equations
restrict two of the three particles to their mass shell, which fixes both of the relative energies
covariantly and leaves equations which depend on only two three-momentum variables, as
in the nonrelativistic case. The resulting equations have a Faddeev-like structure, and are
driven by two-body amplitudes with one particle off-shell: preceisely those obtained from
the two-body equations illustrated in Fig. 2. Hence, as in the nonrelativistic case, the triton
binding energy can be predicted uniquely from any two-body force model. While the general
form of these equations for both three spinless particles [8] and three spin 1/2 particles [9]
was described some time ago, now exact numerical solutions have been obtained using a
new, more convenient form of the equations [10,11].

We first obtained solutions for the three body binding energy predicted by models similar
to Model IIA [6] mentioned above. These models had no off-shell ¢ or é couplings; i.e. the
parameters v,, Vs, Kq, and ks defined in Eq. (2) were all zero. We were disturbed to learn
that these models gave much too small a result; the binding energy was in the vicinity of
—6.0 MeV, much less that the experimental result of —8.48 MeV. After considerable study
we found that the binding energy could be improved by allowing the the off-shell parameters

v, and vs to be non-zero. We found that if the v, and vs parameters were scaled by the
relations

vy = —0.75v
Vg = 2.61/,

with v varying from 0 to 2.6, the three body binding energy could be made to vary smoothly
from about —6.0 MeV (for v = 0) to as large as —10.0 MeV (for the largest v = 2.6). In
each case, all other parameters, except the pion coupling constant and the masses of the
non-scalar mesons, were varied to give the best fit to the two body data before the three body
binding energy was calculated. The deuteron properties and meson parameters for Model
IIB (revised) and for five of the family of new models with varying off-shell scalar couplings
are given in Table 2. Note that some of the meson parameters (especially gs, 9., and g,) are
very sensitive to the value of v, while others (including the scalar meson masses, the cutoff



OBE IIB W00 W05 W16 W18 W26
parameter (revised) v=0 v=05 v=16 v=18 v=26
Gr 13.15 13.34 13.34 13.34 13.34 13.34
Gy 3.02 3.49 2.78 3.03 3.37 4.24
G, 5.30 5.61 5.36 5.12 4.83 4.12
Vo 0.0 0.0 -0.375 -1.20 -1.35 -1.95
Gs 0.33 0.19 0.49 1.18 0.91 0.37
Vs 0.0 0.0 1.30 4.16 4.68 6.76
G, 10.09 13.04 13.88 16.70 16.08 14.39
G, 0.44 0.58 0.67 0.99 0.95 0.75
Ap 0.863 1.55 1.51 1.57 1.57 1.56
| —Er ~60 ~61 ~65 ~82 ~86 ~100 |

D/S 0.0247  0.0252 0.0253  0.0255 0.0255  0.0255
Py 2.0 5.3 5.6 6.6 6.7 6.8
P, 0.049 0.014 0.010 0.001 0.002 0.004
P, 0.009 0.006 0.003 0.001 0.001 0.004
%) 2.5 1.5 1.8 2.2 -3.3

Table 2: Deuteron properties and OBE parameters for six models discussed in
the text. The couplings are all dimensionless, with G, = g2/4x, and Er is in
MeV. The last four rows are probabilities. Model IIB has Ay = Ay; the rest
have Ap = m [recall Eq. (3)].

masses, and k, not given in the table) were less sensitive. All of the new models, with a
name beginning with the letter W, gave and excellent value for the deuteron D/S ratio, and
varying percentages for the D and P state probabilities. Note that the derivative term in the
normalization condition (1), (V') = (8V/OM,), varies significantly with v. The variation of
the triton binding energy for this family of models is shown graphically in the upper pannel
of Fig. 4.

However, the remarkable feature of this result is that the introduction of the off-shell
parameter v permits an improvement in the quality of the fit to the two body data, and that
the value of v which gives the best triton binding energy also gives the best two body fit. The
lower pannel of Fig. 4 shows how the x? for the two body fit varies with v, and comparison
of the two pannels shows that the value of v =~ 1.9 gives both the best value of Fr and the
smallest x2. We have presented our results in this fashion because the fact that v can also
improve the fit to two body data was not realized until the three body calculations were
nearly completed, and it is unlikely that we would have discovered these improved two body
models if we had not been trying to improve our value of the triton binding energy.

