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1. Introduction

One of the ubiquitous challenges in lattice QCD simulations is the signal-to-noise ratio (S/N) of
correlation functions [1, 2]. Particularly demanding, even in pure gauge theory, is the computation
of the spectrum of glueballs, hypothetical particles composed predominantly of gluons. One major
difficulty of these computations is the analysis of disconnected contributions: while the signal
decays exponentially with the distance between the operators, the statistical noise remains constant
with standard sampling techniques. Alternative sampling methods, like the multilevel algorithm
[3], can be used to reduce the error in a more efficient way than standard samplings. In [4, 5], we
demonstrate that a two-level sampling can reduce more efficiently the statistical error of pure gauge
glueball two-point functions at large distances. At this lattice conference, similar algorithms have
been adopted to study for the first time glueball scattering in Yang-Mills theory [6]. In principle,
the same ideas can be applied to study glueball structure quantities like glueball gravitational form
factors [7], by adopting a three-level algorithm to estimate glueball three-point functions.

However, the inclusion of fermions makes the glueball calculations more demanding. First,
for sufficiently light quarks the glueballs are unstable bound states and a finite-volume formalism
is required to reconstruct information of the resonance. Due to this, the inclusion of multiparticle
operators with large overlap to all glueball decay modes is necessary, and it can be quite expensive.
For instance, there are more than 10 decay modes observed in the experiments for the scalar glueball
candidate 𝑓0(1500) [8], although the largest fraction is due to 2𝜋 and 4𝜋 modes. In addition to
this, a comprehensive lattice analysis must resolve accurately all the states in the spectrum which
lie below or close to the glueball energy.

The second two-fold challenge to face when simulating QCD is the presence of quark propa-
gators. From one side, they are very demanding to compute on each gauge configuration; however,
advanced solvers based on Krylov space solvers can be used to compute the propagators at a mod-
erate cost even at large volumes. On the other side, the non-locality of the quark propagator hinders
the application of multilevel algorithms, because they depend on the values of the gauge fields over
the full space-time. However, by factorizing the quark propagator in different regions, it is possible
to make the fermionic observables amenable for multilevel integration.

In quenched QCD, an important step forward has been made in [9] to rewrite the quark
propagator as a series of terms with a well defined hierarchical structure. This factorisation of
the quark propagator enables a two-level integration of the fermionic observables. In full QCD,
the application of multilevel integration requires more advanced techniques due to the presence of
the fermion determinant as the fermionic weight. A factorisation of the fermion determinant via a
multiboson approximation [10] makes the fermionic observable and fermionic weight amenable for
a local integration, as demonstrated in [11, 12].

As a step towards the computation of the glueball spectrum in full QCD, we combine for
the first time distillation techniques with the multilevel algorithm in quenched QCD to study the
correlation of singlet mesonic observables, which constitute the most demanding computations. In
particular, we discuss how we combine these advanced lattice techniques to estimate more efficiently
disconnected diagrams.
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2. Distillation

We are interested in estimating two-point functions like

⟨O( ®𝑝, 𝑡1)Ō( ®𝑝, 𝑡0)⟩ =
1
Z

∫
[𝑑𝑈] [𝑑𝑞] [𝑑𝑞]𝑒−𝑆 [𝑞,�̄�,𝑈 ]O( ®𝑝, 𝑡1)Ō( ®𝑝, 𝑡0), (1)

where O are interpolating operators with glueball quantum numbers, Z is the QCD partition
function and 𝑆 = 𝑆 𝑓 + 𝑆𝑔 is the QCD action. After integrating out the fermionic degrees of
freedom, the correlation function in the quenched approximation reads

⟨O( ®𝑝, 𝑡1)Ō( ®𝑝, 𝑡0)⟩ =
1
Z

∫
[𝑑𝑈]𝑒−𝑆𝑔 [𝑈 ] ⟨O( ®𝑝, 𝑡1)Ō( ®𝑝, 𝑡0)⟩𝐹 , (2)

where ⟨O( ®𝑝, 𝑡1)Ō( ®𝑝, 𝑡0)⟩𝐹 are Wick contractions expressed in terms of traces of products of Dirac
propagators. In particular, the interpolating operators that we consider in this work are singlet
meson OΓ interpolators projected to zero total momenta, whose expressions are given by

