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Abstract. As we are approaching the high-luminosity era of the LHC, the com-
putational requirements of the ATLAS experiment are expected to increase sig-
nificantly in the coming years. Notably, simulation of Monte Carlo (MC) events
is immensely computationally demanding, and their limited availability is one
of the major sources of systematic uncertainties in many physics analyses. The
main bottleneck in detector simulation is the detailed simulation of electromag-
netic and hadronic showers in the ATLAS calorimeter system using Geant4.
To increase MC statistics and to leverage the available CPU resources for LHC
Run 3, the ATLAS Collaboration has recently put into production a refined
and significantly improved version of its state-of-the-art fast simulation tool
AtlFast3. AtlFast3 uses classical parametric and machine learning-based ap-
proaches such as Generative Adversarial Networks (GANs) for fast simulation
of LHC events in the ATLAS detector.
This work presents the newly improved version of AtlFast3 that is currently in
production for simulation of Run 3 samples. In addition, ideas and plans for the
future of fast simulation in ATLAS are also discussed.

1 Introduction

Simulation of Monte Carlo (MC) events in the detector is a major computing challenge at
LHC experiments, taking about 40% of the total load on the computing resources [1] of the
ATLAS experiment [2]. A large part is taken by the detailed simulation of electromagnetic
and hadronic showers in the ATLAS calorimeter system (about 80% of CPU consumption
in the case of tt processes) [3]. In addition, the computational requirements of the ATLAS
experiment are expected to increase significantly in the coming years, already during the
current data taking run of the LHC (Run 3) and also in view of Run 4, which will be the first
one of the High Luminosity LHC (HL-LHC) (see Fig. 1) [4].

These demanding and increasing requirements necessitate significant research and de-
velopment and one of the solutions is the introduction of fast simulation tools. These are
programs able to simulate the detector response faster than the standard full process simula-
tion tool Geant4 [5–7], while keeping the loss of accuracy to a minimum.
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Figure 1. Projected evolution of compute usage, under a "conservative" and "aggressive" R&D scenar-
ios. The hatched shading shows the range of resource consumption if the aggressive scenario is only
partially achieved; the solid lines indicate the impact of sustained year-on-year budget increases and
improvement in new hardware amounting together to a capacity increase of 10% (lower line) and 20%
(upper line). The vertical shaded bands indicate the periods of data taking for ATLAS [4].
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Figure 2. Configuration of the various subsystems of AtlFast3, as used for Run 3, depending on
detector region, particle type and particle energy. Geant4 is still used to simulate all particles in the
Inner Detector, low energy hadrons in the calorimeters and muons. Muon Punchthrough (the spray of
particles into the Muon Spectrometer resulting from late interacting high-energy hadrons) is modelled
with a tool based on Deep Neural Networks (DNNs) [8].

2 AtlFast3

AtlFast3 is the fast simulation tool developed by the ATLAS Collaboration [3, 8, 9]. Intro-
duced for Run 2, it was further improved in preparation for the current Run 3 and is now in
production. The tool replaces the slow propagation and interactions of particles inside the
calorimeter volume with the direct generation of energy deposits, by means of an underlying
parametrisation.

The tool is composed of two subsystems, corresponding to two different approaches to
fast simulation (descriptions for both are given in the coming sections):

• FastCaloSimV2, doing longitudinal and lateral parametrisation of showers;
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Figure 3. Architecture of FastCaloGANV2. The architecture of the network and its hyperparameters
have been optimised.

• FastCaloGANV2, machine learning-based, employing Generative Adversarial Networks
(GANs).

AtlFast3 runs fast simulation either through FastCaloSimV2 or FastCaloGANV2: the
choice of the simulator was carefully tuned through extensive validation and is optimised
to give the best physics performance. This configuration is shown in Fig. 2.

2.1 FastCaloSimV2

FastCaloSimV2 is a fast simulation tool that separately parametrises the longitudinal and
lateral shower development [3]. During simulation, energy is directly deposited into the
calorimeter cells using the parametrised responses. Parametrisation is done using Geant4
single photon, electron and charged pion samples, in 17 logarithmically spaced energy bins
from 64 MeV to 4 TeV and 100 linearly spaced bins in pseudorapidity from 0 to 5 in ab-
solute value. For the longitudinal shower development, FastCaloSimV2 considers that the
amount of energy deposited in each layer by the shower particles (which depends on how
deep in the calorimeter the shower was initiated) is highly correlated between layers, making
it difficult to independently parametrise the response for each layer. To address this, Principal
Component Analysis (PCA) is used to classify showers for each slice of energy, pseudora-
pidity bin and particle type. Two PCA transformations are performed: the first one classifies
showers into bins, while the second one is perfomed in each bin of the first PCA to gener-
ate uncorrelated and approximately Gaussian distributions. During simulation, PCA bins are
randomly selected, followed by the generation of uncorrelated random numbers, which are
then mapped back to the total energy and the energy fractions deposited in each layer with the
inverse transformation. The lateral shower shape is instead parametrised as two-dimensional
probability density functions.

