
A
TL

-S
O

FT
-P

R
O

C
-2

02
5-

03
1

12
Fe

br
ua

ry
20

25

Adoption of ROOT RNTuple for the next main event data
storage technology in the ATLAS production framework
Athena

Marcin Nowak1,∗ Peter van Gemmeren2Alaettin Serhan Mete2and Tatiana Ovsiannikova3

on behalf of the ATLAS Computing Activity
1Brookhaven National Laboratory (US)
2Argonne National Laboratory (US)
3University of Washington (US)

Abstract. Since the start of LHC in 2008, the ATLAS experiment has relied on
ROOT to provide storage technology for all its processed event data. Internally,
ROOT files are organized around TTree structures that are capable of storing
complex C++ objects. The capabilities of TTree developed over the years and
are now offering support for advanced concepts like polymorphism, schema
evolution and user defined collections and ATLAS makes use of these features
to handle its Event Data Model (EDM). But some original TTree concepts,
like the POSIX file model and sequential writing, remain unchanged since the
beginning and could be an obstacle to achieving the performance required for
High Luminosity LHC.
With the HL-LHC performance goals in mind, the ROOT project developed a
new storage format - the RNTuple. RNTuple, with its accompanying user API,
is now in the final development stage and is planned to be production-ready
at the end of 2024. Soon after that, the TTree will become a legacy format.
ATLAS intends to have its main event processing framework Athena ready to
use RNTuple in the production environment as early as possible. The work
on adopting RNTuple as another ROOT storage technology in Athena started
already in 2021 and is now nearly complete. Although the initial goal was
to focus only on derived-AOD products (PHYS and PHYSLITE), with a little
added effort all ROOT-based data products of ATLAS can be now stored in
RNTuple format and transparently read back.
In this paper we will describe the current state of RNTuple adoption in the
Athena framework and explain the ATLAS EDM requirements that had to be
met on the ROOT side to successfully integrate both environments. We will
demonstrate the ability to run standard ATLAS production workflows, based on
RNTuple as the event data storage technology, and point out key advantages of
the new format.

1 Introduction

The ATLAS experiment [1] is the biggest of the four particle detector experiments at LHC,
CERN. ATLAS was formed in 1992 and has been collecting data since 2009, when the LHC
∗e-mail: mnowak@bnl.gov

© 2025 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



Run 1 started, up to the currently ongoing LHC Run 3. The collected event data is processed
by Athena - the official, universal software framework that has been in development and use
since 2002. The software complexity reflects that of the detector - in terms of lines of source
code, Athena consists of 4 million lines of C++ and 1 million lines of Python. The framework
depends on many external projects, particularly ROOT for data persistency. The Event Data
Model (EDM) used by Athena contains hundreds of C++ classes, most of which are stored in
files. ATLAS is using ROOT TTree as the storage format and utilizes many advanced TTree
I/O features required to handle its EDM.

During many years of data taking, Athena evolved from a single process executable into
a multithreading and multiprocessing capable application. These changes were necessary to
improve throughput through concurrent processing or to reduce overall memory usage. In
this paper we describe yet another, very significant evolution Athena is undergoing right now
- the migration from ROOT TTree to RNTuple [3] - which is an important step in preparation
for the massive data rate increase planned for LHC’s Run 4, called the High Luminosity LHC.

2 Rationale behind the migration to RNTuple

Handling High Luminosity LHC data rates and data volumes will be a challenge. Assuming
sustained (flat) year-on-year storage hardware budget increases, even foreseeing improve-
ments in new hardware, the predictions (Figure 1) show that storing event data with the
current efficiency would suffer from storage shortage.

Increasing the compression strength (level) would be a tempting choice in this situation.
However, ATLAS is already using the strongest compression that is considered acceptable
(LZMA for all upstream data) and additional gains in storage are limited, typically to around
10%. On the other hand, migration to RNTuple brings the possibility to achieve similar or
even better storage space savings without incurring an extra CPU load. As shown in Sect. 6,
this is actually the case - Athena data files with real data (or MC-generated ones) use up to
20% to 40% less space than their TTree-based equivalents, filled with exactly the same data.