Unfortunately, we have not yet concluded our study of the convergence of the binding
energy calculation (the results shown in Fig. 4 are for states with J < 2 and the contributions
from states up to J < 4 are currently being studied), and we have so far omitted some effects
resulting from some off-diagonal coupling of negative energy channels (which we believe will
be small), so these are only preliminary results.



Three-body binding energy

4.0

3.5 Fit to two-body
—_ 1 data
)
e
g 3.0+
~
=

2.5

2.0 ' 1

0.0 1.0 2.0 3.0

Figure 4. Triton binding energy, Er (upper panel) and the x? for the fits to
the two body data (lower panel) versus the scalar meson off-shell parameter v
defined in the text. Note that the experimental binding energy and the best
fits to the two body data are both obtained at about the same value of v ~ 1.9.

I conclude this section with the following comments:

e The relativistic OBE models with off-shell couplings give quantitatively excellent fits
to the deuteron parameters and NN scattering data below 350 MeV.

e The 13+1 parameters used in the OBE models are theoretically meaningful couplings
and masses related to a covariant description of the effective NN interaction.

e Except for the pion, I do not view the 6 bosons of the OBE model as related to
real, physically observable mesons. They are merely parameterizations of the effective
interaction, and in this sense the appearance of off-shell couplings is not unexpected.
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Figure 5. The left diagram with one off-shell coupling is equivalent to the
right diagram with a two-meson contact interaction. The contact interaction
can generate a two-meson exchange force if both mesons couple to the same
second nucleon, or a three body force if they couple to different nucleons.

e The successful description of the triton binding energy shows that off-shell couplings

of scalar mesons are essential. This insight could not have been obtained from a
nonrelativistic calculation.

Note that an OBE theory with off-shell couplings is equivalent to some theory with no off-
shell couplings, but with two (and many) boson exchange forces and three- (and n)-body
forces. This is illustrated in Fig. 5. A factor of (m —}) in a meson vertex function will cancel
the nucleon propagator, (m — %)™!, which connects two meson interactions, shrinking the
interaction to a point and generating either a two boson exchange force or, if a third particle
is present, a three-body force. The same mechanism can occur in sequence, generating
effective couplings of n mesons to a nucleon at a single point. Such interactions can generate

n-meson exchange forces and n-body forces. The implications of these observations is under
investigation.

III. DEUTERON FORM FACTORS

Calculations of the electromagnetic form factors of the deuteron continue to be an impor-
tant application of relativistic theories, and a necessary first test of any new development.
In 1989 Hummel and Tjon (HT) argued that large pmy and wo~y exchange currents were
required in order to account for the high Q? behavior of these form factors [12]. However,
in order to estimate the size of these exchange currents one must know the form factors for
the elementary pmy and wo+y couplings. HT used a vector dominance model to estimate
these form factors and, as shown in Fig. 6, this estimate (labeled VDM) gives a form factor
which is very large at high Q2. Ito and I calculated the pry form factor from a covariant
separable quark model [13] and obtained a smaller result. Other recent quark model cal-
culations shown in Fig. 6 give still results which are still smaller [14]. Unfortunately these
smaller form factors give much smaller exchange currents and spoil the agreement which HT
obtained, leaving the explanation of the deuteron form factors still uncertain.

A recent relativistic calculation of the deuteron electromagnetic form factors, done with
J. W. Van Orden and Neal Devine [15], gives a picture of the physics which is very different

11
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Figure 6: Various models of the pry
form factor.

from that suggested by the HT calculation.
Before discussing these results, I want to
very briefly describe the spectator theory
of the elastic and inelastic scattering from
the deuteron.

The relativistic diagrams which occur
in the inelastic theory (e+d — €' +p+n)
are shown in Fig. 7 and the ones which ap-
pear for elastic scattering (e +d — € +d)
are shown in Fig. 8. The inelastic case re-
quires the evaluation of three types of con-
tributions: relativistic impulse approxima-
tion (RIA), final state interactions (FSI),
and interaction currents (IAC). These di-
agrams are evaluated using preceisely the
same relativistic deuteron wave function
and scattering amplitude defined in the
previous section. The interaction current
is obtained from the OBE interaction ker-
nel, as shown symbolically in Fig. 9.

