| ATL-SOFT-PROC-2025-025

@ ‘ 09 February 2025

Building a Columnar Analysis Demonstrator for ATLAS
PHYSLITE Open Data using the Python Ecosystem

KyungEon Choi U Matthew Feickert ®%*, Nikolai Hartmann ®3, Lukas Heinrich ©*, Alexan-
der Held 2, Evangelos Kourlitis 4. Nils Kramnack?, Giordon Stark ®°, Matthias Vigl i
and Gordon Watts ®%on behalf of the ATLAS Computing Activity

"University of Texas at Austin, Austin, Texas, USA

2University of Wisconsin-Madison, Madison, Wisconsin, USA
3Ludwig Maximilians Universitat, Munich, Germany

4Technical University of Munich, Munich, Germany

5Santa Cruz Institute for Particle Physics, Santa Cruz, California, USA
SUniversity of Washington, Seattle, Washington, USA

Abstract. The ATLAS experiment is in the process of developing a colum-
nar analysis demonstrator, which takes advantage of the Python ecosystem of
data science tools. This project is inspired by the analysis demonstrator from
IRIS-HEP. The demonstrator employs PHYSLITE OpenData from the ATLAS
collaboration, the new Run 3 compact ATLAS analysis data format. The tight
integration of ROOT features within PHYSLITE presents unique challenges
when integrating with the Python analysis ecosystem. The demonstrator is con-
structed from ATLAS PHYSLITE OpenData, ensuring the accessibility and
reproducibility of the analysis. The analysis pipeline of the demonstrator in-
corporates a comprehensive suite of tools and libraries. These include uproot
for data reading, awkward-array for data manipulation, Dask for parallel com-
puting, and hist for histogram processing. For the purpose of statistical analy-
sis, the pipeline integrates cabinetry and pyhf, providing a robust toolkit for
analysis. A significant component of this project is the custom application of
corrections, scale factors, and systematic errors using ATLAS software. The in-
frastructure and methodology for these applications will be discussed in detail
during the presentation, underscoring the adaptability of the Python ecosystem
for high energy physics analysis.

1 Introduction

As the High Luminosity LHC [1] (HL-LHC) era approaches, the ATLAS experiment [2] has
created a HL-LHC focused research and development program [3] for software and com-
puting upgrades to address the challenges and opportunities outlined in the ATLAS Soft-
ware and Computing HL-LHC Roadmap [4]. From the 2022 computing model projections,
ATLAS does not anticipate being able to store all analysis computations on disk, as even
under the “aggressive” R&D scenario, sustained year-on-year budget increases of more than

*Corresponding author e-mail: matthew.feickert@cern.ch
Copyright 2025 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license.

https://orcid.org/0000-0003-0748-694X
https://orcid.org/0000-0003-4124-7862
https://orcid.org/0000-0003-0047-2908
https://orcid.org/0000-0002-4048-7584
https://orcid.org/0000-0002-8924-5885
https://orcid.org/0000-0001-6568-2047
https://orcid.org/0000-0001-6616-3433
https://orcid.org/0000-0003-2281-3822
https://orcid.org/0000-0002-0753-7308

Run 3 (u=55)
A s s
3'5: ATLAS Preliminary
[2022 Computing Model - Disk

Run 4 (1=88-140) Run 5 (u=165-200)
LA L Iy B B

.\.‘

* Conservative R&D
v Aggressive R&D

— Sustained budget model y
(+10% +20% capacity/year) L

Disk Storage [EB]
w

2.5

®
[N N

R]
Il

I\|IIl\l\l\llll\llll\l‘llll‘

I\llllll\lllll

Gl v v by b b by e by e b by 1)
2020 2022 2024 2026 2028 2030 2032 2034 2036
Year

Figure 1: Projected evolution of disk usage from 2020 until 2036, under the conservative
(blue) and aggressive (red) R&D scenarios. The grey hatched shading between the red and
blue lines illustrates the range of resources consumption if the aggressive scenario is only
partially achieved. The black lines indicate the impact of sustained year-on-year budget in-
creases, and improvements in new hardware, that together amount to a capacity increase of
10% (lower line) and 20% (upper line). The vertical shaded bands indicate periods during
which ATLAS will be taking data [4].

