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Online track reconstruction with graph neural networks on
FPGAs for the ATLAS experiment
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Abstract. For the HL-LHC upgrade of the ATLAS TDAQ system, a heteroge-
neous computing farm deploying GPUs and/or FPGAs is considered to be used
for the Event Filter system, together with the use of modern machine learning
algorithms such as Graph Neural Networks (GNNs) to solve computationally
complex tasks within that system. In this study, the development of a GNN
based track finding pipeline on FPGAs for the ATLAS Inner Tracker is pre-
sented as part of the Event Filter system. Each step in the GNN-based tracking
pipeline is explored: graph construction, edge classification using an interac-
tion network, and segmentation of the graph into track candidates. Optimiza-
tions of the GNN approach are investigated to minimize FPGA resource uti-
lization and maximize throughput while maintaining high track reconstruction
efficiency and low fake rates required for the ATLAS Event Filter tracking sys-
tem. These optimizations include model hyperparameter tuning, model pruning,
quantization-aware training, and sequential processing of sub-graphs across the
detector.

1 Introduction

For the operation at the High-Luminosity LHC [1], the ATLAS experiment will undergo
a major upgrade [2]. This upgrade includes the installation of a new all-silicon tracking
detector, the Inner Tracker (ITk) [3, 4], with extended forward coverage up to |η| = 4, see
Figure 1, as well as a drastic re-design of the trigger and data acquisition (TDAQ) system [5].
Within the TDAQ system, track reconstruction for the ITk will be carried out in the Event
Filter (EF) for those events that are accepted by the hardware-based Level-0 trigger at a rate
of 1 MHz within regions of interest and 150 kHz for the full ITk.

For the EF system, the installation of a heterogeneous computing farm including GPUs
and/or FPGAs is under consideration because of their potential to significantly reduce the
EF’s power needs compared to a CPU-only server farm [7]. Since track reconstruction for
the ITk requires the largest fraction of the available online computing resources, studies on
its acceleration using hardware accelerators are being carried out, alongside the exploration
of using machine learning (ML) methods for this task [7]. One of the approaches currently
under study is the implementation of a track finding pipeline based on Graph Neural Networks
(GNNs) on FPGAs [8].
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Figure 1. Layout of the ATLAS Inner Tracker [6], showing the locations of the pixel and strip detectors,
alongside the High-Granularity Timing Detector (HGTD).

2 Tracking with Graph Neural Networks on FPGAs

The envisioned FPGA tracking pipeline consists of several steps that lead from raw pixel and
strip hit data to tracks. First, pixel and strip hits are clustered, their local coordinates are
transformed into global coordinates, and space-points are created from pairs of overlapping
clusters within the two strip sensors per layer. Then, a pattern recognition algorithm is used
to find track candidates. Multiple options for this task are under study, such as a GNN or
a Hough Transform. Track candidates then get scored and their track parameters estimated,
so that fake and duplicate tracks can be removed. For any pattern recognition algorithm that
only uses a subset of the detector layers, like the currently studied implementation of a Hough
Transform, the tracks are passed to an extrapolator algorithm to add hits from the remaining
layers. Lastly, the tracks are sent back to the host CPU for a precision fit using the Kalman
Filter.

Track finding with a GNN comprises three distinct sub-steps [9]. First, a graph is con-
structed from pixel and strip space-points acting as nodes and edges suggesting that two
space-points in consecutive layers originate from the same particle. A GNN is used to clas-
sify these edges as true or false, and all edges classified as false are being removed from the
graph. The remaining graph is then disconnected into individual track candidates.