Space savings are not the only improvement we expect to gain from migrating to
RNTuple. As a recently developed modern software, RNTuple was designed to take
advantage of I/O related features that did not exist before: asynchronous I/O, SSD-optimized
access patterns, zero-copy, and direct object store interfacing. While not yet tested by
ATLAS, these features should help in handling the increased HL-LHC data rates.

Last but not least, the ROOT team already announced that TTree will become a legacy
format when RNTuple enters the production stage, that is now expected to happen at the
beginning of 2026. That means that it will have priority in getting updates and improvements,
some of which may even remain exclusive to it. It is also possible that some future ROOT
tools, e.g. for data analysis, may be developed for RNTuple only.

With all the above reasons in mind, ATLAS began investigating RNTuple for Athena
already in 2021 and is already able to use it for all its data processing stages.

3 Migration stages

The migration of Athena to RNTuple took three years and can be divided into several phases.
In the beginning, we focused solely on the data model and API compatibility. The ideal
solution was for the new storage technology to come as a new persistency plug-in. (Athena,
implementing concepts coming from the Gaudi [5] framework, supports interchangeable,
dynamically loaded technology-specific plugins). To create a new, fully interchangeable
plugin that would be able to replace the existing TTree-based one, RNTuple needed to handle



Figure 1: Projected evolution of disk and tape usage under the conservative and aggressive
R&D scenarios. The black lines indicate the impact of sustained year-on-year budget
increases, and improvements in new hardware, which together amount to a capacity increase
of 10% (lower line) and 20% (upper line). The vertical shaded bands indicate periods during
which ATLAS will be taking data. Source: ATLAS HL-LHC Roadmap [4]

all existing Athena persistent types and to work with the object manager (StoreGate) that
controls all Athena in-memory objects. Once that was achieved, we could focus on the
operational side - running multithreaded and multiprocess production jobs and measuring
performance. We also needed to teach the standalone Python tools that automatically
configure and later validate jobs to extract data from RNTuple files.

The migration is not officially completed yet - one of the workflows is still in development
(see Sect. 5), there are larger scale data challenges planned for 2025, and the RNTuple itself
will not enter production until 2026. However, the most important milestones have already
been reached.

The migration process so far, divided into stages, is described in detail in the following
sections.

3.1 Data Model Compatibility

The Event Data Model (EDM) is a set of types (or classes) used to represent ATLAS event
information in application memory. In activities involving data storage, this EDM is often
called the transient EDM to distinguish it from the persistent EDM, which consists of
types used to store event data on persistent media. At the beginning of ATLAS and LHC
operation, these two sets were mostly disjoint to avoid exposing complicated (and, at the
time, unsupported) C++ constructs to the persistency layer. Now, at LHC Run 3, thanks to the
many improvements in the ROOT/TTree capabilities, the two EDMs are almost overlapping.
However, this means that RNTuple was tasked with handling a complicated ATLAS EDM
from the very start.

One of the first steps of the migration was to take inventory of the current persistent EDM
and share with the ROOT development team the list of required features that needed to be
supported if the RNTuple was to be able to successfully replace TTree. This list contained
the following requirements, which are now implemented and ready to use:



3.1.1 STL containers

ATLAS uses std::vectors extensively, both in the transient and in the persistent EDM.
RNTuple was supporting std::vectors very early on - this particular requirement was added
simply to reinforce the fact that it was used so widely, often with a nesting depth of three
levels. Singular uses of std::map and std::set were discovered in some of the data formats -
they are nowadays also supported by RNTuple.

