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We employ a covariant formalism to study the evolution of cosmological perturbations during a first-order
phase transition, addressing in particular their gauge dependence that have been overlooked so far. Our results
reveal that non-covariant treatments employed in previous studies can substantially overestimate the produc-
tion of primordial black holes and scalar-induced gravitational waves. Once gauge dependencies are properly
accounted for, we find that both effects occur at significantly lower levels than previously estimated.

Introduction. The vacuum right after reheating is expected
to possess a higher degree of symmetry compared to the one
of today [1]. The breaking of these symmetries as the uni-
verse cools down can arise via first-order phase transitions
(FOPTs). Bubbles of the true vacuum nucleate and expand
within the false vacuum background, converting the vacuum
energy difference into heat and kinetic motion of the fluid
(see e.g. Ref. [2] for a review). If bubbles carry a large en-
ergy fraction of the universe, FOPTs are expected to leave
important imprints on the space-time metric, including grav-
itational waves [3, 4], primordial black holes (PBHs) [5–30],
and curvature perturbations [20, 31–37]. The latter are known
to generate scalar-induced gravitational waves (SIGWs) [38–
49]. Cosmological scalar perturbations exhibit gauge depen-
dence in general [50], and therefore the validity of PBH, cur-
vature, and SIGW predictions relies on employing a proper
covariant treatment of perturbations and their evolution equa-
tions.

In this letter, we derive the statistical properties of cos-
mological perturbations produced during a strong first-order
phase transition, with a particular emphasis on the gauge
choice and the calculation of gauge-invariant quantities. We
evaluate the PBH abundance and the spectrum of SIGWs us-
ing the most appropriate quantities for each: the density con-
trast in the comoving gauge δ(C) for the former, to match the
convention used to report the threshold for collapse in numeri-
cal simulations, while the gauge-invariant curvature perturba-
tion R for the latter.

Covariant linear perturbations from FOPTs. We model
the nucleation rate by

Γ = H4
n e

β(t−tn), (1)

where Hn is the Hubble factor (H ≡ ȧ(t)/a, with a being
the scale factor) at t = tn, defined as the nucleation time.
During an FOPT, the energy and pressure density decomposes
as Adopting a relativistic bag equation of state, the energy and
pressure density decompose as

ρ = ρR + ρV , p = ρR/3− ρV , (2)

where R and V stand for radiation and vacuum components,
respectively. We consider the supercooled limit for which the

latent heat ∆V is larger than the radiation energy density just
before nucleation α ≡ ∆V/ρR ≫ 1. At the background level,
the radiation and vacuum energy density obeys the continuity
equation

ρR
′ + 4HρR = −ρV

′, with ρV = F∆V, (3)

and the Friedman equation 3M2
plH

2 = ρR + ρV. The prime
denotes the derivative with respect to the conformal time η

related to the cosmic time t by η(t2) = η(t1) +
∫ t2
t1

dt̃/a(t̃),
and we defined and H = aH . The false vacuum fraction F (t)
is given by

F (t) = exp

[
−4π

3

∫ t

−∞
dtn Γ(tn)a(tn)

3

(∫ t

tn

dt̃

a(t̃)

)3]
, (4)

where we assumed bubble walls to expand at the speed of light
vw ≃ 1.

Due to the stochastic nature of bubble nucleation, the stress-
energy tensor Tµ

ν acquires fluctuations – assumed to be sta-
tistically isotropic – T 0

0 = ρ + δρ, T i
j = −(p + δp)δij , and

T i
0 = (ρ + ρ)vi where vi = dxi/dt is the coordinate veloc-

ity, and we use δ ≡ δρ/ρ in the following. Cosmological lin-
ear perturbations are gauge-dependent [50]. Fixing the gauge
to be spatially-flat (F), linearised Einstein equations give in
Fourier space

δ̃
(F )′

k + 3H(c2s − ω)δ̃
(F )
k = (1 + ω)Ṽk − 3Hδ̃p,nad,k, (5)

where X̃k(t) denotes the Fourier-transform of X(x, t). The
quantities ω ≡ p/ρ and c2s ≡ ṗ/ρ̇ are the equation of state
and speed of sound, respectively. The quantity δp,nad is the
non-adiabatic pressure perturbation

