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Abstract

We report here the results of a test to ascertain the radiation hardness properties of

CVD diamond detectors to 300 MeV/c pions. In this test, CVD diamond detectors were

exposed to 8�1013 pions per cm2 using the high intensity pion beam at the Paul Scherrer

Institut. For comparison, silicon photodiodes were exposed to similar 
uences at the same

time. The measurements and the dosimetry during the irradiations are described herein.

As expected, the silicon devices degraded. The diamond devices showed no degradation

in collected charge and no increase in leakage current.
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1 Introduction

One of the attractive features of diamond charged particle detectors for high luminosity
particle physics applications is their expected radiation hardness. Very near an interaction
region in the LHC, at radii smaller than 15 cm, the predominant source of radiation is charged
pions [1, 2]. During the lifetime of the LHC it is expected that a detector located 6 cm from
the interaction region will receive 
uences of approximately 1015 pions per cm2. Furthermore
a large fraction of these pions will have very low momenta (coming from the hadronization
of jets) and thus can excite nuclear resonances in the detector material.

Previous irradiation studies of diamond detectors with alpha particles, 60Co photons, and
90Sr electrons indicate that CVD diamond is extremely radiation resistant to these sources [3,
4, 5]. That work reported, however, a curious e�ect: at low doses of photons or electrons (less
than 0.1 kGy) the observed charge signal increases with dose. Although not fully understood,
the working hypothesis is that ionisation from the irradiation �lls trapping centers in the
diamond, allowing electrons and holes to move farther, giving rise to an increase in the
observed signal size. In an attempt to extend the experimental information on the radiation
hardness of CVD diamond, a set of 3 diamond detectors [6] was exposed to a 300 MeV/c
pion beam at the Paul Scherrer Institut (PSI) in June of 1994. Pions are expected to cause
more displacement damage than either photons or electrons and hence provide additional
information. The diamond devices were made from the same wafer used for the photon
irradiation reported earlier. The samples were characterized before and after the irradiation.
During the irradiation the beam-induced current was monitored.

In this paper, we describe the irradiation procedure and the dosimetry used to quantify
the doses received. We also describe the collection distance measurements performed before
and after irradiation as tests for possible damage. Having no evidence for degradation at the
doses reported, we comment on the feasibility of extending this study to higher doses.

2 Irradiations and Dosimetry

The samples were exposed in the �E1 beam at PSI near Villigen in Switzerland. The
momentum of the pion beam was tuneable up to 400 MeV/c. The beam momentum for the
work reported here was 300 MeV/c with a 10% momentum spread. This pion momentum
was chosen since it corresponds to the peak of the pion-nucleon cross-section. The �E1 beam
line was designed to deliver high pion 
uences. Protons were eliminated from the beam
with a �nal focus, which caused the typical proton momenta from the source to be focused
upstream of the samples being irradiated. A series of carbon �lters e�ectively removed the
high energy protons which were still able to penetrate downstream on the beam axis. The
proton 
ux was measured to be less than 2% of the total. Neutrons were removed from the
beam with a dog-leg in the beam line upstream of the samples under test. The electron and
muon contaminations were measured to be less than 5% and 10% respectively.

The detectors irradiated during this test were attached to 35 mm slide mounts and placed
in a slide tray for easy placement and removal. The slide tray was mounted inside the sample
holder shown in Fig. 1. The pion beam spot size was 19 mm (�) at the entrance of the slide
tray and thus completely irradiated the test samples. The pion 
uence at various points in
the sample holder volume was measured with 1� 1 cm2 aluminum foils. The aluminium foils
were placed throughout the sample holder volume { a length of 25 cm along the beam line
and an area of 1 � 1 cm2 perpendicular to the beam. The exposure of aluminum to pions
produces a known amount of 24Na. After exposure, the calibration foils were monitored in
a gamma spectrometer to determine the amount of 24Na induced. With the known Al to
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Sample A B C

Serial Number P5 U3 U4

Area (cm2) 0.42 0.60 0.33

Thickness (�m) 260 430 430

Contact diameter (cm) 0.39 0.50 0.33

Contact metallization Cr/Au Cr/Au Cr/Au

Table 1: Mechanical properties of the diamond detectors.

Na transmutation cross-section it is then possible to determine the pion 
uence. The total

uence varied by a factor of three along the beam within the sample holder volume.

The pion 
ux was cross-calibrated to the current in an ionisation chamber which gave a
measure of the relative 
ux over the course of the irradiation. This in turn was related to
the beam-induced current both in the silicon and diamond structures under study. In fact,
the constancy of the ratio of the diamond beam-induced current to the beam 
ux make them
ideal for beam intensity monitors in future tests of this kind.