3.1.2 Read rules

Read rules are small fragments of user provided C++ code that are executed every time an
object of a particular type is loaded for a new event. This code is not part of the regular
application C++ sources, but is provided together with the XML instructions for ROOT class
dictionary creation and is compiled into the actual dictionary library. The basic use of read
rules is to call a method that will bring the object to the correct state after reading. This feature
is for example used in Athena to reinitialize smart pointers. A more advanced scenario is to
directly modify object data members after reading - an approach used to deal with EDM
changes introduced by schema evolution.

3.1.3 User-defined collections

Support for user-defined collections in ROOT persistency is realized through collection
proxies. A collection proxy offers a unified interface for collection access and modification,
independent of the actual implementation. Athena offers proxies for all its data containers
(xAOD Containers [6]) which are internally std::vectors of pointers (DataVectors). RNTuple
does not support pointers, but can access individual vector elements through the proxy
interface without knowing anything about them. Collection proxies were originally supported
for the TTree I/O and can be now also used with RNTuples.

3.1.4 Dynamic attributes

Dynamic attributes in the ATLAS EDM are optional data members that are not part of the
fixed class definition (in the C++ sense). They can be added to an xAOD container definition
at any point of a job execution, even when many events with that container were already
written out. Because they are listed as class members, they can not be part of a precompiled
class dictionary and are not handled by ROOT I/O operations for that particular container
type. However, thanks to the Dynamic Model Extensions API, an RNTuple model can be
extended at any time when writing, to add a new top-level column for storing a particular
dynamic attribute. Entries in that column prior to the first attribute occurrence are considered
to be empty.

4 API Compatibility

The current Athena I/O layer was designed many years ago with the primary goal of making
use of the contemporary TTree API, resulting in a predominant use of void* pointers and
information about the actual type carried by the TClass instances. The void* type is used
to pass arguments across many layers of Athena, making it very hard to change at this
point. Object ownership is usually exclusive, with the Athena internal object event store
(StoreGate) managing all transient objects, and performing store cleanup after each event.
All objects with event data are thus recreated for every event. When reading from storage,



Athena entrusts object creation to the ROOT I/O layer and assumes ownership of these objects
without copying them.

By default, RNTuple provides a modern, templated API for object reading and delivers
objects through std::shared_ptr. However, converting a shared_ptr into a regular C pointer
makes controlling the lifetime of the object problematic. Additionally, using a templated API
in a framework’s generic I/O layer is not feasible. For these reasons - and to avoid changes in
Athena components that are still used for TTree I/O - ATLAS requested the implementation
and maintenance of the “old style” typeless API also for RNTuple, including support for
passing exclusive object ownership to Athena.

Considering the various ATLAS EDM requirements mentioned before, in terms of API
adaptations, we found out that little changes were necessary on either side. Read rules and
collection proxies are not a part of a specific TTree or RNTuple API, but rather a separate
I/O concept. The adoption of these features for RNTuple as-is allowed us to keep the API
the same. Dynamic model extending is part of the new RNTuple API, but handling dynamic
attributes is a late addition to Athena and implemented deep enough in the I/O layer to be a
part of the actual technology specific plugin. It should be noted that ATLAS intends to keep
the current Athena I/O API for both TTree and RNTuple, because of the need to be able to
read both formats for the lifetime of the experiment.

5 Operational Compatibility

Athena originated as a single process application, but for performance reasons evolved -
first into a multiprocess (AthenaMP) and later (Run 3) even to a multithreaded (AthenaMT)
framework. AthenaMT did not completely replace AthenaMP for two reasons: limited
scalability with the number of threads of the MT version and the inability of some algorithms
in data analysis to run in an MT environment. Therefore, both versions are used by ATLAS
in the production environment today. In particular, the DAOD production runs exclusively in
the MP mode.

