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Updating the software description of the ATLAS Detector
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Abstract. The software description of the ATLAS detector is based on the
GeoModel toolkit, developed in-house for the ATLAS experiment but released
and maintained as a separate package with few dependencies. A compact
SQLite-based exchange format permits the sharing of geometrical information
between applications, including visualization, clash detection, material inven-
tory, database browsing, and lightweight full simulation. ATLAS simulation, re-
construction, and other elements of standard ATLAS offline workflows are now
being adapted to ingest the geometry files, which are prepared using platform-
independent modular geometry plugin code. This represents a major transfor-
mation of the ATLAS detector description software, impacting even the de-
velopment procedures for which new roles have been invented. During these
integration activities, both the GeoModel geometry kernel and the GeoModel
toolkit have seen improvements, including volume calculation, material blend-
ing, helper classes for simpler memory management, and a richer collection of
supported geometrical objects. This paper reports on these activities.

1 Introduction

In the coming years, the Large Hadron Collider (LHC) at CERN will be updated, in the
context of the “High-Luminosity LHC” (HL-LHC) project [1], to deliver higher luminosity.
The upgraded accelerator will start operating in the LHC “Run4” data-taking phase in 2030–
2033. In response to that, the ATLAS [2] detector will get major updates to cope with the
larger number of collisions, increased number of generated particles, and the higher pileup.
In particular, new detectors will be installed: new muon chambers [3], a new inner tracker
(ITk) [4] that will replace the current Pixel [5], SCT [6], and TRT [7] trackers, and a High
Granularity Timing Detector (HGTD) [8] (see Figure 1).

To ease the insertion and development of the new detectors and to ensure maintainability
in the long run, the original ATLAS geometry package GeoModel [9] has been updated, and
the overall Detector Description architecture of the ATLAS experiment has been recently
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reviewed, modernized, and optimized along the introduction of new tools[10]. This paper
briefly presents the overall architecture of the new GeoModel toolkit, which is currently used
by the FASER [11] and ATLAS experiments at CERN. Then, it highlights the latest tools
that have been added to let developers easily develop, inspect, debug, visualize, and simulate
detector geometries.

Figure 1. The figure shows the different components of the ATLAS experiment that will be upgraded for
the upcoming “Run4”/HL-LHC. Those surrounded by a yellow border are new new particle detectors;
the geometry of those are being developed with the new GeoModel toolkit.

2 The New ATLAS Detector Description

So far, the ATLAS experiment has used a Detector Description architecture [12] that is very
well suited to the needs of the experiment in the Run 1, Run 2, and Run 3 LHC data-taking
periods. However, the current architecture presents major limitations and flaws that prevent
new detectors’ easy insertion, development, and maintainability. In particular, as shown in
Figure 2, in the current implementation, everything lives in the specific experiment’s soft-
ware framework, causing an inefficient and slow development cycle, with no flexibility in
the choice of the tools to inspect, debug, and visualize the detector geometry. The current
architecture is also based on multiple data sources, both in-framework and external, making
it hard to track changes or tag and reproduce different versions of the geometry. The cur-
rent geometry is also based on multiple ad-hoc interfaces for different detectors, making it
hard to update or develop new ones, and challenging to maintain long-term (because of ex-
perts retiring or leaving the experiment). In addition to that, at the moment, the geometry
“primary numbers”, which are used to build the actual geometry volumes, are stored in a
dedicated Oracle [13] database. Being a full-fledged database, it requires dedicated expertise
to run, deploy, and maintain, making it hard for detector description developers to enter data
independently. Also, not being open-source adds running costs to the experiment.

To overcome these limitations, the detector description for the HL-LHC/“Run 4” phase is
based on a new architecture, whose schematic structure is shown in Figure 3. The GeoModel
geometry kernel library and all tools needed to build the raw detector geometry have been
moved out of the experiment’s software framework. The Oracle DB will be decommissioned,
and the geometry “primary numbers” will be defined in XML files and stored in a dedicated
Git repository; the migration makes it easy for geometry developers to insert and update the
“primary numbers” and all other related parameters, and it makes it easier for the detector de-
scription coordinators to track, tag, share, and reproduce different versions of the geometry.
To store the complete geometry description, a new dedicated I/O layer has been developed



Figure 2. The figure shows the structure and the main components of the Detector Description archi-
tecture used by the ATLAS experiment in the “Run 1”, “Run 2”, and “Run 3” LHC data-taking periods.

to get a persistent copy of the GeoModel-based geometry into an SQLite [14] server-less
database file. As a result, the raw geometry is now completely developed outside the frame-
work, locally on the developer’s machine, in a very fast and efficient development cycle, and
there will be a single data input point for raw geometry into the experiment’s framework.