3 Diamond Signal Characterization

The diamond samples studied here were cut from a single wafer. In Table 1 we show the
mechanical properties of the three diamonds used. Two of the samples were unpolished (B,
C), and one was polished on both the growth and substrate side (A). Circular contacts were
deposited on opposing surfaces of the diamond. The area of the contacts was made as large
as possible on each detector for ease of use. A metallization of Chromium/Gold was used [7].

The diamond detectors were characterized before, during and after irradiation. The
method used before and after consisted of measuring the charge collection distance, d, the
mean distance averaged over the thickness of the material that an electron and hole move
apart under the in
uence of an applied external �eld [7, 8] using a 90Sr �-source. The col-
lection distance is related to the sample thickness L, the charge generated in the material Q,
the charge collected q, the average carrier mobility �, the average carrier lifetime � , and the
applied electric �eld E, by

d = �E� = q
L

Q
(1)

In Fig. 2 we show a schematic view of the source setup. Electrons from a 0.5 mCi 90Sr source
(maximumenergy of 2.28 MeV) are used to excite the diamond detector after passing through
a 2 mm diameter collimator. Events are triggered by a single scintillator indicating that the
electron has passed through the diamond. The typical random singles rate of the scintillator
is < 1 Hz while the typical event rate is 20-50 Hz. Events triggered in this manner detect
electrons which deposit on average 8% more energy than minimum ionising particles.

In addition, the leakage current was measured before and after irradiation [9]. A typical
I-V curve taken after the irradiation is shown in Fig. 3. The I-V characteristics may be used
to infer problems in the contacts and changes in the bulk material. No such problems were
observed here. The before and after I-V curves are consistent for all samples indicating no
changes to the contacts and no increase in leakage current. The low leakage current observed
is typical of detector grade diamond.
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Sample A, 2 B, 1 C

Fluence (�1013 pions cm�2) 1.3 4.3 8.0

Time beam on (hours) 5.75 5.75 8.0

Temperature of irradiation (�C) 27 27 5

Table 2: Exposure characteristics for the three diamond (A, B, C) and two silicon (1, 2) detectors

used in this work.

Sample A B 2 1

Electrode area (cm2) 0.12 0.20 0.25 0.25

Fluence (�1013 pions cm�2) 1.3 4.3 1.3 4.3

Leakage current initial (nA at 100V) 0.0014 0.0011 25 25

Leakage current �nal (nA at 100V) 0.0014 0.0011 4,000 10,000

Beam-induced current (nA at 100V) 72 110 238 550

Table 3: The leakage and beam-induced currents measured in the diamond (A, B) and silicon (1, 2)

samples.

In Table 2 we show the characteristics of the exposure used for each of the three samples.
Diamond samples A and B and silicon samples 1 and 2 were exposed together when the pion
beam intensity was relatively low. Their placement within the sample holder determined
the 
uence (see Fig. 1). Sample C was exposed separately when the pion beam reached its
highest intensity. The total error on the dosimetry is estimated to be �25%.

During the exposure, the beam-induced current was monitored using an high impedance
electrometer [10]. The beam-induced current, ibeam, is related to the pion 
uence f , and area
over which charge is collected A, by

ibeam =
dq

dt
=

�f

�t
�
Q

L
� d �A (2)

The online detector currents for diamond and silicon detectors are shown in Fig. 4 and Fig. 5.
These plots show the reverse bias current in the various devices over the last two thirds of
the irradiation. Note the di�erence in the current scales between the diamond and silicon
data. Two families of current measurements are apparent in each plot, those in the presence
of beam (diamonds) and those from the residual \leakage" current in the devices (stars)
when the beam was o�. Throughout the run when the pion beam was present, there were
two discrete and constant intensities depending on the primary proton beam current: full
intensity and roughly 85% of full intensity. The �ne structure when the beam was present is
clearly evident in the diamond data. Moreover for constant pion beams, the constancy of the
diamond current is taken as further evidence that the samples' charge collection properties
were unchanged over a wide range of doses. In the case of silicon the �ne structure when the
beam was present is not discernable. There is clear evidence of the increase of leakage current
with dose and of the annealing that occurs when the beams were turned o�. The di�erence
between the two families of points (in Figs. 4 and 5) is taken as the beam-induced current
reported in Table 3. The dominant errors are a 25% uncertainty in the absolute 
uence, a 1
nA precision on the measured current, and a 10 nA accuracy on the current scale.

