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Abstract. Machine learning (ML)-based algorithms play increasingly impor-
tant roles in almost all aspects of the data analyses in ATLAS, including detector
simulations, event reconstructions, and data analyses. These diverse ML models
are being deployed in the ATLAS software framework, Athena. To harmonize
the ML inference in both the Athena environment and the ROOT environment,
a dual-use ML interface is defined and implemented with two distinct back-
ends: the Open Neural Network Exchange (ONNX) Runtime and Inference as
a Service. While ONNX Runtime serves as the primary inference backend in
Athena, scalable inference strategies are required to address the growing de-
mands of processing simulation and collision data, including maximizing event
throughput and utilizing coprocessors like graphics processing units (GPUs).
To meet this challenge, we introduce AthenaTriton, a solution that integrates
the NVIDIA Triton Inference Server with Athena. In AthenaTriton, Athena
operates as a Triton client that sends requests to a remote or local server that
performs the model inference. This scalable approach can be used in both on-
line and offline computing workflows.

1 Introduction

With the increase in luminosity at the upcoming High-Luminosity LHC (HL-LHC) [1], the
growing demand for computing resources has become a critical topic, necessitating aggres-
sive R&D efforts [2]. To cope with the increased computing demand, the use of coprocessors,
such as GPU and field-programmable gate array (FPGA), became potential options to explore
for the upcoming ATLAS Phase-II Trigger and Data Acquisition (TDAQ) and software up-
grades [3, 4]. This requires a software stack to be able to utilize coprocessors efficiently. Be-
sides, more and more machine learning (ML) algorithms are adopted in almost every aspect
of the simulations, reconstructions, and data analyses. This calls for a common inference tool
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within the ATLAS reconstruction software framework, Athena [5], to reduce the duplication
of the codebase.

This document presents an overview of existing ML inference implementation in ATLAS
and details the design of a new common inference tool, AthInferenceTool, which can handle
inference with local or remote GPUs. Section 2 described the detailed design of AthInfer-
enceTool. Secion 2.3 gives an overview of the Inference as a Service (IaaS) computing model
and tool development. Section 3 briefly summarized the graph neural network (GNN)-based
tracking pipeline deployed with NVIDIA Triton [6]. Finally, the performance studies of the
demonstrator are presented in section 4.

2 ML inference in ATLAS

Diverse ML models are being used in ATLAS for detector simulation, event reconstruction,
and data analyses. These models are featured with different numbers of input (output) data
and input (output) data types. For example, a GNN typically requires two or three tensors
as inputs: node features of type float, edge lists of type int64_t, and, optionally, edge
features of type float. In addition, data analyses would need to be supported in both the
Athena environment and the ROOT [7] environment, necessitating a dual-use design for ML
inference tools. [8].

To address these challenges, we designed a common ML interface in Athena:
IAthInferenceTool [9], as shown in Fig. 1. The input and output data are represented as a
dictionary that maps names to pairs of (std::vector<int64_t>, std::variant). The
first element describes the tensor shape, while the second stores the data. The dictionary-
based representation supports a dynamic number of inputs and outputs, and the use of
std::variant enables handling multiple data types.

2.1 ONNX Runtime

ONNX Runtime [10] is a high-performance inference engine designed to accelerate machine
learning models across various platforms and hardware, supporting the ONNX (Open Neural
Network Exchange) format for interoperability. In ONNX Runtime, at least one ORT::Env
object is required to manage the logging, thread pools, and memory allocations for each
ORT::Sessions. Each ORT::Sessions handle the execution of a ML model. Additionally,
ORT::Sessions supports different execution providers (EP)—platforms where the model
inference tasks are performed—including NVIDIA CUDA [11] and TensorRT [12], Intel
oneDNN [13], and AMD Vitis AI [14].

The integration of ONNX Runtime in Athena is shown in Fig. 1. We developed an Athena
service IOnnxRuntimeSvc [15] that returns a pointer to the ORT::Env object. The Athena
service is designed to have only one instance within Athena, which is shared across all Athena
algorithms. Currently, the service provides a common environment primarily for logging. In
the future, it could be extended to support global/shared thread pools and shared memory al-
locator(s) when numerous ML models are executed within a single Athena job. Additionally,
we implemented a lightweight Athena Tool interface IOnnxRuntimeSessionTool [16] that
returns a pointer to the ORT::Sessions object. This interface supports multiple execution
providers (EPs), allowing users to switch between EPs via the Athena Python configura-
tion [17] configuration without recompilation. Currently, only the CPU and CUDA EPs are
implemented. Note that each IOnnxRuntimeSessionTool corresponds to one specific ML
model stored in the ONNX file format.