10% would be required to meet the disk storage quota required, as seen in Figure 1. To
prepare for this reality, ATLAS has begun to explore strategies of trading disk for compute
by performing “on-the-fly” computations for analysis quantities when possible, rather than
reading them from disk. As part of this approach, ATLAS has been researching the use of
columnar analysis — array programming for data analysis — for full analysis workflows,
given its compute efficient batch data operations and its applications in different software
environments and ecosystems.

2 Columnar Analysis Demonstrator

One of the established research projects for columnar analysis is the development of an
ATLAS columnar analysis demonstrator. This demonstrator is inspired by the Institute for
Research and Innovation in Software for High Energy Physics (IRIS-HEP) [5, 6] Analysis
Grand Challenge [7], which leverages the “PyHEP” ecosystem of data science and analysis
tools developed by IRIS-HEP and Scikit-HEP [8]. These ecosystems of tools build upon
and extend the broader Scientific Python ecosystem, with mature columnar analysis libraries,
to provide functionality at each step of the columnar analysis pipeline: data query and ac-
cess, data file I/O and columnar access, data transformation and histogramming, distributed
analysis frameworks, statistical modelling and inference, and analysis reinterpretation.

The ATLAS Run 4 Analysis Model is built around the PHYSLITE common reduced
data format [9, 10]. PHYSLITE is a monolithic file format — intended to support around
80% of all physics analyses in Run 4 — that contains already-calibrated physics objects for
fast analysis, and allows for direct support without the need to create derived ROOT ntu-
ples for analysis. The demonstrator uses ATLAS PHYSLITE open data [11] — released

ATLAS Analysis Facility %
Compute, storage, services ueHicAGo

Read ROOT files
PwE Transform and
= 2 histogram Build template based stat
~:> UPI’OOt efficiently models and perform Coffeac
| = Sce;?nclljier\‘r;d ‘) inference with autodiff
; columnar data Q
gzcabinetry
Awkwar Boostt

Ar |:> | istogram if

orive 7 @ Vs 1 O e

(L
@ 2
%

SerwceX ' Analysis
t reinterpretation
Read ROOT f||es with EventLoop recas and reuse

and perform calibrations with
FuncADL queries

Figure 2: Schematic outline of an ATLAS columnar analysis demonstrator able to operate on
PHYS and PHYSLITE data formats using columnar analysis tools from the PYHEP ecosys-
tem. The demonstrator is designed to be deployed and run at an ATLAS analysis facility,
such as the University of Chicago Analysis Facility or a Coffea-casa deployment.

for research use for the first time in 2024 — to ensure the accessibility and reproducibility
of the technical demonstrator analysis. PHYSLITE has tight integration with ROOT fea-
tures, to the extent that raw PHYSLITE is not easily loadable outside of ROOT in general.
Integrating PHYSLITE data access with the Python analysis ecosystem presents unique chal-
lenges, such as correctly reading unsplit objects with custom serialization and layout, e.g.
ElementLinks [12] — a smart pointer type for providing persistent references to a specific
element in an object collection (“container””) — and trigger data. However, the Awkward Ar-
ray [13] library supports “behaviors” which allow for efficiently reinterpreting data structures
on the fly, and can be used by Uproot [14] for I/O of custom serializations (e.g. PHYSLITE).
Through contributions by ATLAS members large amounts of PHYSLITE are now supported
by both Uproot and Coffea [15, 16] which allows for most workflows to proceed with small
alterations [17]. This allows for the demonstrator workflow to operate on most PHYSLITE
files directly with Uproot, as seen in Figure 2. For files in the PHYS ATLAS Run 3 Analysis
Model data format [10], FuncADL [18, 19] and ServiceX [20-22] can be used to create a
distributed ROOT [23] data transformation service to read the data and perform calibrations.
The result of the transform is an in-memory columnar representation equivalent to if the col-
umn had been read from PHYSLITE. As PHYSLITE already contains all of the calibrated
physics objects, it is preferable to use PHYSLITE whenever possible.

