
A
TL

-D
A

Q
-P

R
O

C
-2

02
5-

00
4

10
Fe

br
ua

ry
20

25

Evolution of the ATLAS TDAQ online software framework
towards Phase-II upgrade: use of Kubernetes as an orches-
trator of the ATLAS Event Filter computing farm

Alina Corso Radu1,∗, Giuseppe Avolio2, Matteo Ferrari2, Andrei Kazarov3, Igor Soloviev1,
and Serguei Kolos1

1University of California Irvine, Physics & Astronomy Department, Irvine, CA 92697, US
2CERN, EP Department, Espl. des Particules 1/1211, 23 Genève, Switzerland
3University of Johannesburg, Department of Mechanical Engineering Science, Johannesburg, 2006, SA

Abstract. The ATLAS experiment at the LHC at CERN continuously evolves
its TDAQ system to meet the challenges of new physics goals and technological
advancements. As ATLAS prepares for the Phase-II Run 4 of the LHC, signifi-
cant enhancements in the TDAQ Controls and Configuration (TDAQ-CC) tools
have been designed to ensure efficient data collection, processing, and manage-
ment. This abstract presents the evolution of ATLAS TDAQ-CC system leading
up to Phase-II Run 4. As part of the evolution towards Phase-II, Kubernetes has
been chosen to orchestrate the Event Filter (EF) farm. By leveraging Kuber-
netes, ATLAS can dynamically allocate computing resources, scale processing
capacity in response to changing data taking conditions and ensure high avail-
ability of data processing services. The integration of the Kubernetes with the
TDAQ Run Control framework enables perfect synchronisation between the ex-
periment’s data acquisition components and the computing infrastructure. We
will discuss the architectural considerations and implementation challenges in-
volved in Kubernetes integration with the ATLAS TDAQ-CC system. We will
highlight the benefits of using Kubernetes as an EF farm orchestrator, including
improved resource utilization, enhanced fault tolerance, and simplified deploy-
ment and management of data processing workflows. In addition, we will report
on the extensive testing of Kubernetes that was conducted using a farm of 2500
servers within the experiment data taking environment, demonstrating its scala-
bility and robustness in handling the demands of the ATLAS TDAQ system for
Phase-II. The adoption of Kubernetes represents a significant step forward in the
evolution of ATLAS TDAQ-CC system, aligning with industry best practices in
container orchestration.

1 Introduction

The ATLAS experiment at CERN [1] is preparing for the HL-LHC era, which aims to achieve
a luminosity of 7.5 × 1034cm−2s−1. This enhancement will result in over 200 proton-proton
interactions per bunch crossing. This unprecedented interaction rate will lead to a dramatic
increase in the complexity of events that need to be processed, leading to a higher volume of
∗e-mail: alina.radu@cern.ch

Copyright 2025 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license



data, far exceeding the current processing capabilities. To accommodate the higher luminos-
ity and to exploit full HL-LHC potential, the trigger rates of the system must increase, for
example, the Level-0 (L0) hardware trigger will reduce the data rate from 40 MHz to approx-
imately 1 MHz which is ten times more than Run 3 L1 rate. In addition to the trigger rate
increases, the size of the events themselves will also grow to reach approximately 4.6 MB,
compared to the 1.5 MB event size in Run 3. This substantial increase in event size means
that the data acquisition throughput will need to scale accordingly, placing additional stress
on the system’s resources.

To address these challenges, the Phase-II upgrade of the TDAQ system introduces both
hardware and software improvements [2]. One of the many critical aspects is the orchestra-
tion of the EF computing farm, which will manage about five thousand computing nodes,
enabling real-time event filtering and processing. Kubernetes has been selected to manage
this complex distributed system due to its efficiency in resource management, fault tolerance,
and scalability. The EF farm currently operates under a static configuration and relies on
in-house process management system (PMG), which is part of the TDAQ Controls and Con-
figuration software [3]. However, this approach is not suitable enough to handle the demands
of HL-LHC. A robust and dynamic orchestration mechanism is required to ensure efficient
resource utilization, fault tolerance, and scalability. The solution must manage thousands of
computational nodes in a flexible and automated manner, enabling real-time data processing
without compromising performance or reliability.

This paper discusses the requirements for the EF farm orchestrator, the choice of Kuber-
netes, and its integration into the ATLAS TDAQ system.

