CERN-OPEN-2025-001

29/11/2024

@)

RNTuple Binary Format Specification 1.0.0.0

The ROOT Team

Jakob Blomer Brian Bockelman Philippe Canal Florine Willemijn de Geus
Jonas Hahnfeld Giovanna Lazzari Miotto Simon Leisibach Jerry Ling
Javier Lopez-Gomez Axel Naumann Max Orok Vincenzo Eduardo Padulano
Giacomo Parolini Danilo Piparo Jim Pivarski Oksana Shadura

Andres Rios Tascon

February 2025

This document was created as part of the source code of the ROOT data
analysis framework. Version 1.0.0.0 of the RNTuple specification was released
in ROOT v6.34.00 in November 2024.

The RNTuple format is ROOT’s event data format for the HL-LHC era.
It is a columnar, binary data format optimized for High Energy Physics
datasets. RNTuple succeeds the ROOT TTree format, which has been
developed more than 25 years ago and stores more than 2 exabytes of LHC
Run 1-3 data. RNTuple is a re-engineered format for higher robustness, for
full exploitation of modern storage technologies such as NVMe drives and
object stores, and generally for significantly better performance characteristics
in data compactness, scalability, and read and write speed.

RNTuple is the designated data format for LHC data as of Run 4, with an
expected overall data volume of tens of exabytes by the end of HL-LHC. The
R&D on the RNTuple format has been performed in the ROOT team and
supported by the CERN EP strategic R&D programme on technologies for
future experiments.

Versioning Notes

The RNTuple binary format version is inspired by semantic versioning. It
uses the following scheme:

EPOCH.MAJOR.MINOR.PATCH

Epoch: an increment of the epoch indicates backward-incompatible changes.
The RNTuple pre-release has epoch 0. The first public release has epoch
1. There is currently no further epoch foreseen.

Magjor: an increment of the major version indicates forward-incompatible
changes. A forward-incompatible change is known to break reading in
previous software versions that do not support that feature. The use of
new, forward-incompatible features must be indicated in the feature flag
in the header (see below). For the RNTuple pre-release (epoch == 0),
the major version is the release candidate number.

Minor: an increment of the minor version indicates new, optional format
features. Such optional features, although unknown to previous software
versions, won’t prevent those software versions from properly reading
the file. Old readers will safely ignore these features.

Patch: an increment of the patch version indicates clarifications or backported
features from newer format versions. The backported features may
correspond to a major or a minor release.

Except for the epoch, the versioning is for reporting only. Readers should
use the feature flag in the header to determine whether they support reading
the file.

Introduction

The RNTuple binary format describes the serialized, on-disk representation
of an RNTuple data set. The data on disk is organized in pages (typically
tens to hundreds of kilobytes in size) and several envelopes that contain
information about the data such as header and footer. The RNTuple format
specifies the binary layout of the pages and the envelopes.

Pages and envelopes are meant to be embedded in a data container such as
a ROOQOT file or a set of objects in an object store. Envelopes can reference
other envelopes and pages by means of a locator or an envelope link; for
a file embedding, the locator consists of an offset and a size. The RNTuple
format does not establish a specific order of pages and envelopes.

Every embedding must define an anchor that contains the format ver-
sion supported by the writer, and envelope links (location, compressed and
uncompressed size) of the header and footer envelopes.

ROOT File Embedding

When an RNTuple is embedded in a ROOT file, its pages and envelopes are
stored in “invisible”, non-indexed RBlob keys. The RNTuple format does
not establish a semantic mapping from objects to keys or vice versa. For
example, one key may hold a single page or a number of pages of the same
cluster. The only relevant means of finding objects is the locator information,
consisting of an offset and a size.

For the ROOT file embedding, the ROOT: : RNTuple object acts as an anchor.

Anchor Schema

The anchor for a ROOT file embedding has the following schema:
0 1 2 3

01234567890123456789012345678901
Rt e e e e R aat et R
Version Epoch | Version Major
s e e s o e e e e
Version Minor | Version Patch
I T e R s e e Rt el Sl b
Seek Header
s T e L At ot e At S S
Nbytes Header

—t—t—t—t—t—t—t—t—t—t—t—t—t—t =ttt =ttt —t—t—t— bt =t ==t —t—+—

Len Header

+

I I
+ +
I I
+ +
I I
+ +
I I
+ +
I I
+ +
I I
+ +
I |
+ +
I |
=ttt —F—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F = —F = —F —F = —F—+—+
I I
+ Seek Footer +
I I
=ttt =ttt —F =t —F—F—F—F—F =t —F—F—F—F—F = —F —F = —F —F = —F—F = —+
I I
+ Nbytes Footer +
I I
=t —Ft—t—t—F—t—F—F—t—F—F—t—F—F—F—F—F—F—F—F—F =t —F—F = —F—F = —F—F—+—+
I I
+ Len Footer +
I I
+—t—F—t—F—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—t—F—F—F—F—F—F—F—F—+—+
I I
+ Max Key Size +
I I
+ +

B e

When serialized to disk, a 64 bit checksum is appended to the anchor,
calculated as the XXH3 hash of all the (serialized) fields of the anchor object.

Note that, since the anchor is serialized as a “classic” TFile key, all integers
in the anchor, as well as the checksum, are encoded in big-endian, unlike the
RNTuple payload which is encoded in little-endian.

The anchor may evolve in future versions only by appending new fields to
the existing schema, but fields will not be removed, renamed or reordered.

Max Key Size represents the maximum size of an RBlob (associated to
one TFile key). Payloads bigger than that size will be written as multiple
RBlobs/TKeys, and the offsets of all but the first RBlob will be written at
the end of the first one. This allows bypassing the inherent TKey size limit
of 1 GiB.

Compression Block

RNTuple envelopes and pages are wrapped in compression blocks. In order
to deserialize a page or an envelope, its compressed and uncompressed size
needs to be known.