AthenaMP’s biggest performance challenge is an efficient merging of the outputs from
the individual worker processes into a single output file. To avoid merging output files in a
(rather slow) separate, single process step following event processing, an in-memory merging
component was developed - the SharedWriter. SharedWriter can currently operate in two
modes:

Legacy mode - with objects sent to the writer one by one and all TFile writing done by the
writer process

Parallel mode - with all workers independently writing to their local TMemFiles and
transferring it incrementally to the writer to be merged by ROOT’s TFileMerger

The Parallel mode scales better with the number of workers, as compression is performed
in parallel by the workers, spreading the CPU load. On the other hand, the Legacy mode
uses less memory, as writing buffers are allocated only by the SharedWriter. Also, it has been
observed that for TTrees, the Legacy mode produces slightly more optimized files, as there
is only a single cluster being written during the writer’s learning phase (whereas in Parallel
mode, each worker produces an unoptimized first cluster). Currently, ATLAS can only use
the Legacy mode with RNTuple, because the RNTuple merging functionality required for the
Parallel mode has not yet been implemented.



Figure 2. Space savings achieved by
changing storage technology from TTree to
RNTuple, shown as percentages of the
original file size. The gains depend on the
derived-AOD product (PHYS/PHYSLITE)
and the data type (data/MC). The width of
the bars represents variations for data
coming from different data taking years.
Source: [7]

6 Performance

One of the most anticipated advantages of migrating to RNTuple is the reduction of file sizes.
After achieving a fully functional RNTuple version of Athena, we were able to compare
output file sizes of identical production jobs, using actual ATLAS data as input and producing
identical outputs, except with either TTree or RNTuple formats. We observed a reduction in
size for almost every type of data object, except for some specific data fields that contained
nested vectors of integer data (i.e. std::vector<std::vector<int»). We also observed, as shown
in Figure 2 that more derived data formats compress better: data PHYSLITE shows over 40%
size reduction.

It is now understood that the new method used by RNTuple to serialize arrays of
numerical data (byte-shuffling) may, in some cases, disrupt patterns in original data
representation that previously allowed for better compression. To prevent this, an option was
added to RNTuple to allow selecting the serialization method for each individual column.

No particular difference in speed was observed for typical production jobs. That in itself
is not very surprising, as the tests were performed with the typical POSIX I/O, regular TFiles
and the same storage hardware. Eventual improvements may result from using new advanced
I/O features later on.

Memory measurements of the test jobs showed a somewhat higher memory usage than
with TTrees (<10% increase). Not much tuning has been done in that direction yet. The
important goal remains - to fit into the 2GB per process limit for Grid jobs. More testing in
that direction is foreseen in 2025.

7 Non-Athena Access

In the normal production flow, the output files produced by Athena are later used by three
types of readers: Athena itself (in case there are remaining processing steps to execute),
Python standalone tools (to access in-file metadata or to perform output validation), and,
most importantly, non-Athena analysis jobs, which are used to perform further analysis of
the DAOD content.

During the Athena migration to RNTuple, we naturally implemented both writing and
reading. The reading is fully transparent, allowing any standard Athena job can read files
in both formats. Python standalone tools had to be migrated independently, as they often
internally used hardcoded, direct access to TTrees. These Python tools are an integral part of
the Athena ecosystem - they run as part of the job configuration to set job parameters based
on the input file content and perform output file validation once the job finishes.

All important Python tools were migrated to RNTuple. The migration was greatly aided
by good RNTuple Python bindings.



The analysis level access to Athena RNTuple files is currently in development -
independently, but in close collaboration with the work done in Athena.

8 Recap and Summary

The Athena interface to RNTuple was implemented as a technology-specific plugin library,
and is now one of the three coexisting technologies supported by ROOT: RNTuple, TTree
and TKey storage. The specifics of each technology are entirely encapsulated by the plugins,
which provide identical interfaces and the same functionality to the higher layers of the
Athena framework. The choice of technology used for the output is, for convenience,
controlled by a single job configuration flag. On the technical level, Athena is capable of
producing multiple output streams with different technologies at the same time. For physics
analysis, Athena can write all officially supported data products (RDO, HITS, ESD, AOD,
DAOD) into RNTuple format.