2 Kubernetes as the EF Farm Orchestrator

Kubernetes [4], an open-source container orchestration platform, has been adopted as the
solution to meet the demanding requirements of the EF farm during the Phase-II upgrade of
the ATLAS experiment. The EF farm, that will consist of maximum five thousand computing
nodes, requires a robust mechanism to manage workloads, to ensure system reliability, and to
allocate resources dynamically. Kubernetes addresses these challenges through its container
orchestration capabilities, providing a scalable and fault-tolerant solution.

One of the critical requirements for the EF farm orchestrator is the ability to manage the
lifecycle of EF processes seamlessly. These processes must run continuously in quasi real
time to process physics data or offline-simulation workloads while sharing the same comput-
ing resources efficiently. Kubernetes allows the activation or deactivation of computational
units at runtime, optimizing CPU and memory usage across the cluster. The flexibility in re-
source allocation ensures that computing resources are utilized optimally, minimizing waste
and reducing overhead. Kubernetes also provides the capability to monitor, control, and man-
age thousands of active processes. By offering precise control over starting, stopping, and
monitoring workloads, Kubernetes ensures system reliability even under extreme operational
conditions. Additionally, the platform allows users to specify detailed process requirements,
such as command-line parameters and environment variables, ensuring that EF processes can
be properly configured and deployed with high granularity. Fault tolerance is another signifi-
cant advantage of Kubernetes as an EF farm orchestrator. The platform dynamically adjusts
to real-time conditions, automatically recovering processes that fail due to hardware or soft-
ware issues. This resilience is critical for maintaining the stability of the EF computing farm,
particularly during long data-taking periods where interruptions must be minimized.

Furthermore, Kubernetes supports containerized applications, which align with modern
industry practices in cloud-native computing. By deploying EF processes as containers, the



system benefits from simplified software management, easier updates, and improved portabil-
ity across different environments. This containerized approach also enhances scalability, as
Kubernetes can easily scale workloads up or down based on changing data-taking conditions,
ensuring that the system adapts efficiently to changes in luminosity for example.

3 Testing Kubernetes in the ATLAS EF Farm

The testing of Kubernetes for the EF farm was carried out using dedicated clusters installed
in two distinct environments: the TDAQ lab and the ATLAS experiment’s closed network
(P1). These environments were designed to simulate conditions as close as possible to the
production setup. The P1 cluster is configured to mirror real-world requirements and consists
of four control plane nodes, four ETCD nodes, two Prometheus nodes for monitoring, and
about 2600 worker nodes, representing more than 50% of the maximum farm size expected
for Run 4 in terms of number of servers.

The primary objectives of these tests included evaluating Kubernetes’ scalability, fault
tolerance, and efficiency in resource management. Scalability was tested by running work-
loads across the 2600-node EF farm, ensuring that the Kubernetes orchestration layer could
manage such a large number of nodes without degradation in performance. The tests also
focused on optimizing the scheduling of Pods (the smallest deployable unit in Kubernetes)
using different strategies. One approach, known as daemon set, ensures that a Pod is deployed
on every node within the cluster. This method proved effective for high-availability tasks but
did not necessarily optimize the resource usage. Multiple PODs per node can be deployed
in this case using more than one daemon set. A second strategy, called topological spread,
distributes Pods evenly across available nodes, ensuring better load balancing and improved
fault tolerance. A third one, resource-based scheduling strategy prioritizes node availability
based on CPU and memory resources, providing an efficient balance between scheduling time
and resource utilization. Some results of these tests are illustrated in Figure 1.

Figure 1. Start and stop time for different numbers of workers and for different numbers of Pods per
worker node using two strategies: daemon set and topological spread



The plots show the Pods start and stop times using two different scheduling strategies,
namely daemon set and topological spread. The data demonstrates that daemon set has a
faster deployment time but in practice shows less flexibility to varying workloads. In contrast,
topological spread requires additional time for scheduling but demonstrates the potential for
easily handling larger, evenly distributed workloads efficiently. The plots compare start and
stop times for different numbers of Pods per worker node, showing a consistent increase in
start and stop time as the number of Pods per node rises. These results highlight the trade-offs
between resource allocation efficiency and scheduling overhead, emphasizing the importance
of choosing an appropriate strategy for different workloads.