If the compressed size == uncompressed size, the data is stored unmodified
in uncompressed form. Otherwise, data is represented as a series of compressed
chunks. Each chunk is prepended with the following 9 bytes header.

Byte

0 1 2 3 4 5 6 7 8 9
o e e e Fo————— Fo————— e Fo————— Fo————— +
I Algorithm | Compressed size | Uncompressed size |
o s Fo—m——— o o o o o o +

| <COMPRESSED DATA> |
| I

Algorithm: Identifies the compression algorithm used to compress the data.
This can take one of the following values

Algorithm Meaning

‘7 ‘L7 \x08” zlib

‘C7 ‘S’ \x08" Old Jean-loup Gailly’s deflation algorithm
‘X7 \x00" LZMA

‘L4’ LZ4; third byte encodes major version number
‘7S \x01" Zstd

Compressed size: An unsigned, little-endian integer that indicates the com-
pressed size of the data that follows the header.

Uncompressed size: An unsigned, little-endian integer that indicates the
uncompressed size of the data that follows. The maximum representable
value is (224) — 1, i.e. 16777215, and thus each compressed chunk can

represent up to 16 MiB of uncompressed data. If the original data is
larger than this value, more compressed chunks will follow.

Basic Types

Data stored in envelopes is encoded using the following type system. Note
that this type system is independent (and different) from the regular ROOT
serialization.

Integer: Integers are encoded in two’s complement, little-endian format.
They can be signed or unsigned and have lengths up to 64 bit.

String: A string is stored as a 32 bit unsigned integer indicating the length of
the string followed by the characters. Strings are ASCII encoded; every
character is a signed 8 bit integer.

Compression settings: A 32bit integer containing both a compression algo-
rithm and the compression level. The compression settings are encoded
according to this formula: settings = algorithm % 100 + level. The level
is between 1 and 9 and is extrapolated to the spectrum of levels of the
corresponding algorithm.

Feature Flags

Feature flags are 64 bit integers where every bit represents a certain forward-
incompatible feature that is used in the binary format of the RNTuple at
hand (see “Versioning Notes”). The most significant bit is used to indicate
that one or more flags are active with a bit number higher than 62. That
means that readers need to continue reading feature flags as long as their
signed integer value is negative.

Readers should gracefully abort reading when they encounter unknown bits
set.

At the moment, there are no feature flag bits defined.

Frames

RNTuple envelopes can store records and lists of basic types and other records
by means of frames.
A frame has the following format

0 1 2 3
012345678901 23456789012345678901
T ST S S S S
| |
+ Size +—+
| [T
Fmbmpm e mfm e e e m e bbb bbb bbb m b e b=
| Number of Items (for list frames) |
ottt oottt bbb bbb oo m b b m b — b b — bbb bbb — b
| FRAME PAYLOAD |
I . |

Size: The absolute value gives the (uncompressed) size in bytes of the frame
and the payload.

T(ype): Can be either 0 for a record frame or 1 for a list frame. The
type should be interpreted as the sign bit of the size, i. e. negative sizes
indicate list frames.

Number of items: Only used for list frames to indicate the length of the list
in the frame payload.

File format readers should use the size provided in the frame to seek to the
data that follows a frame instead of summing up the sizes of the elements in
the frame. This approach ensures that frames can be extended in future file
format versions without breaking the deserialization of older readers.

Locators and Envelope Links

A locator is a generalized way to specify a certain byte range on the storage
medium. For disk-based storage, the locator is just byte offset and byte size.
For other storage systems, the locator contains enough information to retrieve
the referenced block, e.g. in object stores, the locator can specify a certain
object ID. The locator has the following format

0 1 2 3

01234567890123456789012345678901
+t—t—t—t—t—t—t—t—t—t—t—t—t—t =ttt =ttt —t—t—t—t—t =t~ —t—t—+—+
| Size [T
s T T S T S L T S Tt e 'Y
| |
+ Offset +
| |

t—t—t—t—t—F—t—t—t—t—F—t—t—t—t—F—t—t—t—F—F—F—t—F—Ft—F—F—F—F—F—+—+—+

Size: If T is zero, the number of bytes to read, i.e. the compressed size of
the referenced block. Otherwise, the 16 least-significant bits, i.e. bits
0:15, specify the size of the locator itself (see below).

T(ype): Zero for a simple on-disk or in-file locator, 1 otherwise. Can be
interpreted as the sign bit of the size, i. e. negative sizes indicate non-
standard locators. In this case, the locator should be interpreted like a
frame, i.e. size indicates the size of the locator itself.

Offset: For on-disk / in-file locators, the 64 bit byte offset of the referenced
byte range counted from the start of the file.
For non-standard locators, i.e. T == 1, the locator format is as follows
0 1 2 3

01234567890123456789012345678901

+—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t ===ttt -ttt —t—t— ==t —+—+

| Size | Reserved I Type IT|
R S B B S e B e T A At

| LOCATOR PAYLOAD
|

In this case, the last 8 bits of the size should be interpreted as a locator
type. To determine the locator type, the absolute value of the 8 bit integer
should be taken. The type can take one of the following values

Type Meaning Payload format
0x01 Large locator 64 bit size followed by 64 bit offset

Each locator type follows a given format for the payload (see “Well-Known
Payload Formats” below). The range 0x02 - 0x7f is reserved for future use.

Reserved is an 8 bit field that can be used by the storage backend cor-
responding to the type in order to store additional information about the
locator.

An envelope link consists of a 64 bit unsigned integer that specifies the
uncompressed size of the envelope followed by a locator.

Well-Known Payload Formats

This section describes the well-known payload formats used in non-standard
locators. Note that locators having a different value for Type may share a
given payload format (see the table above).

Large

Like the standard on-disk locator but with a 64 bit size.

