

Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Ang Ll^{*a*,1,*}, On behalf of ATLAS Collaboration,

^a Physics Department, Brookhaven National Laboratory, USA E-mail: ang.1@cern.ch

In the Standard Model, the Higgs field acquires a non-zero vacuum expectation value, breaking electroweak symmetry and giving mass to fundamental particles. The Higgs boson self-coupling, precisely predicted by the Standard Model, defines the shape of the Higgs potential and can be probed through rare Higgs boson pair (*HH*) production at the LHC. This proceeding presents the latest *HH* searches by the ATLAS experiment using the full Run 2 dataset at $\sqrt{s} = 13$ TeV. These non-resonant searches test the Standard Model and constrain both the Higgs self-coupling and the quartic *VVHH* coupling. A combined analysis of different *HH* decay yields the best current precision. Finally, projections for the High Luminosity LHC (HL-LHC) show that increased luminosity will further improve the sensitivity and precision of *HH* measurements.

The 43rd International Symposium on Physics in Collision (PIC2024) 22–25 October 2024 Athens, Greece

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) All rights for text and data mining, AI training, and similar technologies for commercial purposes, are reserved. ISSN 1824-8039 . Published by SISSA Medialab.

1. Introduction

Since the Higgs boson's discovery at the LHC in 2012 [1, 2], a key goal of ATLAS [3] and CMS [4] has been to measure its properties and couplings with increasing precision. Among these properties, the Higgs boson's self-coupling (λ_{HHH}) is particularly important, as it determines the shape of the Higgs potential and underpins the mechanism of electroweak symmetry breaking. The production of Higgs boson pairs (*HH*) provides a direct way to probe this self-coupling. In the Standard Model (SM), *HH* production is dominated by gluon-gluon fusion (ggF). Despite this, the *HH* production cross section is much smaller than that of single Higgs production [5]. The next most significant mechanism is vector-boson fusion (VBF).

To quantify the rate of *HH* production relative to the SM expectation, a signal strength parameter μ_{HH} is defined as: $\mu_{HH} = \frac{\sigma_{HH}}{\sigma_{HH}^{SM}}$, where σ_{HH} is the measured cross section and σ_{HH}^{SM} is the SM prediction. A value of $\mu_{HH} = 1$ corresponds to the SM rate, while deviations from unity suggest new physics. In addition, two parameters are commonly introduced to describe deviations in the Higgs self-coupling and related interactions: $\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}}$ and $\kappa_{2V} = \frac{\lambda_{VVHH}}{\lambda_{VVHH}^{SM}}$, where λ_3 is the trilinear Higgs self-coupling and λ_{VVHH} characterizes the *HHVV* interaction. In the SM, both κ_{λ} and κ_{2V} equal to one, and any deviation from these values would indicate possible new physics beyond the Standard Model.

2. Overview of Di-Higgs Decay Channels

$HH \rightarrow b\bar{b}\gamma\gamma$

The $HH \rightarrow b\bar{b}\gamma\gamma$ channel [6] has a small branching ratio but a very clean signature, benefiting from excellent diphoton $(m_{\gamma\gamma})$ mass resolution and low background. The final state consists of two *b*-jets and two photons, with the diphoton invariant mass required to be 105 GeV $< m_{\gamma\gamma} < 160$ GeV. Events are categorized into a high-mass category $(m^{\star}_{b\bar{b}\gamma\gamma} > 350$ GeV) and a low-mass category $(m^{\star}_{b\bar{b}\gamma\gamma} < 350$ GeV), where $m^{\star}_{b\bar{b}\gamma\gamma} = m_{b\bar{b}\gamma\gamma} + (125 \text{ GeV} - m_{b\bar{b}}) + (125 \text{ GeV} - m_{\gamma\gamma})$. Within each mass category, a BDT is trained, and its output is used to define further sub-categories (four for low mass and three for high mass). Although no dedicated VBF category is defined, the mass and pseudorapidity separation ($\Delta\eta$) of VBF-tagged jets are included as inputs to the BDTs. A fit to $m_{\gamma\gamma}$ is performed in each of the seven categories. The $\gamma\gamma$ -continuum background is modeled by an exponential fit in the sidebands, while signal and single-Higgs backgrounds are modeled by a double-sided Crystal Ball function. At the 95% confidence level, the observed (expected) upper limit on the signal strength is $\mu_{HH} < 4.0$ (5.0); for κ_{λ} , the observed (expected) range is [-1.4, 6.9] ([-2.8, 7.8]), and for κ_{2V} , it is [-0.5, 2.7] ([-1.1, 3.3]).