3 Challenges and Opportunities

Data access can become challenging in PHYSLITE when branches with custom objects need
to be read or when full systematics need to be handled. As columnar analysis processes events
in batches, this requires the ATLAS Combined Performance (CP) tools and algorithms that
handle these challenges to also support batched operations and have the appropriate inter-

AR ATLAS CP Tool

Tool Class

PHYSLITE

Figure 3: Cartoon of the data interface layers for the Pythonic interface to the columnar CP
tools [25]. The user is presented with a high-level Pythonic API for operating on columns of
PHYSLITE data (e.g. as NumPy or Awkward arrays) that has a similar design to common
Python array libraries. Through nanobind [24] zero-copy buffers, the data columns are
passed directly to the performant C++ columnar CP tools for computation, and the results are
returned to the user level as transformed arrays.

faces. The current Run 3 model for CP tools is to operate on the ATLAS xAOD event data
model (EDM) for all the calculations per event and then to write the systematics to disk for
future access [10]. This process is I/O intensive and computationally inefficient, but has ex-
cellent physics performance and configurability for the current ATLAS analysis model. As a
data access layer the xAOD interface also makes assumptions about the underlying I/O layer,
memory model, and processing environment, which do not match well to the expectations
of columnar frameworks. The challenge for a fully columnar CP tool framework is to adapt
to the on-the-fly computation of the columnar paradigm — furthering the “trade disk for
compute” strategy — while still being performant enough to not be a bottleneck.

The refactoring process for columnar tools in the ATLAS Analysis Model Group (AMG)
has also offered design improvement opportunities to create more Pythonic end-user APIs
for the ATLAS CP tools. As seen in Figure 3, creating Pythonic APIs for users allows for
integration with the broader scientific Python ecosystem, and through efficient binding lay-
ers all data can be passed through to the C++ CP tools for efficient computation, and then
the results can be exposed to the users again. By using the nanobind [24] C++-to-Python
bindings library it becomes possible to have zero-copy operations to and from n-dimensional
array libraries in Python, including those which support hardware accelerators like GPUs,
and full design control of the high-level user API. The API design ability is quite powerful,
as it allows for unification of interfaces to CP tools without requiring individual CP tools to
redesign their C++ APIs.

4 Columnar CP Prototypes

As a first (v1) prototype of this capability, a standalone columnar implementation of the
ATLAS electron and photon (Egamma) CP tool with zero-copy nanobind Python bindings
was created to compute on-the-fly systematics variations for the dilepton system mass in
e*e” final states. Uproot was used to load ATLAS Z — ¢¢ simulation PHYSLITE files into
Awkward arrays, and the e*e™ event selections were applied with Coffea. The columnar
Egamma tool was initialized through the Pythonic interface, atlascp.EgammaTools, and
then passed Awkward arrays of electrons to compute on-the-fly systematic variations of the
electron reconstruction efficiency scale factors and energy correction resolution and scale,
from which the corrected dilepton mass was computed. The computations were additionally
scaled out with dask-awkward [26] on the University of Chicago ATLAS Analysis Facility
to minimize the compute wall time, with the gathered results visualized in Figure 4.

T T T T T T T

ATLAS Simulation Preliminary
Vs=13TeV

200
Nominal

SF UP

SF DOWN
Res UP

Res DOWN
Scale UP
Scale DOWN
777 Syst variation

150

Number of e*e™ events

50

\\\\ll\\\‘\ll\‘\\\ll\\\
Lo e b b b

85 100 105 710
Dilepton Mass [GeV]

=)
o
-
(6]
oo|d
Sl
[o2]
[$)]
[{e)
o

Figure 4: Histograms of the dilepton mass of selected Z — e*e™ events in ATLAS simulation
under on-the-fly systematic variations of the electron reconstruction efficiency scale factor
(SF) — the product of the reconstruction, identification, and isolation scale factors — and
energy correction resolution (Res) and scale (Scale) [25].

This preliminary research was required as there was no “‘zero action” option to determine
the viability of the proposed design a priori. The v1 prototype established the foundations of
what was possible with new tooling and that Pythonic interfaces to CP tools could be written
without large amounts of work or deep knowledge of underlying CP tool design. This showed
a promising direction, but additional work is needed to achieve the necessary performance,
integration, and support required for use.

A v2 “Columnar Athena” prototype [27] has been started to expand on the scope of the
v1 prototype. This moves the development of the columnar tools and interfaces from individ-
ual standalone examples into a unified system under the ATLAS Athena framework [28] and
migrates the ATLAS CP tools to a columnar backend without breaking the existing work-
flows using the EDM models. It additionally adds infrastructure support for development of
columnar analysis tools by adding nanobind to the ATLAS Externals tooling distributed as
part of the ATLAS Athena Analysis Releases. While currently under active development, the
v2 prototype will allow for full scale integration and performance tests of the columnar CP
tools and interfaces.

