
Abstract

CASCADE is a multi-processor real-time data-acquisition
system for HEP experiments developed at CERN by the
ECP-DS group. Configurations supported today include
VMEbus processors running OS-9 and UNIX workstations.
The CASCADE data acquisition processes, called stages,
communicate via links, at present VICbus between VME
crates and Ethernet between VMEbus processors and
workstations. Work is in progress to introduce new inter-
stage links based on  the Fast Data Link between VME crates
and on SCI for data exchange between SUN stations.

 The paper gives a short description of the architecture of
CASCADE with emphasis on the link aspects. The
implementation and current status of the inter-stage links
based on VICbus, Ethernet, FDL and SCI will be described
and results on the performances presented.

I. INTRODUCTION

CASCADE [1] [2] [3] is a distributed, multiple-platform
real-time data-acquisition system developed by the ECP-DS
group for HEP experiments at CERN. It provides services for
data collection and buffering, data flow control, event
building, event sampling for on-line monitoring, data
recording and run control. Originally developed following a
request from the NOMAD experiment [4], it has been
designed to adapt to a wide range of applications and system
configurations. Its modular structure facilitates the
integration of new technologies, as for example new links for
the communication between CASCADE processes (stages).

After a general description of CASCADE with emphasis
on the inter-stage links, the lower-level software for the
VICbus [6], Fast Data Link (FDL) [8] and Ethernet is
described in some detail and performance figures are given.
It should be pointed out that the intention has not been to
perform a complete evaluation of the link hardware
interfaces, only features relevant to the CASCADE
integration have been studied in detail.

A CASCADE test system based on VMEbus and including
the FDL, VICbus and Ethernet links is then described and the
performances in terms of event overheads and transfer rates
are presented. These results - measured in a realistic complex
data acquisition environment - may be compared with the
often more theoretical figures given by the manufacturers.

For the SCI, work is in progress to demonstrate a parallel
event builder based on four SUN workstations, using
CASCADE. Since a VMEbus to SCI interface is not yet
available, a direct comparison with the FDL and VICbus
links is not possible at the present time.

II. THE CASCADE DATA ACQUISITION 
SYSTEM

CASCADE data-acquisition systems are built from two
basic construction units, the stage and the inter-stage link.
The stage is a single process which provides the basic data
acquisition functions : event data I/O and buffering, event
building (if required), distribution of events to monitoring
programs and connection to run control. Two stages are
connected via the inter-stage link which is the term used for
the ensemble of link software and hardware which allow
stages to communicate. This communication is based on a
high level protocol and a software interface which hide the
specific features of the link to the internals of CASCADE.
Based on these two construction units, configurations of
varying complexity can be built, possibly including several
types of processors and links. An example is given in Fig.1,
which shows the present CASCADE configuration of the
NOMAD experiment. Five front-end stages are linked to an
event builder stage (via VICbus) which in turn is connected
to a data recorder (via shared memory).

Fig. 1.  CASCADE configuration of the NOMAD experi-
ment

The stages and their inter-connections are described in the
CASCADE configuration file which maps a logical
representation of the type shown in Fig.1 onto a physical
implementation. Each stage is described by a number of
parameters which define the event buffer size, the number of
input and output ports and their characteristics. To a large
extent the user controls the functioning of the CASCADE
system via the parameters in the configuration file. This
applies, for example, to the inter-stage links which are
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entirely specified via entries in the stage input/output ports
section of the configuration file. User code has to be
provided for reading event data and other interfaces are
defined for including application dependent functions related
to event building and run control. In addition, the user is
responsible for the development of the monitoring programs
which are independent processes.

2.1  The Stage

The stage is the fundamental construction unit of CASCADE
and provides the basic functions of a general single-
processor, single-process, data-acquisition kernel. It is
organised in several threads of execution which allows
operations to take place concurrently on different events so
that the stage can deal with a number of input and output
ports at their individual rates. Each thread corresponds to a
given operation to be performed on an event or to a control
action originating from the run control process, see Fig.2.

A scheduler has been developed to control the execution of
the threads. Each thread is triggered by a given signal which
is issued either externally by other processes or internally by
one of the other threads [1]. The scheduling in the stage is
performed on a priority basis and has no fixed sequence. This
is illustrated in Fig.2, which also indicates the threads that are
activated by external signals. 

Fig. 2.  Stage threads

2.1.1 The event data flow through the stage
Threads directly involved with the main data-flow are

called phases. The transition of an event through the stage
phases follows a fixed sequence and is controlled via signals
generated by the experiment trigger, the handshake between
connected stages, monitoring requests, or by another thread. 