0 1 2 3
01234567890123456789012345678901
+t—t—t—t—t—t—t—t—t—t—t—t—t—t =ttt =ttt —t—t—t—t—t =t ==t —t—+—+
I

I
+ Content size +
I I
F—t—t—t—t—t—t—t—t =t =t =t =ttt —f—f—p—p—f—f—f—f—f—f—f—f—f—F—+
I |
+ Content offset +
I I
+ +

—d—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—F—t—t—t—t—F—F—F—t—F—F—F—t—F—+—

Content size: the number of bytes to read, i.e. the compressed size of the
referenced block.

Content offset: the 64 bit byte offset of the referenced byte range counted
from the start of the file.

Envelopes

An Envelope is a data block containing information that describes the RNTuple
data. The following envelope types exist

Type ID Contents

reserved 0x00 unused and reserved

Header 0x01 RNTuple schema: field and column types
Footer 0x02 Description of clusters

Page list 0x03 Location of data pages

Envelopes have the following format

0 1 2 3
01234567890123456789012345678901
F—t—t—t—t—t—d—t—d—t—t =ttt bt —t—F—t—F—F ==t~ —f—F—F—F—F—+—+
I Envelope Type ID I I
+—t+—+—+—F—F+—+—F—F+—F—F—F—+—F—+—+—+ Envelope Length +
I I
t—t—t—t—t—t—d—t—t—t—t—t—t—F—t—F—t—F—t—F—t—t—F—Ft—F—t—F—F—F—F—F—+—+
ENVELOPE PAYLOAD

B e i T S e e B s s st s 2t St S e T s e
[

XxHash-3 +

[

—d—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—F—F—t—F—F—F—F—t—F—F—F—F—F—+—+—+

+ — + — +

Envelope type ID: As specified in the table above, encoded in the least
significant 16 bits of the first 64 bit integer.

Envelope length: Uncompressed size of the envelope, encoded in the 48 most
significant bits of the first 64 bit integer.

XxHash-3: Checksum of the envelope and the payload bytes together.

Note that the compressed size (and also the length) of envelopes is given
by the RNTuple anchor (header, footer) or by a locator that references the
envelope.

Header Envelope
The header consists of the following elements:

o Feature flag

e String: name of the ntuple

e String: description of the ntuple

e String: identifier of the library or program that writes the data
e List frame: list of field record frames

e List frame: list of column record frames

e List frame: list of alias column record frames

o List frame: list of extra type information

The last four list frames containing information about fields and columns
are collectively referred to as schema description.

Field Description

Every field record frame of the list of fields has the following contents

0 1 2 3
01234567890123456789012345678901
e T B Tt T e . et o o SRS
| Field Version
R s T B e T T S S T Tt o e
| Type Version
R s T B T T s s s o e T o TS
| Parent Field ID
R s T O e e T T s s e ot ot S S
I Structural Role | Flags
R e T B T T S St T i ot T SN S

+ — 4+ — + — + —

The block of integers is followed by a list of strings:

e String: field name
e String: type name
e String: type alias

e String: field description

The field version and type version are used for schema evolution.
The structural role of the field can have one of the following values:

Value Structural role

0x00 Leaf field in the schema tree

0x01 The field is the parent of a collection (e.g., a vector)

0x02 The field is the parent of a record (e.g., a struct)

0x03 The field is the parent of a variant

0x04 The field stores objects serialized with the ROOT streamer

The “flags” field can have any of the following bits set:

Bit Meaning

0x01 Repetitive field, i.e. for every entry n copies of the field are stored
0x02 Projected field
0x04 Has ROOT type checksum as reported by TClass

If £1ag==0x01 (repetitive field) is set, the field represents a fixed-size array.
For fixed-size arrays, another (sub) field with Parent Field ID equal to the
ID of this field is expected to be found, representing the array content. The
field backing std: :bitmap<N> is a single repetitive field. (See “Mapping of
C++ Types to Fields and Columns”).

If £1ag==0x02 (projected field) is set, the field has been created as a virtual
field from another, non-projected source field. If a projected field has attached
columns, these columns are alias columns to physical columns attached to
the source field. The following restrictions apply on field projections:

e The source field and the target field must have the same structural role,
except for an RNTupleCardinality field, which must have a collection
field as a source.

e For streamer fields and leaf fields, the type name of the source field and
the projected field must be identical.

e Projections involving variants or fixed-size arrays are unsupported.

e Projected fields must be on the same schema path of collection fields as
the source field. For instance, one can project a vector of structs with
floats to individual vectors of floats but cannot project a vector of a
vector of floats to a vector of floats.

If flag==0x04 (type checksum) is set, the field metadata contain the
checksum of the ROOT streamer info. This checksum is only used for I/O
rules in order to find types that are identified by checksum.

Depending on the flags, the following optional values follow:

10

0 1 2 3
01234567890123456789012345678901
B e T T s T T T S B o Tt Tt I
| |
+ Array Size (if flag 0x01 is set) +
| |
e e T B T S T B e T
| Source Field ID (if flag 0x02 is set) |
S S MM SR S ST ST SN SR R A S RN S N N N RN
| ROOT Type Checksum (if flag 0x04 is set) |
T S S s
The order of fields matters: every field gets an implicit field ID which is
equal the zero-based index of the field in the serialized list; subfields are
ordered from smaller IDs to larger IDs. Top-level fields have their own field

ID set as parent ID.

Column Description

0 1 2 3
01234567890123456789012345678901
e S S St S S B B e e s Tt S
| Type | Bits on Storage |
e e S St S s B s
I Field ID [
S S e S e 'Y
I Flags | Representation Index [
At S S s et L B S

+ First element index (if flag 0x01 is set) +
e s s R e m e e
+ Min value (if flag 0x02 is set) +
S s S e e
+ Max value (if flag 0x02 is set) +

+—t =t —t—t—t—+—+

The order of columns matter: every column gets an implicit column ID
which is equal to the zero-based index of the column in the serialized list.
Multiple columns attached to the same field should be attached from smaller
to larger 1Ds.