I will discuss the diagrams (a), (b),
and (c) shown in Figs. 7 and 8 in some-

what more detail. In early applications of the spectator theory {16] it was assumed that
the sum of diagrams (b) and (c), where one of the struck nucleons is on-shell, was equal
to diagram (a), with the spectator on-shell. In the elastic case, the relativistic impluse ap-
proximation (RIA) was therefore defined to be 2x (a). Later I realized that when the

o
oo sl 4

FSI
r
L

1AC

©

Figure 7: The complete set of diagrams needed for a gauge invariant calculation
of deuteron electrodisintegration in the spectator theory.



(a) RIA ®) ©

\_,/—\/—\/

CIA
r -é- r

1IAC

Figure 8: Diagramatic representation RIA, the CIA, and the interaction cur-
rent contributions to the deuteron form factors.

kernel depends on the total energy (which is the case for the symmetrized OBE models
currently being used) diagrams (b) and (c) differ from diagram (a), and this difference must
be taken into account if gauge invariance is to be maintained exactly (in the inelastic case)
[17] or if the derivative term (V) in the normalization condition Eq. (1) is to emerge in the
@Q* — 0 limit of elastic scattering [this term comes only from diagrams 8(b) and (c)]. We
now refer to the exact sum of the three diagrams (a) + (b) + (c) of Fig. 8 as the complete
impulse approximation (CIA). Calculation of the CIA requires knowledge of amplitudes with

1 —— —
V = - + ><
—e— | 2 —lm e e
OBE kernel
1 I I i
X, A4 = * —2- . t H + g t
|| ' i
interaction minimal terms required by gauge invariance
current

o

non-minimal terms: pycurrent, etc.

Figure 9: The interaction current contains minimal terms with a structure
determined by the interaction kernel (OBE in the figure) and separately gauge
invariant non-minimal terms. The pmy current is non-minimal.
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both nucleons off-shell (shown enclosed by rounded squares in Figs. 7 and 8). These can
be obtained by quadrature from the on-shell amplitudes using a kernel which connects the

channels with one particle on-shell to those with both particles off-shell. This kernel is given
by the theory.

Our introduction of a nucleon form factor, Eq. (3), requires modification of the nucleon

current in order to maintain gauge invariance. Following the technique of Ref. [17], we
introduce a reduced current operator, jh

3*(0', p) = h(p™) 550, p) H(®?)
where j* is the full current operator, p’ and p are the four-momenta of the outgoing and

incoming nucleons, respectively, and h is the strong nucleon form factor introduced in Eq. (3).
The reduced current operator satisfies the Ward-Takahashi identity

(m—-%) (m-¥)
72 72
where h = h(p?) and A’ = h(p'?). One solution of this equation is

7%@,p) = folo ,p)[ +(A@)-1) (7 _@—ﬂ

(0 —p)u ik, p) =

+ho(p", p%) iF?g(g) o g, + go(p?, p°) (mz;zpl) 7 (mzr_np)
+90(PI2,I92) (Fs(Q2) - 1) (771—2:71-?{_) (7/1 _ %‘Zﬁ) _(7’12%}2),

where the functions f; and gy are determined by the WT identity
1 pl2 _ m2 1 p _ m2
fo (P ’P) 2 ( 2 _ T3 R2 \ p? — p?

h2 . h/2
g(p ’p) h2h/2 (pl2_p2)
and F3 and hg are unconstrained except for the requirements that
F3(O) =1 ho(mQ,m2) =1.
Following the original convention, we continue to use the on-shell current operator in the
RIA. The on-shell operator can be obtained from the off-shell operator by setting go = 0 and
fo = ho = h =h" = 1. Our off-shell operator is fixed by the conditions F3(Q?) = Gg(Q?)

and hg = fo. We find that modest variations in F3 and the replacement hy = 1 do not give
large effects.

Some recent results for the deuteron structure functions obtained using Model IIB are
shown in Figs. 10 and 11. Here we show A, B, and Ty defined by

A(Q?) = G (Q2) + Zn G?M(Q2) n gnz GQQ(QQ)
B(Q*) = (1 + 1) G(Q?)
T(Q%) = \/’4 Go(@%)Ge(Q%) + 3nGH(Q%)

37T GH(Q?) + I GB(QY)
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Figure 10: The B structure function for Model IIB. Left pannel: The CIA
contribution discussed in the text. Right pannel: The effect of pmy exchange
currents with various pry form factors.

where 7 = Q*/(4M}) and G¢, Gy, and Gg are the charge, magnetic, and quadrupole form
factors of the deuteron [16].

