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Abstract

The vacuum configuration of the bilocal field in a QCD-based model field
theory{GCM) is shown to be equivalent to the dynamical mass of quarks.
Combining the equivalent relation with the theory of maay instantons, the
bilocal field and the QCD effective action are obtained. Some meson properties
are derived and calculated results agree with experimental data quite well. A
quark confinement potential in hadron which is consistent with the empirical
one is given. e e
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1. Introduction

It is known that quantum chromodynamics!!! (QCD) is a non-Abelian gauged quan-
tum field theory of interacting quarks and gluons which is believed to be fundamental
theory of hadrons. However, the main techniques for studying QCD are QCD Sum
rules®, instanton approximation, phenomenological models (MIT bag model, chi-
ral bag model, etc)® and others. In QCD sum rules, the non-perturbative effects of
QCD which is related to the underlying physics of hadrons come from the quark conden-
sate and gluon condensate resulting from the extension of operator product expansion
{(OPE) technique. Since the coupling constant g in QCD may become very large in
the case of low energy, the extension of the OPE technique of perturbative calculation
is still in doubt. Meanwhile the condensates are defined through experiments. In in-
stanton approximation, only the effect of pure Yang-Mills solution is emphasized. In
the phenomenological models, some properties of hadrons can be described well, even
though the consequences of the dynamically broken chiral symmetry are not accounted
for properly. .

To explain and unify the phenomenological models (take into account the chiral
symmetry breaking and avoid exploiting the OPE technique), a QCD-based model
field theory (referred to as global color symmetry model (GCM)), with QCD effective
action, elementary quark fields and interacting via dressed vector boson exchange, has
been put forward!®. With the GCM, the properties of several mesons and baryon
can be described(®—® and the partial wave amplitudes in 7 — x scattering can be repro-
duced well®l. The most important ingredient of GCM is the bilocal-field representation
B(z,y) of the QCD generating functional, from which a bilocal field bosinization ( B(s))
of QCD can be obtained. However, the practical determination of the vacuum configu-
ration B(s) is very difficult. To get the B(s), a relation hétween the running coupling
constant of QCD and the momentum of quarks was phenomenologically introduced® as
4ra(q?)/q* = 3u?6*(q)/16. It is obvious that this is a quite rough approximation. Even
with this assumption, the behavior of the B(s) was still not good enough. In ref.[9],
an improved expression of B(s) was given, but three parameters were introduced.

In this paper, we propose a new way to determine the bilocal boson-type field.
In Sec. 1I, we show the vacuum configuration of the bilocal field B(p) is equiv-
alent to the dynamical mass m{p?) of quarks. By employing the instanton dilute
approximation{!®1tl the vacuum configuration is the obtained. In Sec. III, some me-

son properties and quark confinement are discussed to check on the vacuum structure.
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II. Determination of the Bilocal Field in GCM

In the global color symmetry modell=* (GCM), the QCD effective action!" in
Euclidean metric is given as

I[B*} = —=Tr[ps(z - y) + %:\I'B'(z,y)] +/-B—'2(g?g_gf_.—(—-!;’)ll , (1)

\Yhere M® = K°C*F* is determined by Fierz transformation in color, Aavor and Lorentz
spacelt!

It is obvious that the field in the effective action is a bilocal field. The quantiza-
tion of the bilocal field B*(z,y) can be achieved, as usual, through the path integral
/e‘""""’"dB'(z,y). In the following, we take B¥(z,y), B:(:,y) to denote the clas-
sical field and the quantum field respectively. In fact, the quantum bilocal field is
obtained from the bosonization of quark and anti-quark quantum felds. The vac-

uum structure B*(z,y) can then be described by the bilocal field B*(z,y) under the
condition 1B (2.p)] .

B (z,y) 0. @
Although it is not possible to determine the vacuum state through egs. (1) and (2),
the general property of the vacuum configuration can be deduced. Since the vacuum
has time-space translation invariant property, the vacuum configuration can be written
as

B'(z,y) = B'(z —y). (3)
Defining the Fourier transformation of B(z,y) as
B'(p.p) = / d'zd'ye® ="V B(z,y), ’ (4)
ST ’
we can get
B\ p)e™ = 7Y = (0|B) (=, v)lp\ 0}, (5)

where {p, p')’ denotes the bound states of the quark and antiquark. The By, p) is
then the truncp.ted Bethe-Salpeter amplitude as shown in figure 1. Therefore, the
relation hetween the BY(p', p) and the Bethe-Salpeter amplitude can he given as

- S()M'B*(p',p)S(p) = / ', PIT(¥ () w))0)e™ ="V dzdy , (6)

where S(p) is the propagator of the pseudoparticle. The B*(p’, p) obtained in this way
contains then all the possible excited states of various bosons. Because only the low

energy phenomena are concerned, the lowest excited states are then to be considered
in the following calculation.