4



4 Results

In Fig. 6 we show the collection distance for sample C as a function of electric �eld
measured before and after pion irradiation. The collection distance after irradiation has
increased over the pre-irradiation value by a factor of 1.5-1.8 depending on the electric �eld.
In Fig. 7 we show the relative collection distance at an electric �eld of 10 kV/cm, normalized
to the unirradiated value, as a function of 
uence. The data below a 
uence of 1011 cm�2

were taken with electrons from the source setup described earlier. The points at 1.3, 4.3 and
8 � 1013 cm�2 were taken with 300 MeV/c pions. These data con�rm the rise of collection
distance with small dose observed previously [4, 5]. The constancy of the collection distance,
the tracking of the beam-induced currents with the pion 
ux, and the constancy of the leakage
current in diamond at these large 
uences indicate the radiation hardness of CVD diamond.
Moreover, diamond appears to operate as expected at 27�C.

The silicon photodiodes showed a dramatic increase in leakage current as a function of
pion 
uence. Comparing the increase in leakage current with that found in 20 keV photon
irradiations [11] we conclude the primary cause of the increase of leakage current in silicon
from 300 MeV/c pions is displacement damage. Using the observed change in leakage current
we �nd a damage constant in silicon of 3:1� 10�17 A/cm/incident 300 MeV/c pion at 27�C.
This may be compared with the measured damage constant in silicon for 800 MeV protons of
4:9�10�17 A/cm/incident 800 MeV proton at 20�C [12, 13]. Scaling the damage constant for
protons up to account for the 7�C temperature di�erence we �nd that in silicon 300 MeV/c
pions have a damage constant approximately two and a half times smaller than 800 MeV
protons.

5 Conclusions

The data presented above indicates that the presently available CVD diamond detectors
are radiation hard up to pion 
uences of 8 � 1013 cm�2. No evidence for deterioration of
the signal response of the diamond samples was found. This is a strong indication that
diamond based detectors will be able to withstand the harsh environment of the LHC very
near to the interaction region. We intend to pursue these measurements with higher quality
CVD diamond material up to 
uences comparable to the lifetime dose at the LHC in future
measurements. We expect to reach pion 
uences of 1015 per cm2 during the next PSI run.
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Figure 1: A schematic view of the PSI setup used to irradiate the diamond (A, B, C) and
silicon (1, 2) samples. Samples A, B, 1, and 2 were exposed together. Samples A and 2
were placed at the low intensity position in the rear of the holder. Samples B and 1 were
placed at the high intensity position in the front of the holder. Samples B and 1 obtained
approximately three times the 
uence of samples A and 2 for the same exposure time.

7



�
�

Diamond

Scintillation
  Counter

Incident Beam

Charge Sensitive
       Preamp

Shaping
  Amp

Bias Voltage
Digital Scope

Sr
90

Collimator

Figure 2: A schematic view of the source setup used to characterize the diamond samples.
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Figure 3: The I-V curve for sample A after irradiation.
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a)

b)

Figure 4: The online detector current in a) diamond sample A and b) silicon sample 2 in the
low intensity (rear) position measured during the pion irradiation as a function of time. The
time axis (t = 0) begins 200 minutes after the beginning of the irradiation. The pion 
uence
increases from 4 � 1012 pions/cm2 at t = 0 to 1:4� 1013 pions/cm2 at t = 400 minutes in
both graphs. The two families of points in each �gure correspond to times when the beam
was on (diamonds) and times when the beam was o� (stars). During the data taking there
were two intensities of running which are clearly identi�ed in the diamond data. During the
periods when the beam was o�, the annealing e�ect in silicon is clearly evident. Note the
di�erence in current scales between a) and b).
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a)

b)

Figure 5: The online detector current in a) diamond sample B and b) silicon sample 1 in
the high intensity (forward) position measured during the pion irradiation as a function of
time. The time axis (t = 0) begins 200 minutes after the beginning of the irradiation. The
pion 
uence increases from 1:4� 1013 pions/cm2 at t = 0 to 4:3� 1013 pions/cm2 at t = 400
minutes in both graphs. Again the two families of points in each �gure correspond to times
when the beam was on (diamonds) and o� (stars). The dominant e�ect in b) is the growth
of the diode leakage current as the silicon is damaged.
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Figure 6: The collection distance as a function of electric �eld for sample C measured before
and after pion irradiation.
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Figure 7: The relative collection distance (d/d0) at an electric �eld of 10 kV/cm as a function
of pion 
uence normalized to the lowest 
uence point.
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