Reading RNTuple (and TTree) files in Athena is completely transparent, without prior
knowledge of the format of the input files. The same job can read inputs with different
formats and even navigate between them.

This flexibility and transparency are possible because the RNTuple support for all Athena
requirements concerning EDM and API allows using a single Athena build for both formats.
In fact, runtime tests with RNTuple are now part of the continuous integration and nightly
tests of the main branch of Athena.

The migration to RNTuple took significant time and work, both from ATLAS and ROOT
[9] developers. Some fine-tuning is still needed, but we are nevertheless satisfied with the
results achieved so far. We have seen very exciting results in file size reduction, and we are
planning large scale tests to fully validate RNTuple for production.

Brookhaven National Laboratory’s work was supported by the U.S. Department of Energy’s
Office of Science, Office of High Energy Physics, under Contract DE-SC0012704.
Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office
of Science, under contract DE-AC02-06CH11357.

References

[1] ATLAS Collaboration, (2008) The ATLAS Experiment at the CERN Large Hadron
Collider. J. Inst. 3, S08003 DOI: 10.1088/1748-0221/3/08/S08003

[2] R. Brun, F. Rademakers, (1996) ROOT: An Object Oriented Data Analysis Framework.
AIHENP’96 Workshop Nucl. Inst. & Meth. In Phys. Res. A 389 81-86. http://root.cern.ch

[3] J. Blomer, P. Canal et al, (2024) ROOT’s RNTuple I/O Subsystem: The Path to
Production. EPJ Web of Conf. 295 06020. https://doi.org/10.1051/epjconf/202429506020

[4] Z. Marshall, A. Di Girolamo, (2022) ATLAS Software and Computing HL-LHC
Roadmap, LHCC-G-182, CERN-LHCC-2022-005

[5] G. Barrand et al, (2001) GAUDI — A software architecture and framework for building
HEP data processing applications, Computer Physics Communications, Vol. 140, Issues
1–2, https://doi.org/10.1016/S0010-4655(01)00254-5

[6] T. Eifert, M. Elsing, D. Gillberg, K. Koeneke, A. Krasznahorkay, E. Moyse, M. Nowak,
S. Snyder, P. Van Gemmeren, (2015) Implementation of the ATLAS Run 2 event data
model. Proceedings of the 21st International Conference on Computing in High Energy
and Nuclear Physics J. Phys.: Conf. Ser. DOI: 10.1088/1742-6596/664/7/072045

https://www.bnl.gov/about/contract/
https://www.anl.gov/prime-contract
https://doi.org/10.1088/1748-0221/3/08/S08003
http://root.cern.ch
https://doi.org/10.1051/epjconf/202429506020
https://cds.cern.ch/record/2802918/
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1742-6596/664/7/072045


[7] T. Ovsiannikova, P. Van Gemmeren, A.S Mete, M. Nowak, (2024) Impact of RNTuple
on Storage Resources for ATLAS Production (in these proceedings)

[8] A.S Mete, M. Nowak, P. Van Gemmeren, (2024), Persistifying the complex event data
model of the ATLAS Experiment in RNTuple. ACAT Conference proceedings, ATL-
SOFT-PROC-2024-002 https://cds.cern.ch/record/2905189

[9] F. de Geus, J. López-Gómez et al, (2024), Integration of RNTuple in ATLAS Athena.
EPJ Web of Conf. 295 06013 https://doi.org/10.1051/epjconf/202429506013

https://cds.cern.ch/record/2905189
https://doi.org/10.1051/epjconf/202429506013

	Introduction
	Rationale behind the migration to RNTuple
	Migration stages
	Data Model Compatibility
	STL containers
	Read rules
	User-defined collections
	Dynamic attributes


	API Compatibility
	Operational Compatibility
	Performance
	Non-Athena Access
	Recap and Summary