$HH \rightarrow b\bar{b}\tau^+\tau^-$

The $HH \rightarrow b\bar{b}\tau^+\tau^-$ analysis [7] considers two main τ -lepton decay channels: the fully hadronic channel ($\tau_{had}\tau_{had}$) and the lepton-hadron channel ($\tau_{\ell}\tau_{had}$), where one τ decays leptonically. The $\tau_{\ell}\tau_{had}$ channel is further split based on the trigger into SLT (Single Lepton Trigger) and LTT (Lepton + $\tau_{had-vis}$ triggers), resulting in three final-state categories. A BDT is used in each final-state category to separate ggF and VBF production. For ggF production, events are further divided

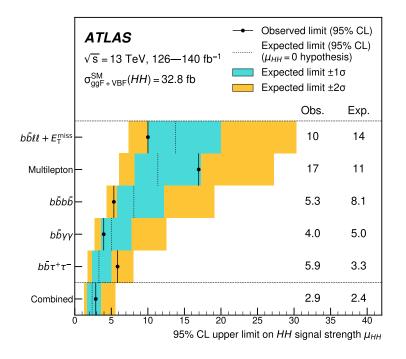
into a low-mass category ($m_{HH} < 350$ GeV) and a high-mass category ($m_{HH} > 350$ GeV). One control region, defined by $m_{\ell\ell}$, is used, and a BDT is trained in each signal region to discriminate signal from background. The main background arises from fake τ candidates in $t\bar{t}$ and multijet processes, estimated using data-driven methods with fake factors derived from control regions. At the 95% confidence level, the observed (expected) upper limit on the signal strength is $\mu_{HH} < 5.9$ (3.3); for κ_{λ} , the observed (expected) range is [-3.1, 9.0] ([-2.5, 9.3]), and for κ_{2V} , it is [-0.5, 2.7] ([-0.2, 2.4]). Among the considered channels, the hadronic ($\tau_{had}\tau_{had}$) channel is the most sensitive, and overall, $HH \rightarrow b\bar{b}\tau^+\tau^-$ is expected to provide the greatest sensitivity to SM di-Higgs production.

$HH \rightarrow b\bar{b}b\bar{b}$

The $HH \rightarrow b\bar{b}b\bar{b}$ channel has been studied in two distinct analyses. In the resolved analysis [8], events are characterized by four *b*-tagged jets. The closest jet pairs are combined to form Higgs candidates, and events are classified into ggF and VBF categories. In the boosted analysis [9], events consist of two large-radius jets from $X \rightarrow bb$ decays and two VBF jets, with only the VBF topology considered. The signal is localized in the m_{H_1} vs. m_{H_2} plane. The main background comes from QCD multijet events; its normalization is determined from sidebands in the signal region, and a scale factor obtained from a neural network is applied in both the resolved and boosted categories. The m_{HH} distribution is fitted using a BDT approach in both categories. At the 95% confidence level, the observed (expected) upper limit on the signal strength in the resolved category is $\mu_{HH} < 5.4$ (8.1); for κ_{λ} , the observed (expected) range is $-3.5 < \kappa_{\lambda} < 11.3$ ($-5.4 < \kappa_{\lambda} < 11.4$). Combining resolved and boosted categories, the observed (expected) range for κ_{2V} is $0.55 < \kappa_{2V} < 1.49$ ($0.37 < \kappa_{2V} < 1.67$).