2.2 FastCaloGANV2

FastCaloGANV2 is a ML-based fast simulation system based on GANs [10]. This archi-
tecture, first introduced in [11], involves the simultaneous training of two neural networks,
one called generator and the other one called discriminator. The generator aims to generate
samples as similar as possible to Geant4 generated showers, while the discriminator is fed
samples from both Geant4 and the generator and aims to distinguish actual Geant4 samples
from the ones produced by the generator. Both try improving their abilities and, when a Nash
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Figure 4. Sum of the energy in all voxels for single protons generated at the calorimeter surface in the
pseudorapidity range between 0.2 and 0.25 in absolute value. Geant4 is compared to the GAN trained
within FastCaloGANV2 [12].

equilibrium between the two is reached, the FastCaloGANV2 generator is ready to simulate
calorimeter showers and it runs much faster than Geant4, keeping good accuracy.

In particular, FastCaloGANV2 employs Wasserstein GANs with gradient penalty
(WGAN-GP) [13], an evolution of the original GAN architecture that improves training
by making it more stable and performant. The complete architecture is shown in Fig. 3.
FastCaloGANV2 was trained for electrons, photons, charged pions and protons as shower-
initiating particles, in each of the 100 bins in pseudorapidity and with conditioning (the GAN
being supplied additional information acting as class labels) on truth momentum. Calorime-
ter hits are grouped into three-dimensional bins (voxels), whose granularity is optimised and
finer than the one of the calorimeter cells, which improves modelling. The system is trained
to reproduce voxels and energies in layers, as well as the total energy, in a single step. Fig.
4 compares simulations as done by Geant4 and FastCaloGANV2, with protons as shower-
initiating particles; reduced χ2 (the χ2 per degree of freedom) equal to 2.6 is observed.

3 Performance

This section discusses the performance of AtlFast3 in terms of speedup and physics results.
For what concerns speedups, it is observed that AtlFast3 is from 3 to 15 times faster than

the Geant4 simulation of the ATLAS Run 3 detector, the lowest and highest speedup being
observed respectively for Z → ee events and for high transverse momentum dijet events (see
Fig. 5). Simulation time in AtlFast3 is dominated by simulation of the Inner Detector, which,
as was shown in Fig. 2, is fully handled by Geant4.



For physics results, AtlFast3 provides very accurate modelling of the leading cluster en-
ergy and, in dijet events, of the number of constituents for jet and substructure variables (see
Fig. 6). For most observables used in physics analyses, AtlFast3 and Geant4 agree within
a few percent and AtlFast3 physics performance is improved compared to its predecessor.
AtlFast3 has also the advantage of being able to be used for almost every process, be it
signal or background. The fact that AtlFast3 can cover a really large variety of analyses is
particularly helpful considering that, for Run 4, more than 90-95% of analyses are expected
to require the use of the fast simulation, as there will not be the CPU capacity to allow the
full simulation for them [1].
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Figure 5. Mean CPU time per event simulated in AtlFast3 and full simulation measured in standardised
HS23 seconds. Six different physics processes are shown; in all of them AtlFast3 is significantly faster,
with the most dramatic improvement for processes with the highest energy particles [14].
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Figure 6. Number of constituents for the leading reconstructed jet in dijet events with transverse mo-
mentum between 1.8 and 2.5 TeV [12]. Results are compared for samples simulated with Geant4,
FastCaloSimV2, FastCaloGANV2 and a combination of FastCaloSimV2 or FastCaloGANV2 ("Hy-
brid") according to the hadron energy as done in AtlFast3 for Run 2 [3].

4 Looking Ahead
After the successful insertion into the Run 3 production, further development is underway
in view of the final part of Run 3 and the first part of HL-LHC, Run 4. Current studies are
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Figure 7. Reconstructed lateral shower width in the presampling layer (left) and in the second layer
(right) of the barrel part of the ATLAS LAr electromagnetic calorimeter for 65 GeV photons in the
pseudorapidity region between 0.20 and 0.25 in absolute value, as simulated with Geant4 (Geant4),
Geant4 using artificially binned showers (Geant4 - binned), the nominal AtlFast3 simulation (AtlFast3)
and an INN trained on the binned showers (CaloINN). In the binned Geant4 simulation, energy deposits
are grouped into predefined spatial regions, creating an artificial discretisation [15].

performing tests on improved and finer voxelisation that reduces bias and are researching
further ML models - in particular, diffusion models (CaloDiT [16, 17]) and Invertible Neural
Networks (INNs [18]) - for potential inclusion inside the fast simulation tool. If the simulation
yielded by current and future evolutions of these additional ML models is good, they may be
added as further fast simulation subsystems to the tool, in addition to (or even replacement
of) FastCaloSimV2 and FastCaloGANV2.