5 Preliminary Performance Tests

During the ongoing refactor for the v2 prototype, preliminary integrated benchmarks have
been created to measure the time spent in each tool (excluding I/O) in comparison with the
xAOD model. While direct one-to-one comparisons are not possible given the inherent dif-
ferences in the memory and I/O models for data access, the tests have been designed to be
as close as possible. The benchmarks compare the same version of each CP tool, only use
the C++ code (no Python is involved so as to isolate the C++ performance), and the time for
the xAOD model includes the event store access overhead (which is per-event for the xAOD
model and per-batch for the columnar model). The time for I/O and connecting columns is

also not included in the performance comparisons, as this has not been optimized in the cur-
rent tests and will not provide useful information, and so is excluded from the benchmark.
The benchmarks show substantial speedups for the migrated tools with the columnar imple-
mentations ranging from being 2-4x faster than the xAOD interface. The specific reasons for
the speedups are currently being investigated fully, but preliminary checks show a relation
with event store access and differences in accessing individual variables.

6 Future Work and Decisions

The development of the v2 prototype of the columnar CP tools is ongoing and will continue to
be publicly developed and benchmarked with future updates to the community from ATLAS.
The v1 and v2 prototypes have already demonstrated that adopting a columnar implementa-
tion for the backend CP tools allows for a columnar analysis paradigm to be possible, and
that the ongoing integration of nanobind bindings bridges the gap between C++ and Python
for high performance analysis while allowing freedom of Pythonic API design to allow for
higher level analysis thinking by end users. This development is critical for a full columnar
analysis ATLAS demonstrator that is able to interface fully with the scientific Python and
PyHEP ecosystems.

When the ATLAS CP tools were created 10-15 years ago during Run 1, they were de-
signed to be as framework independent as possible, be able to be run by themselves, and to
interface with the ATLAS EDM. In the time since, they have been battle tested, and through
through hundreds of analyses are now extremely well understood and provide excellent
physics performance. This creates a strong desire in ATLAS to maintain these valuable tools
and their existing functionality, making the rewrite cost of them to a correctionlib [29]
paradigm currently too high. The addition of columnar support to the CP tools for the new
analysis model though requires cracking open the “black box” implementations of the tools.
Being confronted with legacy code decisions further highlights the columnar prototype de-
sign decisions and the design opportunities during the tool migrations. It also prompts more
ambitious questions, like what would be required to make the ATLAS CP tools a standalone
pip [30] or conda [31] installable Python package? While this might seem like an ambition
for Run 5 of the LHC or beyond, given the significant improvements in packaging technology
in the Python ecosystem, like scikit-build-core [32], this proposal is perhaps achievable
on a significantly shorter time scale. As an example, using this strategy, the ROOT team
is currently researching the ability to distribute ROOT as a Python package [33]. If these
approaches are successful, it will allow for a greater level of modularity in the way ATLAS
analyses are performed and a path towards greater interoperability with other tools as the
ATALS CP tools will have become another viable tool in the broader PYHEP ecosystem.

7 Acknowledgements

Matthew Feickert, Alexander Held, and Gordon Watts are supported by the U.S. National
Science Foundation (NSF) under Cooperative Agreement OAC-1836650 and PHY-2323298
(IRIS-HEP). Lukas Heinrich and Evangelos Kourlitis are supported by the Excellence Clus-
ter ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy - EXC-2094-390783311 and by
the German Federal Ministry of Education and Research Project 05H2021 (ErUM-FSP T02)
- “Run 3 von ATLAS am LHC: Analysis Infrastructure for the ATLAS Detektor at the LHC”.