The comparative testing of these strategies shown in Figure 2 revealed important insights.
While topological spread offered better flexibility and ease of use, it was more costly regard-

Figure 2. Start time comparison for 10 Pods per worker node using different strategies

ing scheduling overhead. On the other hand, resource-based scheduling proved to be the most
efficient in terms of deployment time, making it a preferred approach for scenarios requiring
quick resource allocation. These findings demonstrated Kubernetes’ flexibility in adapting
to different operational needs while maintaining high performance and reliability. It is worth
mentioning that by upgrading the control plane nodes hardware from 2 x Intel Xeon E5-2650
v3 6C/12T to 2 x AMD EPYC 7313 16C/32T, a 50% gain in PODs start time was achieved
using the topological spread deployment (results shown in Figures 1 and 2 refer to the new
hardware). This improvement makes the topological spread strategy more affordable in terms
of deployment time, highlighting its viability under upgraded hardware conditions.

In summary, the extensive testing conducted across large-scale cluster validated Kuber-
netes’ capability to orchestrate the EF farm effectively. The platform showed excellent scal-
ability, fault tolerance, and resource management, ensuring that the ATLAS TDAQ system
can meet the challenges of data-taking under HL-LHC conditions. The ability to fine-tune
scheduling strategies further highlighted Kubernetes’ adaptability, making it a robust solution
for managing the EF computing farm.

4 Integration with the TDAQ Run Control Framework

The integration of Kubernetes into the existing TDAQ Run Control framework represents
a significant advancement in the management of the ATLAS EF farm. The Run Control
framework serves as the central system for synchronizing and managing data acquisition
components across thousands of servers. To ensure a seamless operation, this framework
leverages a Finite State Machine (FSM) model, which orchestrates the different states of the
data acquisition processes and maintains synchronization across all participating components.



The Kubernetes integration was accomplished through the development of a specialized
application referred to as the Kubernetes-TDAQ bridge or KEFController. This application
uses Custom Resource Definitions (CRDs) which allow Kubernetes to deploy EF applications
while respecting the FSM structure, ensuring that data-taking workflows remain synchronized
across the distributed infrastructure.

The bridge application implements the Kubernetes operator pattern, employing an in-
house C++ wrapper built on top of the Kubernetes C-library [5]. This wrapper serves as
the interface between Kubernetes cluster and the TDAQ framework, facilitating tasks such
as process orchestration, error handling, and resource monitoring. During a run, the bridge
application ensures that Kubernetes processes align with TDAQ’s finite state transitions, en-
abling dynamic resource management and robust error recovery.

Moreover, the integration process incorporates key TDAQ tools and services to maintain
system stability. The TDAQ-native configuration system (OKS) is used to define and manage
the operational parameters of EF applications, ensuring a standardized setup across the in-
frastructure. Error handling is implemented using the TDAQ Error Reporting System (ERS),
which captures and logs issues related to EF processes and Kubernetes tasks. Finally, the
system health and performance are monitored continuously, with the collected data being fed
back to the TDAQ Expert System (CHIP) for analysis and troubleshooting. A schema of the
KEFController application and its interaction is shown in Figure 3.

Figure 3. Schema of the Kubernetes-TDAQ bridge application and its interactions

By combining Kubernetes orchestration with the TDAQ Run Control framework, the EF
farm gains the ability to manage resources dynamically while maintaining synchronization
with the overall data acquisition system. This integration ensures that EF processes are ex-
ecuted reliably and efficiently, even under the extreme conditions of HL-LHC data-taking.
The result is a cohesive and fault-tolerant system capable of meeting the stringent operational
demands of the upgraded ATLAS experiment.

5 Deployment scenarios

The deployment of the EF processes and the needed dataflow (DF) services requires careful
planning to properly balance maintainability, resource efficiency, and performance. Resource
requests must be accurately defined to ensure optimal scheduling and avoid inefficiencies dur-
ing deployment. Given the significant scale of the EF computing farm, where approximately



64,000 processing units are needed according to the current estimations, it was necessary
to evaluate deployment strategies that could effectively manage such a high load. Several
approaches are currently under consideration for deploying EF processes.

The default ‘single-container per Pod’ approach offers fine-grained control over resource
allocation, as each EF process operates independently within its own container. While this
provides precise scheduling and monitoring, it introduces important overhead when manag-
ing tens of thousands of individual Pods, increasing complexity and deployment times. The
‘combined-containers per Pod’ strategy combines containers for multiple EF processes and
DF services into a single Pod. This strategy simplifies the deployment process, as it reduces
the overall number of Pods that Kubernetes must manage, thereby lowering scheduling over-
head and system complexity. However, this approach has limitations, such as reduced flex-
ibility for independent scaling of DF and EF components, as their lifecycles remain tightly
coupled. The ‘multi-Pod’ solution (different PODs for EF and DF), balances these trade-
offs by allowing grouped processes to share CPU and memory while maintaining modularity
across Pods. This strategy enhances flexibility and ensures that resource efficiency remains a
priority.