Figure 1. Illustration of the common ML interface for both ONNX Runtime for direct inference and
IaaS using NVIDIA Triton.

2.2 AthenaTriton

AthenaTriton refers to Athena jobs that employ the Triton Inference Server [18], i.e., the IaaS
approach. In AthenaTriton, Athena acts as a Triton client that sends requests to a remote
or local Triton server that performs the ML model inference. To that end, we developed
the AthInferenceTritonTool that uses Triton to implement the common ML interface
IAthInferenceTool.

The AthInferenceTritonTool is lightweight and requires minimal dependencies. The
tool takes only two inputs: modelName for requesting the model deployed at the server and
Uniform Resource Locator (URL) for connecting to the Triton server. It does the following
internally to facilitate the IaaS: 1) check the server status and connect to the server, 2) convert
the input data to raw data format of type uint8_t, 3) send the input data to the server for ML
inference, 4) check the returned result status and convert the result to a user-defined format if
no error occurs. Similar to the ONNX Runtime implementation, each Triton tool corresponds
to one specific ML model, even though the Triton server might host more than one model.

Clients can communicate with the Triton server using either an HTTP/REST [19] pro-
tocol, a gRPC protocol [20], or by an in-process C API or its C++ wrapper. By default,
AthenaTriton utilizes the gRPC protocol.

2.3 Triton Inference Server

Triton Inference Server is an open-source package developed by NVIDIA [18]. The frame-
work provides a client and server interface to allow deployment and streamline inference
requests. A backend is an implementation that executes a model. Triton natively supports



multiple common ML backends such as TensorRT, ONNX Runtime [10], Tensorflow [21],
and PyTorch [22]. It also supports custom backends using Python and C++, enabling greater
control over the data allocations and complex workflow. This flexibility promotes rapid test-
ing and development of sophisticated ML models, like the Graph Neural Network for particle
tracking [23].

Compared to direct GPU connection, Triton allows concurrent execution of multiple mod-
els or instances of a single model on the server, improving scalability and resource utilization
while reducing operational costs. The number of model instances can be adjusted through a
configuration file, providing flexibility to optimize the workloads. Additionally, Triton elim-
inates the need for the existing production frameworks to implement complex algorithms or
manage their dependencies, thereby improving adaptability and enhancing long-term main-
tainability.

Additional complexities, such as network latency and overhead, may arise, potentially
increasing overall deployment costs and system complexity. Triton provides a convenient
tool called perf_analyzer [24] tool to measure the performance of models deployed on
the server by sending augmented real or synthesized data. The perf_analyzer provides
detailed computing metrics, including response times, latency, throughput rates, and GPU
utilization, helping developers identify potential bottlenecks and to optimize their deployment
for better efficiency. The perf_analyzer is utilized in the standalone study.

Exploring the deployment of Triton Inference Servers within ATLAS computing re-
sources, including the Event Filter computing farm, involves addressing challenges such as
resource allocation, latency optimization, and integration with existing systems. It is an on-
going area of investigation. Despite these concerns, the Triton Inference Server remains an
optimal solution for ML pipelines due to its robust scalability, straightforward integration
capabilities, and support for diverse backends.

3 Graph Neural Network-based track finding algorithm

As described in Section 2.3, Triton provides a simple way to write a customized backend.
We use the GNN-based metric learning track-finding algorithm to demonstrate the capabil-
ity of AthenaTriton. The pipeline consists of three sequential stages: graph construction,
edge labeling using GNN, and finally, edge segmentation with connected components and
the walkthrough algorithm. Despite its complex internal logic, the pipeline uses a simple
interface. It takes a list of space point features as inputs and outputs a list of proto-track can-
didates. Unlike classical algorithms such as the Kalman Filter, it does not rely on additional
information about the detector geometry, detector material, or magnetic field descriptions.
Further details can be found in Ref [25].

In our study, the GNN tracking uses the Metric Learning-based graph construction and
was trained with ACORN [26]. The data consists of simulated tt̄ events with an average
number of 200 interactions per bunch crossing (i.e., pileup (µ) = 200), using the ATLAS
upgrade tracker ITk [25]. The GNN-based tracking pipeline is referred to as GNN4ITk, and
its service version is GNN4ITk as a Service.