δp,nad ≡ δpnad
ρ

, with δpnad ≡ δp(F ) − c2sδρ
(F ), (6)

which is gauge-invariant in spite of the superscript (F ) on the
right hand-side. Using Eq. (2), Eq. (6) becomes

δpnad =
1− 3c2s

3
ρ δ(F ) +

4

3
∆V δF (F ), (7)
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where δF (F ) = F (F ) − F with F (F ) ≡ ρ
(F )
V /∆V . The

quantity V in Eq. (5) is the gauge-invariant (GI) scalar veloc-
ity V = v + E′ with ∂i(v) = δijv

j and E being the scalar
component of the 3-dimensional spatial metric hij . Einstein
equation along 0i gives

V = − 2

3(1 + ω)

HΦ+ Φ′

H2
, (8)

where Φ is the GI Newtonian potential [50]. A combination
of Einstein equations along 00 and ij gives

Φ̃′′
k+3(1+c2s)HΦ̃′

k+[3(c2s−ω)H2+c2sk
2]Φ̃k =

3

2
H2δ̃p,nad,k.

(9)
The initial conditions for the system Eq. (5) and (9) are

δ̃
(F )
k (0) = 0, Φ̃k(0) = 0, Φ̃′

k(0) = 0, (10)

where we have neglected the primordial curvature perturba-
tions (i.e. generated during inflation), which we assume to be
small at these scales. For more details on cosmological per-
turbation theory, we refer the reader to the companion paper
[51] or Refs. [52–56].

In the spatially-flat gauge, constant-time hypersurfaces are
flat ds2

∣∣
η=const.

= −a2dx2. This is particularly convenient
since by plugging Eq. (7) into Eq. (5), we get a perturbation
equation

δρ̃
(F )′

R,k + 4Hδρ̃
(F )
R,k = −δρ̃

(F )′

V,k +
4

3
ρR k2Ṽk, (11)

which coincides with the background equation in Eq. (3) in
the super-Hubble limit k ≪ H. Hence, in the spatially-flat
gauge and in the super-Hubble limit, different patches evolve
as distinct FLRW universes [57], and we can identify

F̃
(F )
k ≃

k≪H
F̃

(FLRW)
k , (12)

where F (FLRW) is the false vacuum fraction in a flat FLRW
universe. Notice that such equality does not hold in other
gauges. The code deltaPT developed in Ref. [20] calculates
the false vacuum fraction F

(FLRW)
avg (R, t) in flat FLRW uni-

verse averaged over a ball of radius R. In this work, we rely
on the approximation1

F̃
(FLRW)
k (t) ≃ V F (FLRW)

avg (R = k−1, t), (13)

with V = 4πR3/3. The factor V ensures that Fourier trans-
forms carry the usual volume dimension. Due to Eq. (13), it
follows that X̃k(t) ≃ V Xavg(R = k−1, t) for any pertur-
bations X derived in this work. This approximation should

1We leave a proper de-convolution from the top-hat window function
W (r,R) = Θ(R − r)/V followed by inverse-Fourier transformation for
future work.
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Figure 1. Time evolution of the GI curvature perturbation R, and the
density contrast in the spatially-flat δ(F ) and comoving δ(C) gauge
during an FOPT. We show perturbations X averaged over a volume
4πk−3/3. We also report the non-adiabatic pressure δpnad peaking
close to Hubble crossing epoch H = k. For presentation purposes
we assume β/H = 4 and show the wavenumber k = 0.9kmax,
where we identify kmax as the maximal H. j = 1 indicates the time
of first bubble nucleation, which is slightly delayed with respect to
average (orange vs black dashed line).

become exact in the super-Hubble limit k ≪ H when gra-
dient terms are negligible. We now denote perturbations by
X ≡ X̃k/V ≃ Xavg(R = k−1).