11

A field can have multiple alternative column representations. The repre-
sentation index distinguishes the different representations. For any given
cluster, only one of the representations is the primary representation. All
the other, secondary representations are suppressed in the cluster. All
column representations of a cluster need to have the same number of columns,
and the number of elements in each of the corresponding columns must be
the same. The page list (see “Page List Envelope”) indicates suppressed
columns through a negative element index. Columns need to be stored in
order from smaller to larger representation indexes. The representation index
is consecutive starting at zero.

The column type and bits on storage integers can have one of the following
values

Type Bits Name Contents

0x00 1 Bit Boolean value

0x01 8 Byte An uninterpreted byte, e. g. part of a blob

0x02 8 Char ASCII character

0x03 8 Int8 Two’s complement, 1-byte signed integer

0x04 8 Ulnt8 1-byte unsigned integer

0x05 16 Int16 Two’s complement, little-endian 2-byte
signed integer

0x06 16 Ulnt16 Little-endian 2-byte unsigned integer

0x07 32 Int32 Two’s complement, little-endian 4-byte
signed integer

0x08 32 Ulnt32 Little-endian 4-byte unsigned integer

0x09 64 Int64 Two’s complement, little-endian 8-byte
signed integer

0x0A 64 Ulnt64 Little-endian 8-byte unsigned integer

0x0B 16 Reall6 IEEE-754 half precision float

0x0C 32 Real32 IEEE-754 single precision float

0x0D 64 Real64 IEEE-754 double precision float

0x0E 32 Index32 Parent columns of (nested) collections, count-
ing is relative to the cluster

0x0F 64 Index64 Parent columns of (nested) collections, count-
ing is relative to the cluster

0x10 96 Switch Tuple of a kIndex64 value followed by a 32

bits dispatch tag to a column 1D
0x11 16 SplitInt16 Like Int16 but in split + zigzag encoding
0x12 16 SplitUInt16 Like Ulnt16 but in split encoding
0x13 64 SplitInt32 Like Int32 but in split + zigzag encoding
0x14 32 SplitUInt32 Like Ulnt32 but in split encoding
0x15 64 SplitInt64 Like Int64 but in split + zigzag encoding
0x16 64 SplitUInt64 Like Ulnt64 but in split encoding

12

Type Bits Name Contents

0x17 16 SplitReall16 Like Reall6 but in split encoding

0x18 32 SplitReal32 Like Real32 but in split encoding

0x19 64 SplitReal64 Like Real64 but in split encoding

Ox1A 32 SplitIndex32 Like Index32 but pages are stored in split +
delta encoding

0x1B 64 SplitIndex64 Like Index64 but pages are stored in split +
delta encoding

0x1C 10-31 Real32Trunc IEEE-754 single precision float with trun-
cated mantissa

0x1D 1-32 Real32Quant Real value contained in a specified range with
an underlying quantized integer representa-
tion

The “split encoding” columns apply a byte transformation encoding to all
pages of that column and in addition, depending on the column type, delta
or zigzag encoding;:

Split (only): Rearranges the bytes of elements: All the first bytes first, then
all the second bytes, etc.

Delta + split: The first element is stored unmodified, all other elements
store the delta to the previous element. Followed by split encoding.
Zigzag + split: Used on signed integers only; it maps x to 2z if x is positive

and to —(2z + 1) if is negative. Followed by split encoding.

Note: these encodings always happen within each page, thus decoding
should be done page-wise, not cluster-wise.

The Real32Trunc type column is a variable-sized floating point column
with lower precision than Real32 and SplitReal32. It is an IEEE-754 single
precision float with some of the mantissa’s least significant bits truncated.

The Real32Quant type column is a variable-sized real column that is
internally represented as an integer within a specified range of values. For
this column type, flag 0x02 (column with range) is always set (see paragraphs
below).

Future versions of the file format may introduce additional column types
without changing the minimum version of the header or introducing a feature
flag. Old readers need to ignore these columns and fields constructed from
such columns. Old readers can, however, figure out the number of elements
stored in such unknown columns.

The “flags” field can have one of the following bits set

Bit Meaning

0x01 Deferred column: index of first element in the column is not zero

13

Bit Meaning

0x02 Column with a range of possible values

If flag 0x01 (deferred column) is set, the index of the first element in
this column is not zero, which happens if the column is added at a later
point during write. In this case, an additional 64 bit integer containing
the first element index follows the representation index field. Compliant
implementations should yield synthetic data pages made up of 0x00 bytes
when trying to read back elements in the range [0, firstElementIndex—1]. This
results in zero-initialized values in the aforementioned range for fields of any
supported C++ type, including std: :variant<Ts...> and collections such
as std: :vector<T>. The leading zero pages of deferred columns are not part
of the page list, i.e. they have no page locator. In practice, deferred columns
only appear in the schema extension record frame (see “Footer Envelope”).

If flag 0x02 (column with range) is set, the column metadata contains the
inclusive range of valid values for this column (used e.g. for quantized real
values). The range is represented as a min and a max value, specified as
IEEE 754 little-endian double precision floats.

If the index of the first element is negative (sign bit set), the column is
deferred and suppressed. In this case, no (synthetic) pages exist up to and
including the cluster of the first element index. See “Page List Envelope” for
further information about suppressed columns.

Alias Columns

An alias column has the following format

0 1 2 3

01234567890123456789012345678901
s T T S et T St S T s S Tt Tt S S S
I Physical Column ID |
s T T S s Tt S e S S T B B e At T S R 1
I Field ID I
Fot—t—t—t—t bttt bt =ttt =t =ttt — bbb~ —F bt~ —F—F—+

Alias columns do not have associated data pages. Instead, their data comes

from another column referred to below as physical column. The first 32 bit
integer references the physical column ID. The second 32 bit integer references
the associated projected field. A projected field is a field using alias columns
to present available data by an alternative C++ type. Alias columns have
no prescribed column ID of their own, since alias columns are not referenced.
In the footer and page list envelopes, only physical column IDs must be
referenced. However, columns should be attached to projected fields in their
serialization order (first header, then footer).