The voxelisation has been re-optimised, as part of the previously mentioned ongoing
tests, in order to better emulate Geant4. The new voxelisation features finer granularity at
the shower centre to achieve higher spatial precision while accounting for voxel-to-voxel
correlations. For the new ML models, current results show that GANs still have potential for
further improvement and INNs also yield an excellent simulation performance, as they have
been shown to accurately reproduce the Geant4 distributions with the optimised voxelisation
(see Fig. 7).

4.1 An Additional Tool: FastCaloGANtainer

Usage of FastCaloGANV2 requires its GANs to be trained and this training requires large
resources. Therefore, additional help can come from using for FastCaloGANV2 training
also other resources than the ones commonly used at CERN, like the CERN batch system
LXBATCH [19] and the Worldwide LHC Computing Grid (WLCG) [20].

FastCaloGANtainer makes it possible for FastCaloGANV2 training to run on un-
pledged resources external to CERN, without them needing to be configured as LXBATCH
or the WLCG. FastCaloGANtainer is based on an Apptainer container [21], built starting
from the Docker image of the operating system of LXBATCH, and includes the standard
ATLAS software environment and the rest of the additional software required for training,
for FastCaloGANtainer to be independent from the system where it is deployed. It requires
libraries CUDA-11 [22] and CuDNN [23] for GPU usage. By using FastCaloGANtainer,



Table 1. FastCaloGANtainer performance on various clusters. For pions one GAN was trained for all
incident particle energy values; for photons two GANs were trained in parallel, one for incident

particle energies up to 4 GeV, the other one for energies above. Photon GANs use batch normalisation,
which contributes to the longer training times. χ̃2 is the reduced χ2.

Resource Features π± Results γ Results
LXBATCH
(reference
cluster)

CERN batch system. CentOS 7 (for used
nodes), CVMFS, HTCondor, V100 GPUs

Runtime:
12 h
χ̃2 ≈ 2

Runtime:
30-31 h
χ̃2 ≈ 5

Leonardo TOP500 9th most powerful cluster [24], at
CINECA. RHEL 8.7, no CVMFS, SLURM,
A100 GPUs, isolated nodes

Runtime:
3.5 h
χ̃2 ≈ 2

Runtime:
6.5-7.5 h
χ̃2 ≈ 5

CNAF-
HPC

INFN-CNAF HPC cluster (close to the local
WLCG Tier-1 cluster INFN-T1 [25]). Cen-
tOS 7, no CVMFS, SLURM, V100 GPUs

Runtime:
6 h
χ̃2 ≈ 2

Runtime:
9-10 h
χ̃2 ≈ 5

resources are freed up and, in addition, further improvement in training speed can be obtained
if training is run on more powerful resources like HPC farms.

FastCaloGANtainer was deployed on the resources shown in Tab. 1. Speedup for train-
ing is 3-4 times on Leonardo [26] (it can be noted the usage of NVIDIA A100 GPUs) and 2-3
times on CNAF-HPC [27], both values being with respect to LXBATCH. These results show
the performance boost and the advantage usage of cutting-edge supercomputers provides.

Work is undergoing to deploy FastCaloGANtainer on other resources than the ones used
up to now (including cloud resources), other architectures (notably ARM), and for more
types of shower-initiating particles. Code optimisation is also being studied, concerning in
particular how to harness even better the computational power of multi-CPU/GPU nodes.

5 Conclusion

In this work the Run 3 configuration of AtlFast3 was presented: the state-of-the-art fast
simulation tool of the ATLAS Collaboration at the LHC. AtlFast3 for Run 3 can simulate
a broad range of physics processes with high precision, with improved physics performance
compared to its predecessor. This comes with great improvements in computing performance,
as AtlFast3 runs with a CPU speedup of a factor 3-15. This tool is therefore essential to meet
the computational requirements of the future runs of the LHC, as well as the physics mod-
elling accuracy needs. In addition, the associated system FastCaloGANtainer provides fur-
ther relief to the computational resources commonly used at CERN by making it possible for
FastCaloGANV2 training to also run on unpledged external resources, with a performance
boost if run on cutting-edge supercomputers.
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