An event in CASCADE has two components, a descriptor
and data, which may flow independently through the system.
An event is created when the stage receives a trigger and
disappears when all phases have terminated their work
related to this event. Upon reception of a trigger, events pass
sequentially through (see Fig.3):
• the input phase, which creates an event descriptor and

reserves memory space, reads the event data from the
experiment or copies the event data from the previous
stage,
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• the construction phase, which, in the case of an event
builder, links together the descriptors of the sub-events
until a complete event is created,

• the access phase, where the events are marked for
monitoring,

• the dispatch phase which formats and outputs the events
to one or several other stages (e.g. a data recorder),

• the link-acknowledge phase which marks the events to
be released once the transfer through a particular output
port has been acknowledged.

A set of sampling phases handles the connection and event
requests issued by monitoring programs attached to the
stage. After connection to a stage, a monitoring program
issues requests for events and receives in return the relevant
pointers and sizes so that it can access the event. The
monitoring program has to release the event before it can be
removed from the stage.

Fig. 3.  CASCADE two-stage system

2.2  The Inter-stage Link

Two consecutive stage units in the data-flow topology are
linked by the CASCADE connection unit, the inter-stage
link. The communication between stages follows a high
level protocol involving the dispatch and linkack phases of
the upstream stage and the input phase of the downstream
stage as illustrated in Fig. 3:
• in the dispatch phase a trigger message is sent to the

other stage. It contains a condensed description of the
event to be transferred including its type, size and
memory address (in case of a memory mapped link)
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• the input phase of the downstream stage is scheduled
upon arrival of the message. Based on the information in
the message, an event descriptor is built, memory space
reserved and the event copied across the link into the
space just allocated. An acknowledge message is
returned.

• the linkack phase of the upstream stage is scheduled when
the acknowledge message arrives. If all operations on the
event are finished, the event descriptor is removed from
the stage and the associated space released. The dispatch
phase is scheduled to check if new events should be sent
across the link. If there are none, the dispatch phase
returns, else the protocol is restarted.

III. TEST SYSTEM SET-UP

The timing measurements described below have been
performed using the hardware set-up shown in Fig.4 which
allows a direct comparison to be made between the VICbus,
FDL and Ethernet links in a CASCADE environment. The
two VME crates are equipped with CES FIC8234, MC68040
based VMEbus processor boards [5] running the OS-9
operating system which is widely used for data acquisition at
CERN. 

Fig. 4.  Test set-up

The VICbus connection is implemented using the
VIC8251 VMEbus to VICbus interface from CES [7] which
provides a transparent, memory mapped connection between
VME crates. The FDL8050 is an interface between VMEbus
and the Fast Data Link developed recently by CES [8]. It is
an intelligent communications controller and is designed for
data transfer rates up to 50 Mbytes/s. The VIC8251 and the
FDL8050 will be described in more detail in the following
sections. 

The ‘CORBO’ is a VMEbus interrupt module from CES
[9]. Finally, the Ethernet link is a direct connection between
the FIC8234 CPUs.
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IV. VICBUS

The VIC8251 interface enables a VMEbus processor to
access memories in other VME crates ‘transparently’ via its
MMU routing logic. The best performance is obtained when
data is transferrred from the memory of the VIC8251 (‘VIC’
memory, 4 or 16 Mbytes) via direct VICbus cycles. Remote
VMEbus memories can also be accessed via transparent
VICbus cycles (VME-VME) but with a lower performance
due to an additional remote VMEbus cycle per data transfer.
The VIC8251 supports all types of VMEbus cycles with the
exception of D64.

The VIC8251 is a non-intelligent interface and appears to
the programmer as a set of registers and mapping memories
and hence, for use in a multitasking operating system, the
appropriate driver and library have to be developed. For OS-
9, an inter-crate message system was implemented [10] that
allows the transmission of messages between tasks running
in VMEbus processors in different crates. When a message
is transmitted over VICbus, a VMEbus interrupt is
generated by the VIC8251 in the destination crate and an
OS-9 signal identifying the sending task is produced. This
asynchronous mechanism is essential for the
implementation of the inter-stage link protocol, as discussed
in section II. 

Data is transferred from remote crates under the control of
the FIC8234 which is equipped with a DMA like device (the
Block Mover Accelerator) which is able to move data
between external memory and FIC memory at high speed. A
data transfer library [11] which hides the details of the
transfer mechanisms (e.g alignment) to the user and
supports the VMEbus/VSB block transfer modes has been
developed. 

Fig. 5.  VICbus and FDL : transfer of small blocks

Fig. 5 shows the results of a simple test program which
reads small blocks of data from either the memory of the
FIC8234 or VIC memory in crate 1 into the memory of the
FIC8234 in crate 2 with optimised transfer parameters :
VME/D32 block transfer mode with a block size of 256
bytes under DMA control and read prefetch on VICbus. The
intercept is 70 µs and corresponds to the DMA software
overhead. Transfer rates are 4.5 Mbyte/s in the case of
remote VIC memory and 10% lower, 4.1 Mbyte/s, for the

VIC and FDL data transfer
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VMEbus memory. The results for the FDL will be discussed
in the next section.