14

Extra Type Information

Certain field types may come with additional information required, e.g.,
for schema evolution. The type information record frame has the following
contents followed by a string containing the type name.

0 1 2 3
01234567890123456789012345678901
ottt =ttt b=ttt =t —t =t b=t =ttt bt =t =t — b=t =t~ =t~ —F—+
| Content Identifier |
ettt =ttt bttt =ttt b=ttt b=t =t —t— b=t =t~ =t~ —F—+
| Type Version |
e e T B s s T s T S T N s o o

The combination of type version, type name, and content identifier should
be unique in the list. However, not every type needs to provide additional
type information.

The following kinds of content are supported:

Content identifier Meaning of content

0x00 Serialized ROOT streamer info; see notes

The serialized ROOT streamer info is not bound to a specific type. It is
the combined streamer information from all fields serialized by the ROOT
streamer. Writers set the version to zero and use an empty type name. Readers
should ignore the type-specific information. The format of the content is a
ROOT streamed TList of TStreamerInfo objects.

Footer Envelope
The footer envelope has the following structure:

o Feature flags

« Header checksum (XxHash-3 64 bit)

e Schema extension record frame

List frame of cluster group record frames

The header checksum can be used to cross-check that header and footer
belong together. The meaning of the feature flags is the same as for the
header. The header flags do not need to be repeated. Readers should combine
(logical or of the bits) the feature flags from header and footer for the full set
of flags.

Schema Extension Record Frame

The schema extension record frame contains an additional schema description
that is incremental with respect to the schema contained in the header (see

15

“Header Envelope”). Specifically, it is a record frame with the following four
fields (identical to the last four fields in the header envelope):

e List frame: list of field record frames

e List frame: list of column record frames

e List frame: list of alias column record frames
e List frame: list of extra type information

In general, a schema extension is optional, and thus this record frame might
be empty. The interpretation of the information contained therein should be
identical as if it was found directly at the end of the header. This is necessary
when fields have been added during writing.

Note that the field IDs and physical column IDs given by the serialization
order should continue from the largest IDs found in the header.

Note that is it possible to extend existing fields by additional column
representations. This means that columns of the extension header may point
to fields of the regular header.

Cluster Group Record Frame

The cluster group record frame references the page list envelopes for groups
of clusters. A cluster group record frame has the following contents followed
by a page list envelope link.

0 1 2 3
012345678901234567890123456789¢01
—t—t—t—t—t—t—t—t—t—t -ttt -ttt -ttt —t—t—t—t—F—F—F— -t —t——+—+

Minimum Entry Number

—t—t—t—t—t—t—t—t—t—t bttt =ttt =ttt —t—t—t—t—t— b=t —t—F—

—t—F—t—t—F—t—F—F—tF—F—F—F—t—F—F—F—F—F—t—F—F—t—F—F - —F—F—F—F—F—+—
Number of clusters

+
I
+
I
+
I
+
I
+
I
+t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t -ttt =ttt —t— bt =t ==t —t—+—

[
+
I
+
I
Entry Span +
I
+
I
+

To compute the minimum entry number, take first entry number from all
clusters in the cluster group, and take the minimum among these numbers.
The entry span is the number of entries that are covered by this cluster
group. The entry range allows for finding the right page list for random
access requests to entries. The number of clusters information allows for using
consistent cluster IDs even if cluster groups are accessed non-sequentially.

16

Page List Envelope

The page list envelope contains cluster summaries and page locations. It has
the following structure

o Header checksum (XxHash-3 64 bit)
e List frame of cluster summary record frames
o Nested list frame of page locations

Cluster Summary Record Frame

The cluster summary record frame contains the entry range of a cluster:

0 1 2 3

01234567890123456789012345678901
t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—F—t—t—t—Ft—F—F—t—t—F—F—F—t—F—F—F—+—
I

+ First Entry Number

|

e Tt S s Tt Tt s s T St S T S

| Number of Entries

+ Fot bt —

| I Flags

e Tt S L T T e T B s Tt Tt T S A S A
The order of the cluster summaries defines the cluster IDs, starting from

the first cluster ID of the cluster group that corresponds to the page list.
Flag 0x01 is reserved for a future specification version that will support

sharded clusters. The future use of sharded clusters will break forward

compatibility and thus introduce a corresponding feature flag. For now,

readers should abort when this flag is set. Other flags should be ignored.

Page Locations

The page locations are stored in a nested list frame as follows. A top-most
list frame where every item corresponds to a cluster. The order of items
corresponds to the cluster IDs as defined by the cluster groups and cluster
summaries.

Every item of the top-most list frame consists of an outer list frame where
every item corresponds to a column. Every item of the outer list frame is an
inner list frame whose items correspond to the pages of the column in the
cluster. The inner list is followed by a 64 bit signed integer element offset
and, unless the column is suppressed, the 32 bit compression settings. See
“Suppressed Columns” for additional details. Note that the size of the inner
list frame includes the element offset and compression settings. The order
of the outer items must match the order of columns in the header and the
extension header (small to large).

17

+

I
+
I
+
I
+
I
+

The order of the inner items must match the order of pages or elements,
respectively. Every inner item (that describes a page) has the following
structure followed by a locator for the page.

0 1 2 3
01234567890123456789012345678901
s e et T T T s T Tt S
| Number of Elements [Cl
e e T B s s T e T B s S et o S
Note that locators for byte ranges in a file may reference identical byte

ranges, but they must not reference arbitrarily overlapping byte ranges.

C(hecksum): If set, an XxHash-3 64 bit checksum of the compressed page
data is stored just after the page. This bit should be interpreted as the
sign bit of the number of elements, i. e. negative values indicate pages
with checksums. Note that the page size stored in the locator does not
include the checksum.