In practice, the evolution of perturbations can be derived
as follows: from Eq. (12), (13) and deltaPT, we calculate
δpnad in Eq. (7), then we solve the closed system of equations
in (5) and (9) to determine Φ and δ(F ), see Ref. [51] for more
details. The density contrast in the comoving gauge can be
derived using the transformation rules (cf. Ref. [51])

δ(C) = δ(F ) + (5 + 3ω)Φ +
2Φ′

H
. (14)

Knowing Φ, we can deduce the comoving curvature perturba-
tion R given by the gauge-invariant expression [50]

R ≡ Φ−HV =
5 + 3ω

3 + 3ω
Φ+

2Φ′

3(1 + ω)H
. (15)

We show the time evolution of δ(F ), δ(C), R and δpnap in
Fig. 1, for a single realization of the local nucleation dynam-
ics. One can derive the statistics for these quantities by mak-
ing multiple realizations of the random bubble nucleation his-
tories using deltaPT which relies on the semi-analytical for-
mula introduced in App. A of Ref. [20]. We show the prob-
ability distribution function (PDF) of the density contrast in
Fig. 2. We show the variance of the density contrast in the
spatially-flat and comoving gauges, as well as the GI curva-
ture perturbation in Fig. 3.

Primordial Black Hole formation. Once the density con-
trast in a Hubble patch exceeds a threshold, it collapses into
a PBH [58–62]. Numerical-relativity simulations [63] spec-
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Figure 2. Probability distribution of the density contrast in the co-
moving gauge averaged over a volume 4πk−3/3, from Nsim = 106

patches caused by the random nucleations time and position of
jc = 50 bubbles per patch. The dashed lines show the best fits using
the distribution in Eq. (22). The dotted lines shows the best fits using
a Gaussian distribution. We choose k = 0.9kmax where kmax is the
scale entering at percolation. The colored boxes indicate the collapse
condition in the comoving (blue) and spatially-flat (red) gauges. We
cut the box at the indicative amplitude for a stellar mass PBH.

ify this threshold using the compaction function at the Hub-
ble crossing epoch tH [64, 65], related to the density contrast
averaged over a Hubble patch δavg(R = k−1, tH) [66, 67],
which in our notation is δ(k ≃ H). As we have seen, the
latter is gauge-dependent, see also Ref. [68]. Recent simula-
tions have relied on the comoving gauge, see e.g. [66]. This
gauge is advantageous since the 00 component of Einstein’s
equations reduces to Poisson’s equation ∆Φ = 3H2δ(C)/2.
In this gauge, a patch collapses into a PBH if [63, 66, 67]

δ(C)(k ≃ H) ≳ δ(C)
c ∈ [0.40, 0.67], (16)

with the exact value depending on the curvature profile [69].
These simulations assume adiabatic evolution from super-
Hubble scales [63, 66, 67]. In our scenario, non-adiabatic ef-
fects quickly vanish after percolation (see Fig. 1), so we adopt
the usual collapse condition at k = H.

We proceed to estimate the abundance of primordial black
holes. Denoting P (δ(C)) as the probability distribution for
δ(C) at k = H, the PBH mass fraction at formation reads

βk(M) =

∫ ∞

δ
(C)
c

dδ(C)

(
M(δ(C))

Mk

)
P (δ(C)). (17)

In the first line of Eq. (17), the mass M of the PBH is related
to the density contrast through the critical scaling law [70–73]

M(δ(C)) = KMk(δ
(C) − δ(C)

c )γ , (18)

with γ = 0.36, K ∼ 3, and Mk = 4πM2
pl/Hk represents

the mass within the Hubble sphere when scale k re-enters and
Hk = k/a. Using that PBHs redshift like matter, we obtain
the DM abundance composed of PBH fPBH

dfPBH

d ln(M)
≃
∫

d ln k

(
βk(M)

3× 10−10

)(
Tk

GeV

)
. (19)

where Tk is the temperature at Hubble crossing. Approximat-
ing spectrum to a nearly monochromatic distribution close to
k ∼ kmax, one parametrically finds

fPBH ∼

(
P (δ

(C)
c )