The GNN4ITk as a Service uses the Python backend in Triton to execute the pipeline;
see the software implementation in Ref. [27]. Note that the ML models were converted to
TorchScript, an intermediate representation of a PyTorch model that can then be run in a
high-performance environment [28].

An Athena tool is developed for preparing the input spacepoint features, calling the Triton
Tool for ML inference, and returning proto-track candidates, which is a list of spacepoint
indices separated by a special indice, -1, indicating the end of a track. The averaged size of
the input spacepoint features from a simulated tt̄ event with µ = 200 is around 300 Mb.



4 Performance of the GNN4ITk as a Service

A complete particle tracking chain typically consists of several steps: space point formation,
track finding, track fitting, and ambiguity resolution. GNN4ITk solely does the track-finding
step within this chain.

To evaluate the main characteristics of the IaaS approach, two studies are conducted:
(1) the standalone performance of the GNN4ITk as a Service, and (2) the end-to-end Athen-
aTriton inference with multiple client threads sending requests to a remote GPU. The stan-
dalone test isolates the GNN4ITk from the full chain, while the end-to-end study evaluates
its integration within the complete chain.

4.1 Standalone Scaling

The standalone study uses the tool perf_analyzer to measure the throughput (events per
second) and the GPU utilization by sending the same tt̄ event with µ = 200 to the Triton
server repeatedly. The results are summarized in Figure 2. The throughput scaling efficiency
is defined as ϵ = Ti/i

T1
where Ti is the throughput with i model instance(s). The GNN4ITk

service runs on a GPU server hosted at the Perlmutter GPU node with NVIDIA A100 GPU
with 80 GB memory. The scaling efficiency stays above 98% with more concurrent Triton
instances running on the same GPU. The GPU utilization increases up to around 45% before
reaching the memory limit when the model instance increases. Further studies are ongoing
to improve the GNN4ITk pipeline and reduce its memory consumption.
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Figure 2. The event processing throughput scaling efficiency (blue line, left y-axis) and the GPU
utilization (yellow line, right y-axis) as a function of number of Triton model instances running on a
single GPU.

4.2 End-to-End scaling with AthenaTriton

The full end-to-end performance gain is evaluated by measuring the execution time of pro-
cessing a fixed number of events with Athena. This takes into account the additional overhead



between client-to-server communication. In this study, the server is at a Perlmuter GPU com-
puting node with A100, while the Athena client is at a Perlmuter CPU node. The overhead
from data transmission between the GPU and CPU node is small.

The performance is evaluated by the strong scaling efficiency, ϵ, defined as ϵ = t1/n
tn

,
where t1 is the execution time for a single Athena thread, tn for the execution time for n
Athena threads, and n ranges from 1 to 3. The execution time tn is measured as the wall time
for running the tracking reconstructions on tt̄ events with a pileup of µ = 200 in Athena on
a Perlmutter CPU node. The GNN4ITk service is the same as in the standalone scaling test,
with the number of model instances on a single GPU adjusted to match the number of Athena
threads. Beyond three model instances, the server encountered an out-of-memory error. This
configuration fully utilizes the A100 GPU’s computing capabilities to handle multiple con-
current Athena requests, enabling AthenaTriton to achieve a 2.4 speedup compared with the
baseline direct inference.
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Figure 3. The strong scaling efficiency as a function of the number of Athena threads for GNN-based
tracking as a Service.

5 Conclusions

The development of a common ML inference interface in Athena represents a crucial step
in core software development for the future HL-LHC. The IAthInferenceTool provides
a unified interface for all ML model inferences in Athena, enabling consistent and flexible
integration. Two Athena tools are developed: one with ONNX Runtime and another with
the Inference as a service computing model. The AthenaTriton extends this capability by
supporting remote coprocessors via Triton.

We demonstrated that the IaaS can be a viable solution to improving GPU utilization, as
exemplified by the GNN-based Metric learning tracking pipeline. This remains an active area
of development within ATLAS, with ongoing efforts to migrate the ML inference infrastruc-
ture to the common interface. For AthenaTriton, future work will focus on optimizing the
server deployments on high-performance computing (HPC) environments and Analysis User
Facilities, and designing load-balancing mechanisms to support multiple GPUs efficiently.
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