Note that we do not need to store the uncompressed size of the page because
the uncompressed size is given by the number of elements in the page and the
element size. We do need, however, the per-column and per-cluster element
offset in order to read a certain entry range without inspecting the meta-data
of all the previous clusters.

The hierarchical structure of the frames in the page list envelope is as
follows:

this is "List frame of cluster group record frames~

mentioned above

- Top-most cluster list frame (one item for each cluster
in this RNTuple)

--—— Cluster 1 column list frame (outer list frame,
| one item for each column in this RNTuple)
|
|-—-- Column 1 page list frame (inner list frame,
| | one item for each page in this column)
I I
| | ---- Page 1 description (inner item)
| |---- Page 2 description (inner item)
| ([
| -——— Column 1 element offset (Int64),
I negative if the column is suppressed
|-—-- Column 1 compression settings (UInt32),
| available only if the column is not suppressed
|

|---- Column 2 page list frame

18

| |
|
|---- Cluster 2 column list frame

In order to save space, the page descriptions (inner items) are not in a
record frame. If at a later point more information per page is needed, the
page list envelope can be extended by additional list and record frames.

Suppressed Columns

If the element offset in the inner list frame is negative (sign bit set), the
column is suppressed. Writers should write the lowest int64_t value, readers
should check for a negative value. Suppressed columns always have an empty
list of pages. Suppressed columns omit the compression settings in the inner
list frame.

Suppressed columns belong to a secondary column representation (see
“Column Description”) that is inactive in the current cluster. The number
of columns and the absolute values of the element offsets of primary and
secondary representations are identical. When reading a field of a certain
entry, this assertion allows for searching the corresponding cluster and column
element indexes using any of the column representations. It also means that
readers need to get the element index offset and the number of elements of
suppressed columns from the corresponding columns of the primary column
representation.

In every cluster, every field has exactly one primary column representation.
All other representations must be suppressed. Note that the primary column
representation can change from cluster to cluster.

Mapping of C++ Types to Fields and Columns

This section is a comprehensive list of the C++ types with RNTuple I/O sup-
port. Within the supported type system complex types can be freely composed,
€. g. std: :vector<MyEvent> or std: :vector<std::vector<float>>.

Fundamental Types

The following fundamental types are stored as leaf fields with a single column
each. Fundamental C++ types can potentially be stored in multiple possible
column types. The possible combinations are marked as W in the following
table. Additionally, some types allow for reading from certain column types
but not to write into them. Such cases are marked as R in the table.
Possibly available const and volatile qualifiers of the C++ types are
ignored for serialization. The default column for serialization is denoted with

19

M M Juen)zered]

M M ouniyzeresy

*M q voreey (1rds)

M *M gereey (31ds)

M M 911eeY

*«M o o o o o o q q q vorurn (1ds)

d *M g g q q d q q q vorur(sds)

a q *M q q q a q q v zemrn (1ds)

q q o *xM q q d g q q gemr(1ds)

a o u | M o g8 o o g 913urN (31dS)

q q q q q M o q q g 9TuI(311ds)

q q q q q q *M q q q 81uIn

q q q q q q q M q q Quuf

q q q q q q q a M q rey)

*M o14g

q q q q q q q g q M ng

odAT,

oTqnop 3BOTF 37H9IUTN 3THOIUT 37ZLIUTD 37gEIUT 379TIUTD 37 9TIUT 3783UTn 37 g3uT Ieyd o3£q::p3s Tooq uwnop)
odAT, ++D

20

an asterisk. If the ntuple is stored uncompressed, the default changes from
split encoding to non-split encoding where applicable.

Low-precision Floating Points

The ROOT type Double32_t is stored on disk as a double field with
a SplitReal32 column representation. The field’s type alias is set to
Double32_t.

Stdlib Types and Collections

Generally, collections have a parent column of type (Split)Index32 or
(Split)Index64. The parent column stores the offsets of the next collection
entries relative to the cluster. For instance, a std::vector<float> with
the values {1.03}, {3}, {1.0, 2.0} for the first 3 entries results in an index
column [1, 1, 3] and a value column [1.0, 1.0, 2.0].

std::string

A string is stored as a single field with two columns. The first (principle)
column is of type (Split)Index[64]32]. The second column is of type Char.

std::vector<T> and ROOT::RVec<T>

STL vector and ROOT’s RVec have identical on-disk representations. They

are stored as two fields:
o Collection parent field whose principal column is of type (Split)Index[64]32].
o Child field of type T, which must by a type with RNTuple I/O support.

The name of the child field is _0.

For RVecs, ROOT will always store the fully qualified type name
ROQT: : VecOps: :RVec<T>. Implementations should also be able to parse the
shorter alias ROOT: : Vec<T>.

std::array<T, N> and array type of the form T[N]

Fixed-sized arrays are stored as two fields:

e A repetitive field of type std: :array<T, N> with no attached columns.
The array size N is stored in the field meta-data.

e Child field of type T named _0, which must be a type with RNTuple
I/0 support.

Note that T can itself be an array type, which implies support for multidi-
mensional C-style arrays.

21

std::variant<T1, T2, ..., Tn>

Variants are stored in n + 1 fields:

e Variant parent field with one column of type Switch; the dispatch tag
points to the active subfield number.

e Child fields of types T1, ..., Tn; their names are _0, _1, ...