The B structure function turns out to be very sensitive to the details of the dynamics.
The left pannel of Fig. 10 compares our CIA calculation of B with the RIA calculation of
HT. Note that our CIA gives a very good description of the data, leaving very little room
for exchange currents. The major numerical difference between the new CIA and the old
RIA is the use of the off-shell current operator; if the off-shell operator is used in the RIA,
it is indistinguishable from the CIA over the entire region of Q2. The remaining difference
between our RIA and the HT result is due to the small relativistic P-state components. If
we change the sign of the small component, v,, the RIA (labeled RIA, —v, in the figure) is
not very different from the HT result, and far from the data.

This last observation is very surprizing, because the probability of the v, state is only
0.009%! How can such a small component have such a large effect? The reason is due to
interference between the small P states and the larger S and D-state components. The
magnetic form factor can be decomposed into electric and magnetic parts,

Gu(Q*) = Grs(Q*) D3 (@) + Gus(@) D (Q?)

where G, and G), are the isoscalar electric and magnetic form factors of the nucleon.
Expanding the body form factors to order (v/c)? gives
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Figure 11: The left pannel shows A and the right pannel Ty for the cases
shown in Fig. 10.

DY@ = [ dr {[263(r) — wA(r)] jo(r) + [VEulr)w(r) +w?(r)] fa(r)}
Dﬁ(QQ) = /Ooo dr {gwr"(r) + %mr (vt(r) [%u(r) — w(r)}
“u(r) [u(r) ; %w(r)])} o) + 72(7)]

where 7 = Qr/2 [16]. Note the appearance of the interference term in D¥,. This term is
dominated by the region where the S-state wave function is larger than the D-state wave
function, and therefore is large only if the P-state wave functions v; and v, have opposite
signs. This is the case for Model IIB, and we have confirmed that this term accounts
quantitatively for the bulk of the effect shown in Fig. 10. I noticed many years ago that the
same term gives a relativistic correction to the deuteron magnetic moment sufficient to give
the correct value when the D state probability is 7% [18]:

Apg = %m /0  rdr {vt(r) [Vl—iu(r) - w(r)] — vy (r) [u(r) + %w(r)} }

The right pannel of Fig. 10 shows that the pmy exchange current gives only a small
contribution to the B structure function, especially if one of the smaller p7+y form factors is
used. We conclude that Model IIB gives a good explanation of the B structure function.
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The predictions for the A and Ty structure functions are shown in Fig. 11. The A
structure function is most sensitive to the pmy form factor, but a reasonable result is obtained
for all structure functions if a small pry form factor is used.

Our study of the deuteron from factors leads to the following conclusions:

e In the neighborhood of the zero, the B structure function is very sensitive to the small

relativistic P-state components of the deuteron wave function. This is a surprizing
result.

e There is no compelling evidence for the existance of large isoscalar exchange currents.

e These observations would have been impossible without the use of a covariant model.

However, before we can draw definitive conclusions about the physics of the deuteron form
factors, we must examine the results predicted by the models with non-zero values of v.
These models tend to have very tiny P-states, but also generate a new family of isoscalar
exchange currents arising from the energy dependence of the off-shell couplings proportional
to v. It remains to be seen whether or not these new exchange currents will play the role
played previously by the P-states.

IV. CONCLUSIONS
I offer the following concluding remarks:

e A consistent, covariant formalism capable of replacing nonrelativistic quantum me-
chanics (at least for two and three nucleon systems) is fully developed and has become
a practical tool for calculations. In this formailsm boosts and rotations can be treated
ezactly.

e Some significant new insights, which could not have been discovered using nonrelativis-
tic theory, are emerging. In this talk I have discussed (i) the importance of off-shell
couplings, and (ii) the effects of the deuteron P-states.

e The most significant legacy of relativistic methods may not be the kinematical effects
which everyone knows are present, but the light such an approach can shead on the
nature of the dynamics. The relativistic methods described here provide a natural
description of the energy dependence of the effective NN interaction.

I thank the organizers for inviting me to speak, and giving me with another opportunity
to visit NIKHEF. The contributions of NIKHEF to our current understanding of hadronic
physics have been substantial, and it is always exciting to come here for a visit. Finally, it
is a pleasure to acknowledge the support of the US Department of Energy (DOE) through
Grant No. DE-FG05-88ER40435, and through CEBAF.
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