Figure 3. The ATLAS new, modular Detector Description architecture being developed for “Run
4”/HL-LHC, offering more flexibility, fastest development cycle, and improved code maintainability.

Several different tools have been developed besides the original geometry kernel library to
ease the work of the geometry developers, as well as to design, build, store, handle, visualize,
inspect, and debug detector geometries. The new packages compose a homogeneous, ever-
growing, modular, pure C++ toolkit for HEP detector geometries, the GeoModel Toolkit [15].
Developers can choose which GeoModel modules to use, based on their needs, in a modular
way and with minimal external dependencies. The original GeoModelKernel library, which



has been in use in the ATLAS experiment to describe all the detectors for more than 20 years,
describes the detector as a tree of nodes: volumes, shapes, elements, materials, transforms,
parametric placement, and other types of nodes. Most of the nodes can be shared to save
memory, and the library features a very efficient mechanism for handling alignment, with
multiple alignment constants kept in the cache. It also offers many memory-saving tech-
niques, which help to get a very low memory footprint. As an example, the accurate geome-
try of ATLAS, which is the largest of the LHC experiments and composed of about 5 million
nodes, only takes up about 80 Mb of memory. The I/O layer of the GeoModelIO package
offers efficient I/O to dump and restore the whole tree of nodes, published volumes, alignable
transforms, and any user-defined auxiliary data in SQLite files in an optimized way — As
an example, the full ATLAS geometry is entirely contained in an SQLite file of about 20
Mb. The GeoModelTools package implements different tools to build, combine, convert, and
translate geometries. At the same time, the GeoModelVisualization module offers the devel-
oper a Qt-based [16], interactive visualization tool that is optimized for geometry. Moreover,
the FullSimLight[17] module provides a lightweight Geant4-based [18, 19] detector response
simulation, as well as a graphical user interface (“FSL”) to let geometry developers conve-
niently steer the simulation and a plugin mechanism to extend it [20]. The FullSimLight
module also offers standalone programs to detect clashing volumes, create “geantino maps”,
and compute volume masses, among all the other tools and features.

The latest additions to the GeoModel toolkit are discussed in Section 3.

3 Recent Developments

3.1 New Memory Management

GeoModelKernel was first coded more than 20 years ago, when C++ only offered low-level
memory management. At that time, a custom reference-counting mechanism was developed
to create and delete GeoModel node instances into memory safely. However, over the years,
the C++ programming language, which is used to develop the GeoModel toolkit, received
many updates to ease memory management so that custom-made solutions are no longer
needed. Therefore, recently, a major overhaul of the GeoModelKernel memory management
has been performed, with the introduction of modern C++ smart pointers. That now ensures
improved memory management as well as better maintainability of the GeoModel code base.

3.2 I/O Optimization, Improved Precision

The GeoModel toolkit offers an I/O mechanism to easily dump a persistent copy of a full
GeoModel tree into a local SQLite database file and restore from it. The properties of all
nodes in the tree are stored, as well as the relationships between them. When the development
of the new I/O layer was started, the developers chose to treat all data in the database as mere
strings, which were stored as TEXT data [14] in the database; that eased the development of
both the interface and the database schema, letting different GeoModel node types share the
same database table — notably, different Shape nodes, which were characterized of varying
number of input parameters, were stored in a single table, and their parameters encoded in
semi-colon-separated strings.

However, when dealing with real-life geometry data, the GeoModel developers realized
that the numerical precision obtained by using strings as exchange format was not guaranteed
when moving from one machine to another due to the different accuracy in the conversion
between strings and real numbers on different architectures and operating systems; also, the
needed precision was not assured in some cases.



To answer those issues, the database schema that is used in the GeoModel SQLite-based
exchange format was recently heavily updated. The database now uses a different table for
each type of GeoModel node, and, more importantly, all numerical data are now stored as
REAL or INTEGER data in the database. The new schema not only improves portability
between platforms guaranteeing the needed precision, it also offers room for more efficient
parallelism, providing faster I/O and smaller size of the output database file.

3.3 New “Placed” Classes

Until now, in GeoModel, physical volumes were the only classes that could be placed in
the 3D world because they owned their position; that made the development of new “placed
classes” difficult.

To overcome that limitation, the internal hierarchy of the GeoModelKernel classes was
updated to add intermediate classes (GeoPlacement and GeoNodePositioning) that hold
the 3D placement and from which the “volume” classes now inherit, as shown in Figure 4.