The dispatch tag ranges from 1 to n. A value of 0 indicates that the variant
is in the invalid state, i.e., it does not hold any of the valid alternatives.
Variants must not have more than 125 subfields. This follows common
compiler implementation limits.

std::pair<T1, T2>

A pair is stored using an empty parent field with two subfields, one of type
T1 and one of type T2. T1 and T2 must be types with RNTuple I/O support.
The child fields are named _0 and _1.

std::tuple<T1, T2, ..., Tn>

A tuple is stored using an empty parent field with n subfields of type T1,
T2, ..., Tn. All types must have RNTuple I/O support. The child fields are
named _0, _1, ...

std::bitset<N>

A bitset is stored as a repetitive leaf field with an attached Bit column. The
bitset size N is stored as repetition parameter in the field meta-data. Within
the repetition blocks, bits are stored in little-endian order, i.e. the least
significant bits come first.

std::unique__ptr<T>, std::optional<T>

A unique pointer and an optional type have the same on disk representation.
They are represented as a collection of Ts of zero or one elements. The
collection parent field has a principal column of type (Split)Index[64]32].
It has a single subfield named _0 for T, where T must have RNTuple I/O
support. Note that RNTuple does not support polymorphism, so the type T
is expected to be T and not a child class of T.

std::set<T>, std::unordered_set<T>, std::multiset<T >,
std::unordered_multiset<T>

While STL (unordered) (multi)sets by definition are associative containers
(i. e., elements are referenced by their keys, which in the case for sets are equal
to the values), on disk they are represented as sequential collections. This

22

means that they have the same on-disk representation as std: :vector<T>,
using two fields:

e Collection parent field whose principal column is of type
(Split)Index[64132].

o Child field of type T, which must be a type with RNTuple I/O support.
The name of the child field is _0.

std::map<K, V>, std::unordered_map<K, V>, std::multimap<K, V>,
std::unordered_multimap<K, V>

An (unordered) (multi)map is stored using a collection parent field, whose
principal column is of type (Split)Index[64|32] and a child field of type
std::pair<K, V> named _O.

std::atomic<T >

Atomic types are stored as a leaf field with a single subfield named _0. The
parent field has no attached columns. The subfield corresponds to the inner
type T.

User-defined enums

User-defined enums are stored as a leaf field with a single subfield named
_0. The parent field has no attached columns. The subfield corresponds to
the integer type that underlies the enum. Unscoped and scoped enums are
supported as long as the enum has a dictionary.

User-defined classes

User-defined classes might behave either as a record or as a collection of
elements of a given type. The behavior depends on whether the class has an
associated collection proxy.

Regular class / struct

User defined C++ classes are supported with the following limitations:
e The class must have a dictionary.

o All persistent members and base classes must be themselves types with
RNTuple I/0O support.

o Transient members must be marked, e.g. by a //! comment.
e The class must not be in the std namespace.

o The class must be empty or splittable (e.g., the class must not provide
a custom streamer).

23

e There is no support for polymorphism, i.e. a field of class A cannot store
class B that derives from A.

e Virtual inheritance is unsupported.

User classes are stored as a record parent field with no attached columns.
Direct base classes and persistent members are stored as subfields with their
respective types. The field name of member subfields is identical to the C++
field name. The field name of base class subfields are numbered and preceded
by a colon (:),i.e. :_0, :_1,...

Classes with an associated collection proxy

User classes that specify a collection proxy behave as collections of a given
value type.

The on-disk representation of non-associative collections is identical to a
std: :vector<T>, using two fields:

e Collection parent field whose principal column is of type
(Split)Index[64]32].

o Child field of type T, which must be a type with RNTuple I/O support.

The on-disk representation of associative collections is identical to a
std: :map<K, V>, using two fields:

e Collection parent field whose principal column is of type
(Split)Index[64]32].

o Child field of type std: :pair<K, V>, where K and V must be types with
RNTuple I/0O support.

N.B., proxy-based associative collections are supported in the RNTuple
binary format, but currently are not implemented in ROOT’s RNTuple reader
and writer. This will be added in the future.

ROOT::RNTupleCardinality

A field whose type is ROOT: :RNTupleCardinality<SizeT> is associated to a
single column of type (Split)Index[32|64]. This field presents the offsets
in the index column as lengths that correspond to the cardinality of the
pointed-to collection. It is meant to be used as a projected field and only for
reading the size of a collection.

The value for the i-th element is computed by subtracting the (i — 1)-th
value from the i-th value in the index column. If ¢ == 0, i.e. it falls on the
start of a cluster, the (i — 1)-th value in the index column is assumed to
be 0, e.g. given the index column values [1, 1, 3], the values yielded by
RNTupleCardinality shall be [1, 0, 2].

The SizeT template parameter defines the in-memory integer type of the
collection size. The valid types are std: :uint32_t and std::uint64_t.

24

ROOT streamed types

A field with the structural role 0x04 (“streamer”) represents an object serial-
ized by the ROOT streamer into a single Byte column. It can have any type
supported by TClass (even types that are not available in the native RNTuple
type system). The first (principal) column is of type (Split)Index[32|64].
The second column is of type Byte. In effect, the column representation is
identical to a collection of std: :byte.

Untyped collections and records

Untyped collections and records are fields with a collection or record role
and an empty type name. Only top-level fields as well as direct subfields of
untyped fields may be untyped. Except for the empty type name, untyped
collections have the same on-disk representation as std: :vector and untyped
records have the same on-disk representation as a user-defined class.

Limits

This section summarizes key design limits of RNTuple data sets. The limits
refer to a single RNTuple and do not consider combinations/joins such as
“friends” and “chains”.