10−10

) (
Tk

GeV

)
, (20)

where the Hubble crossing temperature is related to the Hub-
ble mass as

Mk(Tk) = 4.8× 10−2M⊙

(
106.75

g∗

)1/2(
GeV

Tk

)2

, (21)

and g∗ is the number of relativistic degrees of freedom.
In Fig. 2 we plot P (δ(C)) at k = 0.9kmax. The distribu-

tion is negatively skewed—with an extended tail in the nega-
tive range and an exponential suppression of large overden-
sities—reflecting the exponentially low probability of late-
blooming patches. As in Ref. [20], the fit

P (δ) ∝ exp

[
ϵ

2
(δ − µ)− 2

ϵ2σ2

(
1− e

ϵ
2 (δ−µ)

)2]
(22)

(with ϵ, σ > 0) accurately describes the data (see companion
paper [51]).

Due to the negative non-Gaussianity (NG), even for a com-
pletion rate as low as β/H = 4, P (δ(C)) drops sharply
around δ(C) ∼ 0.1 and is strongly suppressed above the op-
timistic PBH threshold δ

(C)
c ≳ 0.4 in Eq. (16). We found

similar results for β/H = 2, just above the no-completion
boundary. We conclude that within the framework considered
here, slow FOPTs do not appear to yield PBHs in observable
amounts. The PDF for δ(F ) in the flat gauge is broader but
still heavily skewed, and with the collapse threshold shifted to
δ
(F )
c ≃ 10 δ

(C)
c – following from Eq. (14) – the conclusion re-

mains unchanged. Note that our analysis neglects non-linear
corrections to the density–curvature relation, which would
slightly reduce the variance of δ(C) further [74, 75].

Induced Gravitational Waves. We now focus on the
GW spectrum from FOPT dynamics, seizing the relevance of
SIGWs from curvature perturbations. The GW abundance to-
day can be written as

ΩGW(k) =
1.7× 10−5

g
1/3
∗ (Tk)

[
ΩPGW(k, Tk) + ΩSIGW(k, Tk)

]
,

(23)
where ΩPGW and ΩSIGW are the spectrum of primary GWs
(PGWs) and SIGWs. Primary GW are produced from bubble
collision and relativistic shells. Assuming that the latter re-
main thin and conserve their energy after collision, their GW
spectrum is approximated by the broken power-law bulk flow
formula [76–78]

ΩPGW ≃ 0.06

(
H

β

)2
(a+ b)faf b

⋆(
afa+b + bfa+b

⋆

)SH(f), (24)

with f⋆ = 0.8(β/H)(H/2π), a = 0.9, b = 2.1, and SH(f)
imposing a f3 behavior for f < H/2π. SIGWs are given
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Figure 3. Variance of the perturbations X averaged over a ball
of radius k−1, σ2

X ≡
〈
X2

avg(R = k−1, tH)
〉
, evaluated at Hubble

crossing epoch tH . We show the comoving curvature perturbation R
(red), the density contrast in the spatially-flat δ(F ) (blue) and comov-
ing gauge δ(C) (yellow), and the non-adiabatic pressure perturbation
δp,nad (green).

by [38–49]

ΩSIGW(k, η) =
1

24

(
k

H(η)

)2

Ph(k, η), (25)

where the power spectrum induced at second-order from cur-
vature perturbations is

Ph(k, η)(2π)
3δ

(3)
D (k+ k′) =

16k3

2π2

∑
s

∫
d3p

(2π)3

∫
d3q

(2π)3

× Js(k,p, η)Js(k′,q, η)⟨R̃pR̃k−pR̃qR̃k′−q⟩ ,
(26)

having defined

Js(k,p, η) ≡ Qs(k,p)I(k,p, η) (27)

as the product of the polarization tensor contracted with the
loop momenta Qs(k,p) = eijs (k̂)pipj , and the kernel func-
tion I(k,p, η) being the convolution of source and Green
function, see e.g. Ref. [79] and references therein for the ex-
plicit expressions. The overline denotes a time average over
oscillations [80] and s labels the two GW polarizations. In
the Gaussian limit, only disconnected contractions contribute
to the four-point function in (26), while NGs introduce addi-
tional terms proportional to the curvature trispectrum [81–95].
We extract the curvature power spectrum, ⟨R̃(k)R̃(k′)⟩ =