This work relies on the ACORN [10] track finding pipeline, which includes two methods
for graph construction: module map and metric learning. The module map is derived from
simulation samples and contains most of the possible true connections between ITk detector
modules, i. e. consecutive detector modules that are likely to be hit by a particle of interest.
Doublets are created for all space-points of the corresponding module pairs. This is followed
by geometrical cuts acting on space-point doublet and triplet level [11]. Metric learning
is a machine learning approach, where space-points are embedded through a Multi-Layer
Perceptron (MLP) into a higher dimensional space, which is followed by a radius clustering
algorithm to create edges between space-points that are close in said embedded space. Metric
learning is typically followed by a filter network to reduce graph sizes to similar orders of
magnitude as the module map delivers after applying triplet cuts. The edge classifying GNN
is built from encoding MLPs acting on node and edge features, several message passing



steps in the form of interaction network layers [12], and a decoding MLP transforming the
resulting edge features into classification scores. A cut on this edge score allows to prune
false connections from the graph. For disconnecting the pruned graph into track candidates,
a connected component algorithm is used. Since these graph components may still contain
more than one hit per layer, a second algorithm, referred to as walkthrough, can be used to
split these components into individual track candidates [11].

For the implementation of GNN-based track finding within the FPGA tracking pipeline,
the ML models have to be compressed to make efficient use of the FPGA fabric. The current
strategy focuses on using quantization and pruning to reduce model size. Since the current
demonstrators for the EF Tracking project are developed for AMD data center class FPGAs
like the Alveo U250, the AMD Vitis [13] tool flow is used to implement the algorithms
as kernels. In the following sections, the current development status of GNN track finding
on FPGAs for ATLAS is described. Section 3 summarizes the FPGA deployment of met-
ric learning, section 4 describes a compression study of the interaction network, section 5
presents the development of a connected components kernel, and section 6 discusses detector
regionalization as an overall strategy to reduce graph sizes.

3 Graph Construction with Metric Learning on FPGA

In this study, the MLP used for embedding space-points into a latent space consists of 4 hid-
den layers, each made of a fully connected linear layer with 512 output dimensions, a batch
normalization layer and ReLU activation function. Cylindrical coordinates of ITk space-
points (r, ϕ, z) are used as input features. A fully connected linear layer with 12 output di-
mensions forms the output layer. The MLP is trained on 800 tt̄-events overlaid with pileup
⟨µ⟩ = 200 derived from full detector simulation. The model is trained to embed pairs of hits
of target particle tracks close-by, and to push false hit pairs away from each other, by using a
hinge loss function [11]. Target particles are defined as any primary charged particle, except
electrons, with pT > 1 GeV, that leave at least 3 space-points in the ITk.

The model and its training are implemented in the ACORN [10] framework using Py-
Torch [14]. To compress the model for FPGA deployment, the same strategy as described
in [8] is used. Quantization aware training is implemented using the Brevitas [15] package,
and iterative magnitude based pruning with learning rate rewinding is added into the train-
ing process. To facilitate pruning, an L1 regularization term is added to the training loss.
Through these measures, the number of non-zero weights could be reduced from 800 k to
less than 30 k, and the bit precision of weights and activations could be reduced to 6 bit for
the input and output layers, and 4 bit for the hidden layers. Biases are fixed at 8 bit precision,
and the input data is quantized to 12 bit fixed-point representations.

Table 1. Resource utilization of the Metric Learning MLP compiled with FINN for an Alveo U280.

Resource Utilization (% of U280)
version 1 version 2

LUT 25 k (1.9 %) 352 k (27 %)
FF 63 k (2.4 %) 107 k (4.1 %)

BRAM 166 (8.2 %) 0 (0 %)
DSP 1547 (17 %) 133 (1.5 %)
fmax > 300 MHz 201 MHz

Throughput 385 kHz 20 MHz



The model is exported to the QONNX [16] format, and compiled using FINN [17] into
Vitis HLS code for FPGA deployment to test as standalone accelerator on an AMD Alveo
U280 card. A first build of the accelerator at a target throughput of 300 kHz space-point em-
beddings, operated at a clock speed of 300 MHz, achieved a measured throughput of 385 kHz
using little logic resources, but some more BRAM and DSPs, see version 1 in Table 1.

Table 2. Preliminary resource utilization of the radius clustering kernel implemented with Vitis HLS.