References

[1] L. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Tech-
nical design report, CERN Yellow Reports: Monographs 10/2020 (2020), https://cds.
cern.ch/record/2749422/. 10.23731/CYRM-2020-0010

[2] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003

[3] ATLAS Collaboration, ATLAS HL-LHC Computing Conceptual Design Report,
CERN-LHCC-2020-015; LHCC-G-178 (2020), https://cds.cern.ch/record/
2729668

[4] ATLAS Collaboration, ATLAS Software and Computing HL-LHC Roadmap, CERN-
LHCC-2022-005; LHCC-G-182 (2022), https://cds.cern.ch/record/2802918

[5] P. Elmer, M. Neubauer, M.D. Sokoloff, Strategic Plan for a Scientific Software Inno-
vation Institute (S212) for High Energy Physics (2017), https://arxiv.org/abs/
1712.06592, 1712.06592.

[6] J. Albrecht et al. (HEP Software Foundation), A Roadmap for HEP Software and
Computing R&D for the 2020s, Comput. Softw. Big Sci. 3, 7 (2019), 1712.06982.
10.1007/s41781-018-0018-8

[7]1 A.Held, O. Shadura, The IRIS-HEP Analysis Grand Challenge, PoS ICHEP2022, 235
(2022). 10.22323/1.414.0235

[8] E. Rodrigues et al., The Scikit HEP Project — overview and prospects, EPJ Web Conf.
245, 06028 (2020), 2007.03577. 10.1051/epjconf/202024506028

[9] J. Schaarschmidt, J. Catmore, J. Elmsheuser, L. Heinrich, N. Krumnack, S. Mete,
N. Ozturk, PHYSLITE - A new reduced common data format for ATLAS, EPJ Web
Conf. 295, 06017 (2024), https://cds.cern.ch/record/2870350/. 10.1051/epj-
conf/202429506017

[10] ATLAS Collaboration, Software and computing for Run 3 of the ATLAS experiment at
the LHC (2024), https://arxiv.org/abs/2404.06335, 2404.06335.

[11] ATLAS Collaboration, The First Release of ATLAS Open Data for Research, ATL-
OREACH-PROC-2024-005 (2024), https://cds.cern.ch/record/2911158

[12] N. Hartmann, J. Elmsheuser, G. Duckeck, Columnar data analysis with ATLAS analysis
formats, EPJ Web Conf. 251, 03001 (2021). 10.1051/epjconf/202125103001

[13] J. Pivarski, I. Osborne, I. Ifrim, H. Schreiner, A. Hollands, A. Biswas, P. Das,
S. Roy Choudhury, N. Smith, M. Goyal, Awkward Array (2018), https://doi.org/
10.5281/zenodo.4341376

[14] J. Pivarski, H. Schreiner, A. Hollands, P. Das, K. Kothari, A. Roy, J. Ling, N. Smith,
C. Burr, G. Stark, Uproot (2017), https://doi.org/10.5281/zenodo.4340632

[15] L. Gray, N. Smith, A. Novak, P. Fackeldey, B. Tovar, Y.M. Chen, G. Watts, I. Krommy-
das, coffea (2023), https://doi.org/10.5281/zenodo.3266454

[16] N. Smith et al. (CMS), Coffea: Columnar Object Framework For Effective Analysis,
EPJ Web Conf. 245, 06012 (2020), 2008.12712. 10.1051/epjconf/202024506012

[17] K. Choi, M. Feickert, L. Gray, A. Held, V. Kourlitis, A. Peixoto, J. Pivarski, O. Shadura,
G. Watts, US ATLAS / IRIS-HEP Analysis Software Training Event 2024 (2024), Note
in particular contributions on PHYSLITE and Coffea., https://indico.cern.ch/
event/1376945/

[18] G. Watts, func_adl (2024), https://github.com/iris-hep/func_adl

[19] M. Proffitt, G. Watts, FuncADL: Functional Analysis Description Language, EPJ Web
Conf. 251, 03068 (2021), 2103.02432. 10.1051/epjconf/202125103068

https://cds.cern.ch/record/2749422/
https://cds.cern.ch/record/2749422/
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/2729668
https://cds.cern.ch/record/2729668
https://cds.cern.ch/record/2802918
https://arxiv.org/abs/1712.06592
https://arxiv.org/abs/1712.06592
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.22323/1.414.0235
https://doi.org/10.1051/epjconf/202024506028
https://cds.cern.ch/record/2870350/
https://doi.org/10.1051/epjconf/202429506017
https://doi.org/10.1051/epjconf/202429506017
https://arxiv.org/abs/2404.06335
https://cds.cern.ch/record/2911158
https://doi.org/10.1051/epjconf/202125103001
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.5281/zenodo.4341376
https://doi.org/10.5281/zenodo.4340632
https://doi.org/10.5281/zenodo.3266454
https://doi.org/10.1051/epjconf/202024506012
https://indico.cern.ch/event/1376945/
https://indico.cern.ch/event/1376945/
https://github.com/iris-hep/func_adl
https://doi.org/10.1051/epjconf/202125103068