(2π)3δ
(3)
D (k + k′)(2π2/k3)PR(k), from the variance of the

volume-averaged curvature perturbation σ2
R shown in Fig. 3

by inverting the formula

σ2
R ≡

〈
R2

avg

〉
=

∫
dk

k
|W̃ (k,R)|2PR(k), (28)

where W̃ (k,R) is the Fourier-transform of the top-hat win-
dow function. Using PR(k) ∝ k3 we obtain PR(k =

Figure 4. SIGW contribution to the GWs from FOPT. The solid line
reports the total ΩGW, while the dotted line the subdominant SIGWs,
which includes the NG corrections.

R−1) ≃ 2σ2
R/3π. Omission of this factor 2/3π would lead

to an overestimation of the SIGW amplitude by a factor of 20
when employing the variance of the spatially-averaged R in-
stead of its power spectrum. The NG parameter is defined via
the skewness as [96, 97]

FNL =
⟨R3⟩
6⟨R2⟩2

. (29)

The coefficient FNL depends on k. We leave the study of
the scale-dependence for future work and fix k ≃ 0.9kmax,
close enough to the maximum of PR(k) which dominates
the GW emission. We find that, for a representative value
of β/H = 5, FNL ≃ −2.5. Even though FNL is negative,
the correction to the SIGW spectrum are proportional to F 2

NL

from the curvature four-point function, and thus can enhance
the SIGW abundance. Fig. 4 shows the resulting GW spectra
for various β/H . We conclude that SIGWs are never strong
enough to form a secondary peak in the total spectrum and
at most affect the far-IR tail due to the logarithmic scaling
ΩSIGW(k ≪ k⋆)∝ k3(1 + Ã ln2(k/k̃)) [98].

Conclusions. In this work we have employed a covari-
ant formalism to study cosmological perturbations originat-
ing from an FOPT, with implications for PBH formation and
SIGWs. Upon modeling bubble dynamics on a FLRW back-
ground, previous works have implicitly chosen the spatially-
flat gauge (F). However, the values of the density contrast at
the PBH formation threshold δ

(C)
c ∈ [0.4, 0.67] and its rela-

tion to the comoving curvature perturbation at Hubble cross-
ing R ≃ −9δ(C)/4 – widely quoted in the PBH literature –
are valid in the comoving gauge (C). At Hubble crossing, the
density contrast in the spatially flat and comoving gauges are
related by δ(F ) ≃ 10δ(C). Misidentifying these two gauges
leads to an underestimation of the PBH collapse threshold by
a factor of 10, leading to a dramatic overestimation of the PBH
abundance. The same gauge confusion over-estimates the co-
moving curvature perturbation R by a factor 10 and therefore
overestimates SIGWs by a factor of 104. Additionally, we
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identified a factor of 2/3π between the variance of the spa-
tially averaged R and its power spectrum, further suppressing
SIGWs by a factor of 20.

Hence, PBH and SIGW production from FOPTs are far
smaller than previously thought, potentially placing them be-
yond experimental reach. This finding has significant implica-
tions for ongoing and future gravitational-wave experiments,
where the loudest predicted signals from FOPTs are not nec-
essarily ruled out by PBH overproduction constraints [14, 99].

We have neglected gravitational effects on nucleation
rates [100] and on the expansion of bubbles [33, 37], as well
as the gradient energy of bubble walls [11, 19, 26]. The ac-
tual distribution of radiation converted from the vacuum en-
ergy is also important in understanding perturbations on small
scales k ≳ H [101, 102]. Future work should incorporate
these effects and perform full numerical simulations tracking
non-linear curvature perturbations and non-adiabatic pressure
effects to refine PBH formation criteria.
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