Resource Utilization (% of U280)
LUT 27 k (2.1 %)

FF 35 k (1.3 %)
BRAM 871 (43 %)

DSP 140 (1.6 %)

The radius clustering algorithm is implemented as a standalone kernel using Vitis HLS.
The algorithm sorts the embedded hits according to their first 3 dimensions into separate
buffers, which are one radius wide in each of the 3 dimensions, to reduce the number of hit
comparisons that have to be done in the following step. Between all the hits within a buffer
and within neighboring buffers, their full 12-dimensional distances are computed. An edge is
created between two hits if their distance is smaller than the clustering radius, unless the node
has already reached its maximum number of edges. A preliminary version of this algorithm
is used for functional verification. It is not yet optimized for throughput or resource usage.
It utilizes little logic resources and DSPs, but relies heavily on BRAM, see Table 2. This is
because the algorithm stores two buffers in BRAM for processing, and each buffer is sized
for up to 30 k embedded hits, since the output of the MLP is not yet optimized to form small
buffers.
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Evaluated on 100 events
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Figure 2. Comparison of the metric learning edge-wise efficiency of a PyTorch reference model using
32 bit floating point precision executed on GPU, a quantized and pruned model executed on GPU,
and the same quantized and pruned model together with the radius clustering kernel running on the
FPGA [18].



The performance of the metric learning based graph construction on FPGA is compared
to the original PyTorch GPU implementation by evaluating the edge-wise graph construc-
tion efficiency on 100 tt̄-events with pileup ⟨µ⟩ = 200, see Figure 2. Using the quantized
and pruned MLP on GPU, an efficiency close to the one of the 32 bit floating point refer-
ence model is achieved, while creating graphs that are on average 10 % larger. Running the
compressed MLP and the radius clustering kernel on the FPGA, graphs of the same size are
constructed, while a global efficiency drop by less than 0.1 % is observed. The slight perfor-
mance degradation is attributed to numerical inaccuracies caused by the QONNX export.

Towards a final implementation, several optimizations to reduce resource utilization and
enhance throughput are considered. By training the metric learning MLP to produce wide,
uniform and uncorrelated output feature distributions for the 3 dimensions used for buffer
sorting, the BRAM utilization of the radius clustering kernel is expected to decrease by more
than a factor of 10, and the number of needed computations will be reduced. By fully un-
rolling the metric learning MLP on the FPGA, throughput matching the clock speed can be
achieved. This requires an even stronger degree of sparsity as used in the above model, so
that the network can fit on the device. A throughput optimized version, targeting a clock
speed of 300 MHz and an equivalent throughput of space-point embeddings, is implemented
from a model containing less than 15 k non-zero weights for the same architecture. This im-
plementation consumes less DSPs, however, it utilizes more logic resources, see version 2
in Table 1. At its maximum frequency of fmax = 201 MHz, the measured throughput of this
implementation reaches 20 MHz of space-point embeddings. The discrepancy between clock
speed and throughput is attributed to undersized FIFOs connecting the individual layers of
the model. Adding larger FIFOs is expected to moderately increase the BRAM utilization.
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Figure 3. Edge-wise efficiency and purity of the GNN versus bit width used for weights and activations
used within the network [18].



4 Compression of the Graph Neural Network

As a step towards deployment of the GNN on an FPGA, a model compression study is con-
ducted using again the same strategy of applying quantization aware training and magnitude
based iterative pruning [8]. For this study, a GNN is used which consists of node and edge en-
coder networks, 8 message passing steps including node and edge update networks operating
on 48 hidden dimensions, and a final edge decoding network. The GNN edge-wise efficiency
and purity are evaluated versus the bit width used for weights and activations, see Figure 3.
It is found that down to 4 bits for weights and activations, a performance comparable to the
32 bit floating point model can be achieved. For a fixed bit width of 6 bit for weights and
activations, a training with iterative magnitude based pruning is conducted. It is observed
that more than 90 % of weights can be removed without significantly affecting model perfor-
mance. These findings show great potential for reducing the model footprint when targeting
model deployment on an FPGA.