$HH \rightarrow 2b + 2\ell + E_{\rm T}^{\rm miss}$

The $HH \rightarrow 2b+2\ell+E_T^{\text{miss}}$ channel [10] considers decays where one Higgs boson goes to $b\bar{b}$ while the other decays into W^+W^- , $\tau^+\tau^-$, or ZZ, leading to a final state with leptons and neutrinos ($\ell = e, \mu$). The leptons have opposite charges and may be of different flavors. The signal and control regions are defined based on $m_{\ell\ell}$ and m_{bb} . A fit is performed using the five (seven) highest BDT (DNN) bins in the VBF (ggF) topology. At the 95% confidence level, the observed (expected) upper limit on the signal strength is $\mu_{HH} < 9.7$ (16.3); for κ_{λ} , the observed (expected) range is $-6.2 < \kappa_{\lambda} < 13.3$ ($-8.1 < \kappa_{\lambda} < 15.5$), and for κ_{2V} , it is $-0.17 < \kappa_{2V} < 2.4$ ($-0.51 < \kappa_{2V} < 2.7$).


$HH \rightarrow$ Multi-leptons

This multi-lepton analysis [11] considers nine different di-Higgs decay final states, covering a variety of channels with different numbers of hadronic taus, light leptons, and photons. A BDT is trained in each sub-channel, and its discriminant is used in the multilepton channels. Categories are defined based on $m_{\gamma\gamma}$ for the combined $\gamma\gamma$ and multilepton channels. At the 95% confidence level, the observed (expected) upper limit on the signal strength is $\mu_{HH} < 17$ (11); for κ_{λ} , the observed (expected) range is $-6.2 < \kappa_{\lambda} < 1.6$ ($-4.5 < \kappa_{\lambda} < 9.6$), and for κ_{2V} , it is $-2.5 < \kappa_{2V} < 4.6$ ($-1.9 < \kappa_{2V} < 4.1$). No single channel dominates the sensitivity; all channels contribute to achieving the expected limit.

3. Combination

The combined analysis described in Ref. [12] simultaneously fits multiple *HH* production channels: $HH \rightarrow b\bar{b}\gamma\gamma$, $HH \rightarrow b\bar{b}\tau^+\tau^-$, $HH \rightarrow b\bar{b}b\bar{b}$, $HH \rightarrow 2b + 2\ell + E_T^{miss}$, and $HH \rightarrow$ Multi-leptons final states. Including all these channels together enhances sensitivity to non-resonant *HH* production.

At the 95% confidence level (CL), this combination sets the observed upper limit on the *HH* signal strength at $\mu_{HH} < 2.9$, compared to an expected limit of 2.4, as shown in Figure 3.

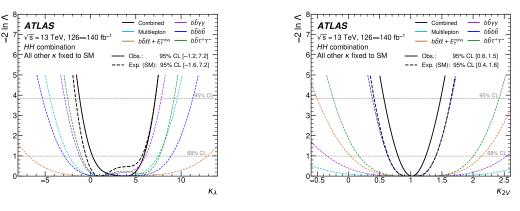
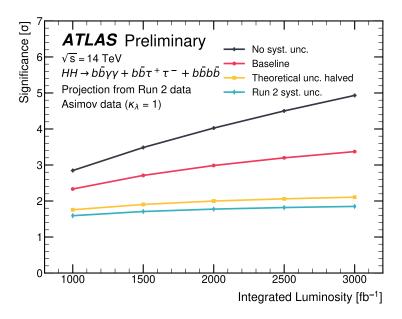


Figure 1: Observed and expected 95% CL upper limits on the *HH* signal strength μ_{HH} . The shaded bands indicate one- and two-standard-deviation variations of the expected limit. Adapted from Ref. [12].

The analysis also constrains the trilinear Higgs self-coupling parameter κ_{λ} and the *HHVV* coupling modifier κ_{2V} . Figure 2 (a) shows the observed and expected intervals for κ_{λ} , resulting in $-1.2 < \kappa_{\lambda} < 7.2$ (expected $-1.6 < \kappa_{\lambda} < 7.2$). Figure 2 (b) provides the corresponding constraints on κ_{2V} , with an observed range of $0.6 < \kappa_{2V} < 1.5$ (expected $0.4 < \kappa_{2V} < 1.6$). These improved constraints highlight the enhanced statistical power and complementary nature of the combined analysis.