Based on these software tools two test programs which
implement the CASCADE inter-stage link protocol have
been written. Trigger and acknowledge messages are sent
using the VICbus message system and ‘event’ data
transferred from the VIC memory of crate 1 into the memory
of the FIC8234 in crate 2 with the same optimised parameters
as above. The results are plotted in Fig. 6 which shows the
transfer rates in Mbyte/s and, equivalently, the time per event
in ms as a function of the event size. The event overhead of
about 0.3 ms is mainly due to the exchange of messages. For
large events the protocol overhead is insignificant and the
data rate approaches 4.5 Mbyte/s.

Fig. 6.  VICbus : test CASCADE link protocol

V. FAST DATA LINK 

The Fast Data Link (FDL) developed by CES is a
multimaster/multidrop synchronous link with a bandwidth of
100 Mbyte/s. It is designed to transfer data between multiple
sources and destinations at high speed and is deterministic :
the arbitration mechanism guarantees maximum latencies for
bus mastership attribution and completion of data transfers.
When link protocol overheads are subtracted, nominal
maximum data transfer rates of about 70 Mbyte/s are quoted
which are an order of magnitude higher than VICbus.

The FDL8050 [8] is a VMEbus to FDL interface which is
designed to transfer data between VME crates at rates up to
50 Mbyte/s. As opposed to the VIC8251, the board is an
intelligent interface equipped with two MIPS R3052
processors, fast data movers, memories etc., in addition to
complex communication firmware. A user program interacts
with the FDL8050 by sending request blocks specifying the
type of data transfer to be performed under control of the
interface. This mechanism implies a significant overhead for
each data transfer as compared to the VIC8251 which
provides transparent access to remote VME crates. An
allocation scheme for request blocks allows the control of
multiuser access and operating system dependent driver
software is therefore not required (except for interrupt
handling). The FDL8050 can be used directly from

VICbus test protocol
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application programs and the manufacturer provides a
library and a set of C macros which facilitate the
programming.

The FDL8050 has powerful list processing functions
which allow collecting and dispatching data to and from
different non-contiguous VMEbus areas as well as sparse
data scans. However, in the present paper only simple data
transfer functions are used to allow for a comparison with
the VIC8251.

Based on the software from CES, a small library was
developed to provide the link functions required by
CASCADE. Routines are available for asynchronous
exchange of messages and transfers of data across the FDL
from a remote VME crate. To achieve the highest possible
speed, the request block parameters for the data transfer
were defined as VME/D64 block transfers with a block size
of 256 bytes and no flow control on FDL.

A simple test program was written to read data from the
VME port of the FIC8234 in crate 1 into the memory of the
FIC8234 in crate 2 with optimised parameters as described
above. The results are plotted in Fig.5 together with those
for the VICbus. The transfer overhead is 200 µs and the
transfer speed 30 Mbyte/s which combine to show a ‘cross-
over’ point between VIC and FDL transfers of about 700
bytes.

As in the case of VICbus, two test programs were written
to model the CASCADE inter-stage link. In this case data is
transferred between the FIC8234 memories under control of
the FDL8050s. The results are displayed in Fig. 7 which
shows the time per event and the overall transfer rate as a
function of the event size. The event overhead is about 0.5
ms which is due to the processing of the requests blocks by
the FDL8050 in addition to the OS-9 interrupt overheads.
For large events a data transfer rate of about 32 Mbyte/s is
achieved. For certain applications it may be required to
enable flow control on the FDL in which case the transfer
rate decreases to about 20 Mbyte/s.

Fig. 7.  FDL : Test CASCADE link protocol

VI. ETHERNET

The first inter-stage link in CASCADE was implemented
over Ethernet. In this case the underlying software is the

FDL : test protocol
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TCP/IP socket library provided with the operating system. A
portable higher level library with support for asynchronous
data transfers was developed and is available for OS-9, SunOS,
Solaris 2, Digital UNIX, HP-UX and LynxOS. For Ethernet,
the protocol described in section II is slightly more
complicated since a data transfer requires a pair of send/receive
calls (peer-to-peer) and an additional acknowledge after the
trigger message has been introduced. The results of two test
programs simulating the inter-stage link protocol similar to
those for VICbus and FDL are shown in Fig. 8. The protocol
overhead is 7 ms which is an order of magnitude more than for
the VICbus and FDL and the asymptotic transfer rate is about
700 kbytes/s.

Fig. 8.  Ethernet : test CASCADE protocol

VII. INTEGRATION INTO CASCADE

Given the availability of the link software described in the
previous sections, the implementation of the CASCADE inter-
stage links is relatively straightforward. The libraries for
Ethernet, VICbus and FDL are included in the stage which
thereby provides ‘built-in’ support for all three types of inter-
stage links. The user selects the type of link in the CASCADE
configuration file. To measure the link performances in the
CASCADE environment the two-stage system logically
defined in Fig.9 and running on the test set-up in Fig.4 was
implemented.