As all known, B®(p'. p) can be separated into two parts: the motion of the center of
mass and the relative motion. The motion of the center of mass has the same dynamical
variable as that for point particle. The quantization formalism is completely similar to
a local field. The relative motion dominates the internal structure of the bound states
which can be naturally deduced from the effective action. Considering only the u, d
quarks, the flavor symmetry is SU(2) ® SUA(2) and the lowest excited states are the
Goldstone.bosons. The quantum numbers of the Goldstone bosons are usually taken
as isoscalar scalars and isovector pseudoscalars, which can be identified to be ¢ and «f

with a normalization

B = T g (7a)
B.p) = L= a1 (7

where B(L:P-) denotes the structure of the vacuum. The normalization constants f,
and f, can he determined by the second term of the effective action (eq.(1)). The
mi(p — p’) is the excitation against * = 0, and o(p — p') is an excited state against
o = 1. For the isovector field, eq. (6) can be rewritten as

B(p)
fl

In order to get the vacuum configuration B(p), we discuss the axial vector current
in the PCAC scheme. In the massless QCD with u and d quarks, the axial vector

currents are A3 = 11;‘7“751'5:11;. The axial-vector vertex may then be written as

- S(p)rys

S = [(r(OIT(W(=)b(0)I0)e* da . (®)

ST, PIS(P) = = [ d'ad'ye” 2PV OIT (=) ALOFONIDY . (9)

where the vertex *T'%(p’, p) can be represented as figure 2.
From Lorentz invariant analysis we know

0 T p) = P K(*) + ¢ 1. AldY) (10)

where q = p’ — p. Since the second term on right hand side does not contain the pole,
the limit of 4%+, A(q?) as ¢ — 0 approaches to zero. Otherwise we are interested in the

vacuum excitation which corresponds the case 7 — 0. we can consider only the term
21002
7 K(2%).



According to the Landau and Cutkosky rulel'?| the dispersion relation of g, K (4?)
can be written as o K (2

wWk(g?) = "—;,E + ”—f/—T——";f ‘_("qz))

in which the second term comes from the contribution of continuous spectrum that

we are not interested in when g — 0 since pion as a Goldstone boson is only the

pseudoparticle. The first term is the pole term where R is the residue of the pole. We

should then calculate only the R. From the Landau and Cutkosky rule, we know that
the contribution tothe pole term of the vertex 3I'% {see Fig. 2) can be expressed as

dg? (1)

QR = =1 YOI AL O W= (T (w0}, (12)

where tr denotes to the truncated diagram (see Fig. 3 and the difference between Fig.
3 and Fig. 2).
According to PCAC theory,
(0145(0)|7(q)) = ifrqué . (13)
Since (W”IT(llJtl.))lO)'{r is the truncated Bethe-Salpeter amplitude, we have
(TATWRNOL = [ = (x| T(H(2)$(0)|0) o'
From eq.(8), we get
(*IT ()0, = —7 15 B(p)/ fx . (14)
Therefore, when p’ — p (¢ — 0), we have
¢ *To(r',p) = -7 B(p) . (15)

On the other hand, considering the translation invariance, we can write the right
- hand side of eq.(9) as

= [ d ety e O AL OB ())]0)
= = [ dladiye? == PO () AL B())I0) (16)
In massless QCD
ROIT(H(=) A2}y ))l0)

= (OIT{[A3(=), d{x)}d(xo — z0)b(y)}O) + (OIT {¥(HA3(2), $(3)}8( 20 — 10)}i0)
= —(OIT('ys,i;T"w(Z)u"fy)é(r =)o) - (OIT('IJ(I)'I-'(:)%T%J(: -0y (1)
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In momentum space, cq.(17) can be written as
- / dzdyd e TV s 0T (4 () A% (2)8(1))10)
= [ dadiydtze s 0T (45 023z — )I0)
+/d"zd‘yd‘:c"" “""”“V"(DIT(':"(IW(:)%T“‘/s's(i’ - )0} .
= /(de‘ye"“""q""""v(0|T(7s%r’:fv(r)¢"(y))lﬂ)

+ [ dtedtye =0T (b2 () 57" )I0) (18)