5 Graph Segmentation with Connected Components on FPGA

The interaction network provides a score per edge, which is used to prune the graph by re-
moving fake edges. A connected component algorithm [19] is used to segment the pruned
graph into individual track candidates. The remaining graph components may still contain
nodes with multiple edges which branch off into multiple directions. Track scoring algo-
rithms, developed as part of the full FPGA tracking pipeline [7], are expected to recover the
good individual track candidates out of these components. Hence, the focus is set on the
development of a graph segmentation kernel to create the connected components.

The graph segmentation kernel is implemented with Vitis HLS. It implements the graph
pruning step by applying a programmable threshold. The surviving edges are written into a
more memory efficient graph table, where nodes without any remaining edges are completely
dropped. From this graph structure, the nodes forming the connected components are grouped
together by following the edges. A preliminary implementation shows that the algorithm can
be implemented with little logic resource utilization, see Table 3. BRAM usage is expected
to be decreased with an optimized design. A first timing study indicates a processing time
below 200 ms for a full ITk event. This processing time is currently dominated by the graph
pruning step, and is expected to decrease with an implementation optimized for throughput.

Table 3. Preliminary resource utilization of the graph segmentation implemented with Vitis HLS.

Resource Utilization (% of U280)
LUT 13 k (1.0 %)

FF 17 k (0.7 %)
BRAM 181 (9.0 %)

DSP 0 (0 %)

6 Detector Regionalization

Considering the application of GNN track finding for events of the full ITk detector, not only
the models are large and require compression, but also the graphs are large, with hundreds
of thousands of nodes and a few million edges. Storing these large graph structures can only
be realized by utilizing the external DDR memory or HBM of the accelerator cards. Since
in most cases only a small region of the event has to be processed, see section 1, detector



regionalization is also considered as a strategy for full detector events to remove the need for
extensive external memory access. In this scenario, a full detector event is split into smaller
detector regions that can be processed independently. Each region covers a detector volume
of η × ϕ = 0.2 × 0.2 with significant overlap between regions. Having one graph per region,
this approach results in more than 1000 graphs for a full event. The individual graphs are on
average a factor 100 smaller compared to full detector graphs.
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Figure 4. Comparison of the track finding efficiency for a GNN trained on full detector events between
its inference on full detector graphs and regionalized detector graphs [18].

To validate that this approach works with the GNN based track finding, regionialized
graphs have been constructed with the module map for tt̄-events with ⟨µ⟩ = 200. A GNN
that has been trained on full detector graphs is used for inference with these smaller regional
graphs. The track finding performance is evaluated by measuring the efficiency to find recon-
structible, primary non-electron tracks with pT > 1 GeV by applying the GNN and graph seg-
mentation. An overall efficiency comparable to inference on full detector graphs is achieved
for the regional tracking case, as can be seen in Figure 4. Due to the large overlaps, the re-
gionalization approach produces many more duplicate tracks compared to inference on full
detector graphs. A duplicate removal algorithm, part of the overall FPGA tracking pipeline,
is expected to filter these duplicates before sending the track candidates back to the host.

7 Summary and Outlook

For the HL-LHC upgrade of the ATLAS Event Filter system, a heterogeneous online com-
puting farm is considered to be deployed. As part of a full tracking pipeline on FPGAs, the
application of GNN-based track finding is under study. Preliminary resource utilizations of
components of this track finding approach, such as graph construction with metric learning,
and graph segmentation with connected components, are well within the budget of the tar-
geted FPGAs. Functional verification of metric learning is achieved by running the MLP and
the radius clustering kernel on FPGA. Using quantization aware training and pruning shows
to be a viable approach to compress the interaction network, as well. Detector regionalization



has been validated as an approach to reduce graph sizes, potentially avoiding the use of ex-
ternal memory for the graph structures. Furthermore, the study shows that regional tracking
and full detector tracking can be done with the same GNN. Future work will focus on the
translation of the interaction network for FPGAs, and on the integration of the GNN-based
track finding into the full FPGA tracking pipeline.
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