[20] B. Galewsky, A. Eckart, G. Watts, S. Thapa, P. Onyisi, M. Weinberg, 1. Vukotic, Ser-
viceX (2024), https://github.com/ssl-hep/ServiceX

[21] G. Watts, K. Choi, P. Onyisi, K. Mahajan, B. Galewsky, M. Feickert, ServiceX Client
Library (2024), https://github.com/ssl-hep/ServiceX_frontend

[22] B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic,
G. Watts, M. Weinberg, ServiceX A Distributed, Caching, Columnar Data Delivery
Service, EPJ Web Conf. 245, 04043 (2020). 10.1051/epjconf/202024504043

[23] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Meth. A 389, 81 (1997). 10.1016/S0168-9002(97)00048-X

[24] W. Jakob, nanobind: tiny and efficient C++/Python bindings (2022), https://
github.com/wjakob/nanobind

[25] M. Feickert, N. Hartman, L. Heinrich, A. Held, V. Kourlitis, N. Krumnack, G. Stark,
M. Vigl, G. Watts, Using Legacy ATLAS C++ Calibration Tools in Modern Columnar
Analysis Environments (2024), 22nd International Workshop on Advanced Computing
and Analysis Techniques in Physics Research (ACAT 2024), https://indico.cern.
ch/event/1330797/contributions/5796636/

[26] D. Davis, L. Gray, M. Durant, A. Hollands, dask-awkward (2024), https://github.
com/dask-contrib/dask-awkward

[27] ATLAS Collaboration, Columnar Athena (2024), https://gitlab.cern.ch/
atlas-asg/columnar-athena

[28] ATLAS Collaboration, Athena (2023), https://gitlab.cern.ch/atlas/athena

[29] N. Smith, correctionlib ~ (2024), https://github.com/cms-nanoAOD/
correctionlib

[30] The pip developers, pip (2024), https://github.com/pypa/pip

[31] conda contributors, conda: A system-level, binary package and environment manager
running on all major operating systems and platforms., https://github.com/conda/
conda

[32] H. Schreiner, III, J.C. Fillion-Robin, M. McCormick, Scikit-build-core (2024), SciPy
2024, https://doi.org/10.25080/FMKR8387

[33] V.E. Padulano, pip install ROOT: experiences making a complex multi-language pack-
age accessible for Python users (2024), 27th International Conference on Computing in
High Energy and Nuclear Physics (CHEP 2024), https://indico.cern.ch/event/
1338689/contributions/6010410/

https://github.com/ssl-hep/ServiceX
https://github.com/ssl-hep/ServiceX_frontend
https://doi.org/10.1051/epjconf/202024504043
https://doi.org/10.1016/S0168-9002(97)00048-X
https://github.com/wjakob/nanobind
https://github.com/wjakob/nanobind
https://indico.cern.ch/event/1330797/contributions/5796636/
https://indico.cern.ch/event/1330797/contributions/5796636/
https://github.com/dask-contrib/dask-awkward
https://github.com/dask-contrib/dask-awkward
https://gitlab.cern.ch/atlas-asg/columnar-athena
https://gitlab.cern.ch/atlas-asg/columnar-athena
https://gitlab.cern.ch/atlas/athena
https://github.com/cms-nanoAOD/correctionlib
https://github.com/cms-nanoAOD/correctionlib
https://github.com/pypa/pip
https://github.com/conda/conda
https://github.com/conda/conda
https://doi.org/10.25080/FMKR8387
https://indico.cern.ch/event/1338689/contributions/6010410/
https://indico.cern.ch/event/1338689/contributions/6010410/

	1 Introduction
	2 Columnar Analysis Demonstrator
	3 Challenges and Opportunities
	4 Columnar CP Prototypes
	5 Preliminary Performance Tests
	6 Future Work and Decisions
	7 Acknowledgements