Fig. 9.  CASCADE two-stage configuration for test set-up

Ethernet : test protocol
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Stage 1 is triggered at very high speed via VMEbus interrupts
and simulated event data is injected into the stage and
transmitted to stage 2 via the inter-stage link. The
performances in terms of time per event or Mbyte/s are
displayed in Fig. 10, below. The event overheads now include
the ‘internal’ CASCADE overheads - e.g due to the buffer
management - in addition to those associated with the link
protocol. The values are 8 ms in case of Ethernet and about 2
ms for the VICbus and FDL which corresponds to an event
throughput of about 500 events/s for the latter two. For large
events, the overheads are insignificant and asymptotically the
same data transfer rates as obtained with the test programs are
observed, namely 700 kbytes/s for Ethernet, 4.5 Mbyte/s for
VICbus and 32 Mbyte/s for FDL.

Fig. 10.  VICbus, FDL and Ethernet : CASCADE two-stage 
system

VIII. SCI

Work is currently in progress with the RD24 Collaboration at
CERN (“Application of the Scalable Coherent Interface to
Data Acquisition at LHC”) to introduce SCI as an inter-stage
link and, at the same time, to demonstrate event-building. A
parallel Event Builder is illustrated in Fig.11. Data is produced
by n data sources each containing event fragments, numbered
sequentially 1,2,..i,.., which are combined into whole events in
one of the m data destinations.

A first implementation has been made for stages executing
on SUN workstations equipped with SBUS/SCI bridges from
Dolphin Interconnect Solutions AS, Oslo, Norway, operating at
125 Mbyte/s. Tests have been made with a 2x2 Event Builder
(two Front-End Data Producers, two Event Builders)
connected as a single SCI ring, as well as a star configuration
using a 4-way SCI switch from Dolphin.

The transmission protocols for this first version have been
modelled after the Ethernet networking library, resulting in an
SCI Interstage Communication library. Since the present
SUNOS SCI driver does not allow asynchronous transfers, an
intermediate process is used to wait on read operations and
signal arrival of data to the application : a CASCADE stage.

FDL, VIC, Ethernet : CASCADE
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Although the first version is very inefficient because it does
not make use of the real SCI capabilities, it is functionally
correct, scalable, and can handle millions of events without
difficulty.

Fig. 11.  SCI : parallel event builder

The driver is being improved to allow asynchronous data
transfers. In a second phase, the inter-stage communication
protocols will be modelled after the VICbus and FDL links to
make use of the real SCI shared memory capabilities.
Research carried out by RD24 has shown that
communication protocol overheads can become very small
resulting in an event rate of ~ 50 KHz (“zero length events”)
for similar configurations[12].

IX. SUMMARY

The specification of a hardware independent high-level
protocol for inter-stage links in CASCADE has allowed the
introduction of new types of links without changing the
structure of CASCADE. We have described the integration of
the FDL, VICbus and Ethernet and measured performances
in terms of event overheads and data transfer rates for a two-
stage CASCADE system implemented on a VMEbus based
test set-up, as shown in Fig. 4. 

For the FDL, data transfer rates exceeding 30 Mbyte/s
across the inter-stage link have been obtained. If flow control
is enabled on the FDL, the rate decreases to 20 Mbyte/s. The
event overhead due to the processing of the FDL request
blocks is about 200 µs and small compared to the total event
overhead in CASCADE (2 ms). The FDL8050 is an
intelligent interface with highly complex communication
firmware and while this offers certain advantages - complete
control of the data transfers and operating system
independence - it also makes the module prone to errors.
Indeed, during the evaluation work several changes to the
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firmware were implemented to correct problems (but also to
add improvements). 

For the VICbus, rates of 4.5 Mbyte/s were measured with
the data transfer controlled by the DMA of the FIC8234
with a software overhead of 70 µs. For small data blocks the
most efficient method is to let the CPU move the data
(memcpy) in which case the VICbus becomes truly
transparent. For blocks larger than about one kbyte, the
performance of the FDL8050 is superior to that of the
VIC8251, asymptotically by a factor of seven. At CERN,
VICbus is used in many applications and inter-stage links
based on VICbus have worked reliably in the NOMAD
experiment for more than a year.

The Ethernet inter-stage link, which is included mainly to
provide a reference, has a CASCADE event overhead one
order of magnitude higher than that measured for VICbus
and FDL with a data transfer rate of about 700 kbytes/s (
which is quite adequate in many applications).

Finally, the current status of the work to introduce SCI as
a link between CASCADE stages running on SUN
workstations in a parallel event building application, is
summarised in the previous section.
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