Each strategy presents trade-offs. While the single-container approach offers greater gran-
ularity and control, the ‘combined-containers’ approach improves deployment efficiency at
the cost of flexibility. Manual interventions at the Pod level can become challenging when
managing multiple containers within a single Pod. Nevertheless, health checks can be imple-
mented to monitor individual containers, mitigating some of these limitations.

Future work will focus on refining these strategies through further automation and ad-
vanced monitoring solutions. Machine learning techniques will be explored to optimize re-
source management, predict workload requirements, and reduce manual intervention. By
aligning these efforts with industry cloud-native practices, the ATLAS EF farm will achieve
higher performance and reliability, ensuring it can handle the HL-LHC’s demanding data-
processing requirements.

6 Simulation workloads using EF farm

The Kubernetes cluster installation at P1 is extending its usage beyond traditional Event Fil-
ter (EF) workloads to include offline-simulation jobs, project called KSim@P1. The primary
objective of KSim@P1 is to transition from virtual machines (VMs) to containerized envi-
ronments orchestrated by Kubernetes. This shift offers several advantages, such as simplified
deployment, enhanced scheduling strategies, and better control over resource usage. Addi-
tionally, Kubernetes’ existing tools, like Prometheus for monitoring, are leveraged to ensure
efficient operation. A critical design goal is maintaining network isolation to protect exper-
imental networks and ensure that simulation jobs do not compromise system stability. Fur-
thermore, Kubernetes facilitates seamless access to necessary data sources such as CVMFS,
while enabling real-time log retrieval for debugging by experts.

KSim@P1 uses HTCondor [6] to manage simulation jobs, which are executed in con-
tainerized environments using Singularity as the runtime. Preliminary tests at P1, conducted
on a single server, demonstrated the stability of this configuration. Expanded testing in the
TDAQ tbed environment further validated these results, with over 500 cores running simula-
tion jobs for a week without issues, as it is illustrated in Figure 4.

The successful integration of simulation jobs into Kubernetes has showcased its flexi-
bility and robustness. However, there is room for improvement. Future developments will
focus on scaling the system, refining resource management strategies, and ensuring seamless
coexistence with TDAQ workloads. Additional tests will explore new deployment strategies,
such as multi-container Pods, to optimize resource usage for large-scale simulations. These



Figure 4. Grafana screenshots showing resources utilization by KSim@P1 running in TDAQ tbed
cluster

enhancements aim to position Kubernetes as a unified platform for both physics data ac-
quisition and offline-simulation tasks, streamlining operations and improving overall system
efficiency.

7 Conclusion

The adoption of Kubernetes for orchestrating the ATLAS EF farm represents a significant
step forward in preparing for the HL-LHC upgrade. Kubernetes addresses key challenges
such as scalability, fault tolerance, and resource optimization, ensuring the TDAQ system
can manage increasing data volumes and complex event processing. Extensive testing has
demonstrated Kubernetes’ ability to meet the demands of HL-LHC data acquisition. By
integrating Kubernetes with the TDAQ Run Control framework, ATLAS is now equipped to
handle the challenges of higher luminosity and increased data complexity.

References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider.
JINST 3 S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/S08003

[2] ATLAS Collaboration, ATLAS Trigger and Data Acquisition Phase-II Upgrade Technical
Design Report. Tech. rep. CERN-LHCC-2017-020; ATLAS-TDR-029. Geneva: CERN,
Dec. 2017 https://cds.cern.ch/record/2285584

[3] A. Kazarov et al, The Controls and Configuration Software of the ATLAS Data
Acquisition System: evolution towards LHC Run 3, EPJ Web Conf. 251 (2021).
https://doi.org/10.1051/epjconf/202125104019

[4] Kubernetes: Production-Grade Container Orchestration. https://kubernetes.io/
[5] Kubernetes C client library project: https://github.com/kubernetes-client/c/
[6] F. Berghaus et al, Sim@P1: Using Cloudscheduler for offline process-

ing on the ATLAS HLT farm, EPJ Web of Conferences 214 (2019).
https://doi.org/10.1051/epjconf/201921407021


	Introduction
	Kubernetes as the EF Farm Orchestrator
	Testing Kubernetes in the ATLAS EF Farm
	Integration with the TDAQ Run Control Framework
	Deployment scenarios
	Simulation workloads using EF farm
	Conclusion