Limit Value Reason / Comment

Maximum volume 10 PB (theoretically ~ Assuming 10k cluster groups of
more) 10k clusters of 100 MB

Maximum number of 263 Using default (Split)Index64,

elements, entries
Maximum cluster &
entry size
Maximum page size

Maximum element size

Maximum number of
column types

Maximum envelope size

Maximum frame size

Maximum field / type
version

Maximum number of
fields, columns

8 TB (depends on
pagination)

2 B elements,

256 MB - 24 GB
8kB

64k
248 B (~280 TB)

202 B, 4B items (list
frame)

4B

4B (foreseen:
<10M)

25

otherwise 232

Assuming limit of 4 B pages of
4kB each

F#elements - element size

16 bit for number of bits per
element

16 bit for column type

Envelope header encoding
Frame preamble encoding

Field meta-data encoding

32bit column / field IDs, list

frame limit

Limit

Value

Reason / Comment

Maximum number of
cluster groups
Maximum number of
clusters per group
Maximum number of
pages per cluster per
column

Maximum number of
entries per cluster

4B (foreseen: <10k)
4B (foreseen: <10k)

4B

256

Maximum string length 4GB

(meta-data)

Maximum RBlob size 128 PiB

List frame limits

List frame limits, cluster group
summary encoding
List frame limits

Cluster summary encoding
String encoding
1GiB/8B - 1GiB (with

maxKeySize == 1 GiB,
offsetSize == 8 B)

Naming Specification

The name of an RNTuple as well as the name of a field cannot be represented
with an empty string when persistified (e.g. when written to disk). Further-
more, the allowed character set is restricted to Unicode characters encoded
as UTF-8, with the following exceptions:

o All control codes. These notably include newline (U+000A) and hori-
zontal tab (U40009).

 Full stop (U4002E ?)

o Space (U+0020 ‘)

o Backslash (U4005C *\’)

o Slash (U400

Defaults

2F ¢/

This section summarizes default settings of RNTupleWriteOptions.

Default

Value

Approximate Zipped Cluster

Max Unzipped Cluster
Max Unzipped Page

128 MiB
1280 MiB
1 MiB

26

Glossary

Anchor

The anchor is a data block that represents the entry point to an RNTuple.
The anchor is specific to the RNTuple container in which the RNTuple data
are embedded (e. g., a ROOT file or an object store). The anchor must provide
the information to load the header and the footer envelopes.

Cluster

A cluster is a set of pages that contain all the data belonging to an entry
range. The data set is partitioned in clusters. A typical cluster size is tens to
hundreds of megabytes.

Column

A column is a storage backed vector of a number of elements of a simple
type. Column elements have a fixed bit-length that depends on the column
type. Some column types allow setting the bit lengths within specific limits
(e.g. for floats with truncated mantissa).

Envelope

An envelope is a data block with RNTuple meta-data, such as the header and
the footer.

Field

A field describes a serialized C++ type. A field can have a hierarchy of
subfields representing a composed C++ type (e.g., a vector of integers). A
field has zero, one, or multiple columns attached to it. The columns contain
the data related to the field but not to its subfields, which have their own
columns.

Frame
A frame is a byte range with metadata information in an envelope. A frame
starts with its size and thus can be extended in a forward-compatible way.

Locator

A locator is a generalized way to identify a byte range in the RNTuple
container. For a file container, for instance, a locator consists of an offset and
a size.

27

Page

A page is segment of a column. Columns are partitioned in pages. A page is
a unit of compression. Typical page sizes are of the order of tens to hundreds
of kilobytes.

Indications of Size

In this document, the length of something (e.g., a page) refers to its size in
bytes in memory, uncompressed. The size of something refers to the size in
bytes on disk, possibly compressed.

Notes on Backward and Forward Compatibility

Note that this section covers the backward and forward compatibility of the
binary format itself. It does not discuss schema evolution of the written types.
Readers supporting a certain version of the specification should support
reading files that were written according to previous versions of the same
epoch.
Readers should support reading data written according to newer format
versions of the same epoch in the following way:

e Unknown trailing information in the anchor, in envelopes, and in frames
should be ignored. For instance, when reading frames, readers should
continue reading after the frame-provided frame length rather than
summing up the lengths of the known contents of the frame. Checksum
verification, however, should still take place and must include both
known and unknown contents.

e Unknown column, cluster, or field flags should be ignored.

e Unknown IDs for extra type information should be ignored.

e When a reader encounters an unknown column type or an unknown
field type, field version or field structure, it should ignore the entire
top-level field this column or field belongs to. It should also ignore any
projected fields and alias columns whose source fields or columns are
already ignored.

e When a reader encounters an unknown feature flag, it must refuse reading
any further.

Writers using format features that will prevent older readers from correctly
reading the data must set the corresponding feature flags.

Writers should write in the anchor which format version they support,
independent of whether they use the all the features that this version provides.
Only the feature flags signal which features are actually used in this particular
instance.

28

	Versioning Notes
	Introduction
	ROOT File Embedding
	Anchor Schema

	Compression Block
	Basic Types
	Feature Flags

	Frames
	Locators and Envelope Links
	Well-Known Payload Formats
	Large

	Envelopes
	Header Envelope
	Field Description
	Column Description
	Alias Columns
	Extra Type Information

	Footer Envelope
	Schema Extension Record Frame
	Cluster Group Record Frame

	Page List Envelope
	Cluster Summary Record Frame
	Page Locations
	Suppressed Columns

	Mapping of C++ Types to Fields and Columns
	Fundamental Types
	Low-precision Floating Points
	Stdlib Types and Collections
	std::string
	std::vector<T> and ROOT::RVec<T>
	std::array<T, N> and array type of the form T[N]
	std::variant<T1, T2, …, Tn>
	std::pair<T1, T2>
	std::tuple<T1, T2, …, Tn>
	std::bitset<N>
	std::unique_ptr<T>, std::optional<T>
	std::set<T>, std::unordered_set<T>, std::multiset<T>, std::unordered_multiset<T>
	std::map<K, V>, std::unordered_map<K, V>, std::multimap<K, V>, std::unordered_multimap<K, V>
	std::atomic<T>
	User-defined enums
	User-defined classes
	Regular class / struct
	Classes with an associated collection proxy
	ROOT::RNTupleCardinality
	ROOT streamed types
	Untyped collections and records

	Limits
	Naming Specification
	Defaults
	Glossary
	Anchor
	Cluster
	Column
	Envelope
	Field
	Frame
	Locator
	Page
	Indications of Size

	Notes on Backward and Forward Compatibility