That opened the possibility of having new additional types of “placed” classes. The first
application of that is the introduction of “Virtual Geometry”, which will be discussed in
section 3.4.
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Figure 4. The new GeoModel class tree diagram showing the new GeoPlacement and
GeoNodePositioning intermediate classes, letting developers create new “placed” classes.

3.4 Virtual Geometry

The reconstruction of tracks in ATLAS requires a detector geometry description to be used
in track extrapolation processes as well as material effects integration during track finding
and fitting. However, the complete detector description used in full detector simulation is
too detailed, causing an unacceptable increase in CPU time consumption when used in track
reconstruction. Because of that, a simplified version of the actual detector description is



Figure 5. An example tracking detector built with the new Virtual Geometry surfaces and its compo-
nents (mis)aligned by using AlignableTransform nodes (visualized in GeoModelExplorer).

preferable. That simplified “Tracking Geometry” is built of surfaces and is optimized for
efficient navigation and fast extrapolation of tracks.

To describe and represent surfaces for tracking geometries with GeoModel, new “Vir-
tual Geometry” classes were added to the GeoModelKernel library. Virtual geometry nodes
are placed in the regular geometry tree, can be positioned and (mis)aligned alongside reg-
ular volumes, can be saved in the SQLite file and can be visualized as the regular geom-
etry, as shown in Figure 5. Three surfaces have been added so far: (GeoRectSurface,
GeoTrapezoidSurface, GeoAnnulusSurface); more surfaces will be added.

The most recent version of the ATLAS Tracking Geometry, which is being developed for
the upcoming “Run 4” LHC data-taking period, is based on the detector-agnostic tracking
software “ACTS” [21]. The introduction of the new GeoModel virtual surfaces helps to
interface the ACTS- and GeoModel-based geometries and import ACTS geometries into the
GeoModel tools to visualize, inspect, and debug them.

3.5 New Clash Detection

Detecting clashing and overlapping volumes is essential for accurate detector simulation,
reconstruction, and alignment. The gmclash program is part of the GeoModel toolkit and
is a standalone Geant4-based tool to detect clashes in GeoModel-based geometries. Clash
detection is based on the Monte Carlo method, with random points generated on the volume’s
surface.

The tool was recently updated to let users set the number of random points and specify a
given geometry subtree where clashes between volumes need to be detected. The detection
algorithm was also updated to make it faster, and it is now based on the algorithm used in
version 11.0 of the Geant4 simulation toolkit.

The gmclash tool generates as output a JSON-based file of clashing points, which can
then be visualized in the standalone GeoModelExplorer (gmex) visualization tool.



3.6 New Shapes’ Volume Calculation

Computing the volume of a geometry piece is necessary when dealing with material effects.
New methods for volume calculation have been implemented for all GeoModel shapes, in-
cluding boolean shapes. Different new utility tools were also added; they now let users get
the bounding box of a shape and know if a given point is inside the shape. The new utility
methods help determine the material used in the geometry volumes at a given point.

The database schema and interface of the GeoModel SQLite-based exchange format were
updated, too, to store the volume of all shapes. This also lets users pre-compute the volumes
of all shapes in a GeoModel tree and store them to later use them directly in computations.
This also helps reduce the initialization time when volumes must be known at the start time
of a detector simulation.

3.7 Support for Material Blending

New classes and tools were added to support “Material Blending”. Different shapes can
now be combined into a single simplified geometry to speed up the detector simulation, and
all their materials can be blended into a single compound material. Based on those recent
additions, the GeoModel developers are also designing new tools to exploit the material in-
formation in the GeoModel tree, compare it to engineering inputs, and produce simplified
geometries for reconstruction and fast simulation; those will be the object of another paper.

3.8 Physics Validation

The core of the GeoModel toolkit, the GeoModelKernel library, has been used in ATLAS
for more than 20 years as a base building block of the detector description. Therefore, the
GeoModel core library has been de facto validated by 20 years of use in ATLAS and the
many physics results published by the ATLAS Collaboration so far.

To ensure the correctness of the new detector description being developed for the afore-
mentioned LHC “Run 4,” the new architecture is currently being scrutinized through a rigor-
ous “physics validation” process. In this process, the new Detector Description architecture
is compared to the “old” architecture by examining numerous different physics variables.

Currently, the physics output of the Simulation step of the ATLAS data processing work-
flow [12] has been compared and validated. The Digitization and Reconstruction steps will
follow.

In addition to accurate physics validation, the GeoModel toolkit’s suite of automated
tests has been expanded with new unit tests and regression tests. The documentation of the
GeoModel toolkit [15] has been recently updated and expanded, too.
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