4. High Luminosity LHC

The High Luminosity LHC (HL-LHC), scheduled to start in 2030, will run at $\sqrt{s} = 14$ TeV with an integrated luminosity of up to 3000 fb⁻¹. Building on Run 2 experience, the HL-LHC program will increase sensitivity to non-resonant Higgs boson pair (*HH*) production by combining multiple decay channels [13], including $HH \rightarrow b\bar{b}\gamma\gamma$, $HH \rightarrow b\bar{b}\tau^+\tau^-$, and $HH \rightarrow b\bar{b}b\bar{b}$. With reduced



(a) κ_{λ} constraints

(b) κ_{2V} constraints

Figure 2: Observed and expected 95% CL intervals on (a) κ_{λ} and (b) κ_{2V} from the combination analysis. Including all channels improves sensitivity beyond what can be achieved from individual measurements. Adapted from Ref. [12].

theoretical uncertainties and improved *b*-tagging, the combined *HH* significance is expected to reach 3.4 σ , constraining the Higgs self-coupling κ_{λ} to [0.0, 2.5] at 95% CL. A dedicated $b\bar{b}\tau^{+}\tau^{-}$

Figure 3: Observed and expected 95% CL upper limits on the *HH* signal strength μ_{HH} . The bands represent the one- and two-standard-deviation variations of the expected limit. Adapted from Ref. [13].

study [14], based on Run 2 results, projects a 3.5 σ significance (4.6 σ statistical only), rising to 3.8 σ (4.9 σ statistical only) with improved *b*-tagging. The corresponding 95% CL constraints on κ_{λ} are $[-0.1, 2.7] \cup [4.5, 6.4]$ with systematics, and [0.2, 2.1] without. These complementary approaches, combining multiple channels and focusing on $b\bar{b}\tau^+\tau^-$, underscore the HL-LHC's strong potential to probe the Higgs sector and refine measurements of the Higgs self-coupling.

References

- [1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B **716** (2012) 1 [1207.7214].
- [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B **716** (2012) 30 [1207.7235].
- [3] ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, *JINST* **3** (2008) S08003.
- [4] CMS Collaboration, The CMS Experiment at the CERN LHC, JINST 3 (2008) S08004.
- [5] LHC HIGGS CROSS SECTION WORKING GROUP collaboration, Handbook of LHC Higgs Cross Sections:
 4. Deciphering the Nature of the Higgs Sector, 1610.07922.
- [6] ATLAS Collaboration, Studies of new Higgs boson interactions through nonresonant HH production in the $b\bar{b}\gamma\gamma$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **01** (2024) 066 [2310.12301].
- [7] ATLAS Collaboration, Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the $b\bar{b}\tau^+\tau^-$ final state in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D **110** (2024) 032012 [2404.12660].
- [8] ATLAS Collaboration, Search for nonresonant pair production of Higgs bosons in the bbbb final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 108 (2023) 052003 [2301.03212].
- [9] ATLAS Collaboration, Search for pair production of boosted Higgs bosons via vector-boson fusion in the $b\bar{b}b\bar{b}$ final state using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, 2404.17193.
- [10] ATLAS Collaboration, Search for non-resonant Higgs boson pair production in the $2b + 2\ell + E_T^{miss}$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **02** (2024) 037 [2310.11286].
- [11] ATLAS Collaboration, Search for non-resonant Higgs boson pair production in final states with leptons, taus, and photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **08** (2024) 164 [2405.20040].
- [12] ATLAS Collaboration, Combination of Searches for Higgs Boson Pair Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, 2406.09971.
- [13] ATLAS Collaboration, "HL-LHC prospects for the measurement of Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state and combination with the $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ final states at the ATLAS experiment." ATL-PHYS-PUB-2022-053, 2022, https://cds.cern.ch/record/2841244.
- [14] ATLAS Collaboration, "Updated projection of the sensitivity of searches for Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ final state from LHC Run 2 to the High Luminosity LHC with the ATLAS detector." ATL-PHYS-PUB-2024-016, 2024, https://cds.cern.ch/record/2910850.