Since

1

[ dtzdtyet 0o (s

- . 1
™ Y(z ) (y))|0) = i/:l"zd‘ye'“’ - "—"'HSEr“S(x -y).
{19)
Writing S(z — y) in momentum space and calculating the integral. we can get

[ dtzdtye =0T 0T (25 s (@FNO) = iz 7 (2) 6l ~ o +pS() - (20)
By the same way, we can
/d‘rd"ye”"’"“”""""(OIT(¢(2)'13(y)%r“vs)IO) = iS(P')Vs%T“(?ﬁ)"é(q ~-p+p). (21)
Eq.(18) can then be written as
_/d‘xd"yd":e'”"""""""’af(0[T(|Z>(J:)A:(z)r/;(y))'0)
= i(27)'8(a = ' + P)brs7*S(p) + S 9557 (22)
Calculating the integral in the left hand side of eq.(18) directly, we have
= [ d'zdtydt e v T OIT () AL (2)(1))10)
= = [ dtzdtyd'z0z (75T OIT () A3 (=) Bly) D))
—g [ dzd!yd'e” T O () A ENI0) (23)
Paying attention to the infinite bound and the translation invariance, we know
— [ diadtydt s s eI T (4 (2) A3 )I0)
—igh [ dhadtydtze S T () A )0

—ig* / dred'yd ze T TPy rla=p'ip) (MNT(y(x )AL (0 )J)(!I)HO)

f

- _i(lu/‘l‘I:C-i(q'P'+P]v:’l".r(l’lyelp‘»r—l"‘V(O"I‘('!‘(I)A:[l)\"?l(y))’o)
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With eq.(9), we have

= [ dtsdtyd!ze D OIT (b)) F)IO)
= ig?(27)'8(q ~ ' + P)S(PV Tl . MS(p) - (21)
Comparing eq.(22) with eq.(21), we get
ig*(2m)*6(q ~ p' +v)¢(p) rs (n,p)s(p)-
= i(2x)'8(g - p' + 1))hs~f"5(n) + S0 )’n-f ]

We know thus that the axial-vector vertices satisfies relation
. . _ , ro 8 _
o p) = STUP) Fs + 5157 (25)

where S~'(p) = A(p*)p — m(p?) is the inverse of the complete fermion propagator in
which the m(p?) is the dynamical mass of the quarksit3),
When p’ — p, it becomes

¢ *Talp.p) = —r*m(p?)vs - (26)
Comparing eq. (15) with eq. (26}, we get

B(p) = m(p?) . (27)

It indicates that the bilocal field in the GCM can be expressed as the dynamical mass
of quarks and implies that the dynamical chiral symmetry is produced by the vacuum
structure of the condensates of quarks and gluons. : 7

Recently many evidences of strong interaction phenomena are in favor of the instan-
ton structure of vacuum in QCDUOILH=1 [y particular, the complex configuration
of the vacuum of QCD with different topological winding numbers can be constructed
in the model of instanton dilute liquid"®". Lattice QCD calculations!!) are also in
consistent with the above point of view. In the scheme of instantons, the infrared
catastrophe occurrmg at the low energy phenomenon can be handled by the instanton
dilute liquid approximation. Because there are repulsive forces among the instantons,
the size of instantons can not become large. It have heen shown that the radii of
instantons are R ~ (600McV)™! = } fm and the distances between the instantons
D = (200MeV)~' = 1 fml®!!). Because instantons are distributions of the pure gauge
fields, they can have weak overlapping. The background configuration of the pseu-
doparticles can then be written as

,,.=z,\'+§j/\,’,‘ (28)

where [ denotes the contribution of instanton and T denotes the contribution of anti-
instanton.
It has been shown that, in massless QCD, the quark propagator in the medium of

instantons can be written asity

S(p) = (p = m(p")™ (29)

with dynamical mass

m(p’) = -B-p’sv"(p) (30)
Combining this result with eq.{27), we get the vacuum configuration of the bilocal field
B(p) as ;

Blp) = Lo "(r) (3)

where ¢'(p) = 7p -[Io YKo(z) — N{(z)Ki(5)], in which z = Il’%e, I.(2) (Ka(2))
(n = 0,1) are the first (second) kind modified Bessel funct.lons of order n. jp =
(200 MeV)* is the average density of the instantons. R = [m is the average radii of
the instantons. € is a constant (85 MeV)™'. The general fea.ture of B(p) is illustrated
in figure 4. And it has asymptotic behavior

mepR?
'sp PE 5
B0 =4yt | )
RipS P> R

With eq. (7) and the results of the local fields of point particles, the bilocal field B(y'. p)
can be determined.

I11. Evaluation of Some Hadron Properties

From eq. (1), we know that the effective action of the Goldstone particles can be

written as
z+y :
I[o,7] = ~Trin{@b(z — y) + Blz = y) + ‘f + 225 ABG - )
e pARTA LIRS L] {wB{(wW)Tr{G(w 3
[+ 20 () [ dwBITHG()] (3%)

where G~ Y(z,y) = #6(z — y) + Bz ~v) and the field 0(z) = o(z) — 1. This elfective
action has to be normalized to

Ho(z), #(z)] - I11,0] = ;/([au011+,y,,102]¢':+%/((aua]um,l;1],1";+... L (39)
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From this equation the constants f, and f, can be determined. For example, with
eq. {33) we know that the pion decay constant f, holds the following relation

Ho(z). #{2)]) - I1.0] = Trnfb(z - y) + G i-ysiif[}(z -u). (35)

Combining eq. (35) with eq. (34), we get the decay constant of pion in the following

1= o [ sds 3874280 + BG4+ 38" (£)' 5B (1 +28%)°
N Sxtle (s+ B2 - (s7 B , (36)

= p?
whelje s = p*, B(p) = m(p’). By the same way, we obtain the decay constant of
o-meson as

. 2
e [ {1208 5088 = ()
7 8x%lJo (s + BY)?

48 o 2
+2[1 +2B%L +sBLE + s (%E) |B¥(s — BY)

(s + By
(1 +2B(4)}sB%(s - B?)
- (s + BP)A : (37)

With the data listed in Sec. 1l and egs. (36) and (37), we obtain f, = 97 MeV
Jo = 60 MeV. The calculated result of f, is quite close to the experimental data:
fr = 93 MeV. Comparing this result with those in references [6], [7] and [8], we
know, that eq.(36) is almost the same as those obtained by considering only the ef-
fective action. However, because of the difference of the vacuum configuration B(p)
the numerical results are quite different. Their results are 72 MeVH® 74 MeVi® an(;
84 MeVIT respectively. Even with three parameter being introduced, the calculated /.
is 91 'M'eVM. On the other hand, in the case of taking only the instanton dilute liqui:l
approximation into account, the result is 138 MeVIt', ‘

As mentioned above, the vacuum structure of the nonperturbative QCD can be
described by the field with « = 1, # = 0. The effective action of the vacuum can be

given as
_3 a0 oo ?
N0 = =2 s - 5
(1.0} 4:’/)/0 ds{[lns+B’]+s+B7(3)}{r'z

)- O ’4-
_/0 Ked's | (35)

where B(s)
-3 (o s s
| = 1 . 39
K 'hr’/o Sds{[ns-%B’(s)} + s+B’(s)} (39)
TFor short distance, the cffective action in a hadron can be written as
=1 4 1P~ 1{5,q, AP + I{1, 0} nside » (10)

where 1{7, q, 4|7 Eorresponds to the perturbative coutribution to interaction potential
in a hadron which can be approximated to the one gluon exchange interaction. Vith

eq.(38), the second term can be written as N

I[1, 0 side = /inside Kd'z = /0 (/ Kdzdydz)dt .

We have then
v =/  Kdzdydz . (a1
inside

where K is determined with eq. (39) (about 23 MeV/fm?®). For the distance having
been pulled in one dimension, it gives V o Kr. For three-dimensional sphere, it gives
V « K3 This indicates that eq. (41) provides a potential of quark confinement which

is consistent with the empirical one.

IV. Conclusion

We have shown that the vacuum configuration of the bilocal field in GCM ( a QCD-
based model field theory by considering the effective action in QCD) can be expressed
as the dynamical mass of quarks. Applying the approach of instanton dilute liquid to
the above QCD-based model theory, the bilocal field and the QCD effective action are
given. With this scheme, a potential of quark confinement which is consistent with
the empirical confinement is obtained. The decay constants of pion and o-meson are
calculated. The calculated result agrees with experimental data quite well. Moreover,
the agreement is much better than that obtained by considering only either the effective
action or the instanton dilute liquid approximation. It shows that, with presently
proposed scheme to determine the bilocal field and the QCD effective action in the
GCM, one can discuss various low energy phenomena of strong interaction, especially

the meson properties, on a firm foundation.
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Figure Captions:

Figure 1. The truncated Bethe-Salpeter amplitude

Figure 2. The vertex of the axial vector

Figure 3. The truncated vertex of the axial vector

Figure 4. The momentum dependence of the bilocal field
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