OΓ (®0, 𝑡1) =
∑︁
®𝑥
𝑞(𝑥)Γ𝑞(𝑥) with Γ = 1, 𝛾5, 𝛾𝜇, 𝛾4𝛾5, 𝛾𝑖𝛾 𝑗 ; (3)

with 𝑥 = (®𝑥, 𝑡1). The sum over spatial coordinates projects the operators to zero total momentum.
Given that the operators are all projected to zero momentum, we drop the momenta to simplify the
notation. The Wick contractions of these operators contain disconnected contributions which read

⟨OΓ (𝑡1)ŌΓ (𝑡0)⟩𝐹,disc =
∑︁
®𝑥, ®𝑦

⟨OΓ (𝑥)⟩𝐹 ⟨ŌΓ (𝑦)⟩𝐹 , (4)

where the explicit expressions of the Wick contractions contain quark loops, which read

OΓ (𝑥) := ⟨OΓ (𝑥)⟩𝐹 = Tr
[
D−1(x, x)Γ

]
. (5)

In the distillation framework [13], the Wick contractions in eq. (4) are rewritten as

⟨OΓ (𝑡1)ŌΓ (𝑡0)⟩𝐹,disc = Tr [𝜙(𝑡1)𝜏(𝑡1, 𝑡1)] Tr [𝜙(𝑡0)𝜏(𝑡0, 𝑡0)] (6)

where 𝜙 and 𝜏 are elementals and perambulators, respectively, whose expressions are

𝜙𝑖 𝑗 (𝑡)𝛼𝛽 = Γ𝛼𝛽 𝑣𝑖 (𝑡)†𝑣 𝑗 (𝑡), (7)

𝜏𝑖 𝑗 (𝑡1, 𝑡2)𝛼𝛽 = 𝑣𝑖 (𝑡1)†𝐷−1(𝑡1, 𝑡2)𝛼𝛽 𝑣 𝑗 (𝑡2). (8)

In these expressions, 𝑣(𝑡) are the eigenvectors of the 3D Laplacian operator

∇2(𝑡) ®𝑥, ®𝑦 = −6𝛿 ®𝑥, ®𝑦 +
3∑︁

𝑘=1

[
𝑈𝑘 (®𝑥, 𝑡)𝛿 ®𝑥+�̂�, ®𝑦 +𝑈

†
𝑘
(®𝑥 − �̂� , 𝑡)𝛿 ®𝑥− �̂�, ®𝑦

]
, (9)

which is constructed in terms of the gauge fields 𝑈. In this preliminary work, we consider only 10
eigenvectors and the subscripts 𝑖, 𝑗 run over the number of eigenvectors. To reduce UV fluctuations
in the observables, the gauge fields are appropriately smeared through APE smearing [14].
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Figure 1: Domain decomposition used in this analysis. The blue and white regions are the frozen and
dynamical regions, respectively.

3. Two-level sampling for fermionic observables

In the quenched approximation, the two-point functions in eq. (2) depend on the pure gauge
action 𝑆𝑔 [𝑈] and the Wick contractions ⟨O(𝑡1)Ō(𝑡0)⟩𝐹 . The pure gauge action 𝑆𝑔 [𝑈] is local in
the gauge fields as the action is constructed in terms of Wilson plaquettes. However, the Wick
contractions are expressed as traces of products of quark propagators, see for instance eq. (4), and
the quark propagator depends on the values of the gauge fields over the full space-time. In theories
with a mass gap like QCD or 4D Yang-Mills, the physical signal of a correlation function decays
exponentially with the distance between the operators O(𝑡1) and Ō(𝑡0). Supported by empirical
arguments [1], the quark propagator is suppressed on each gauge configuration according to

| |𝐷−1(𝑦, 𝑥) | | ∼ 𝑒−
1
2𝑚𝜋 |𝑦−𝑥 | , (10)

where 𝑚𝜋 is the mass of the lightest pseudoscalar state and | | • | | is a gauge-invariant norm.
Therefore, contributions of the background gauge field configurations from points that are located
far away from the operators decay exponentially with the distance. Based on this exponential
locality, an approximated quark propagator can be constructed to remove the dependence of the
quark propagators from gauge fields located at distant points. This approximation allows a two-level
integration of the estimator in eq. (4), which reads

𝐶 (𝑡1 − 𝑡0) =
1

Z[𝑈𝐵]

∫
[𝑑𝑈𝐵]𝑒−𝑆𝑔 [𝑈𝐵 ] [O(𝑡1)

] [
Ō(𝑡0)

]
. (11)

The two-level integration is possible when the operators are in different dynamical regions, say
𝑡0 ∈ Λ0, 𝑡1 ∈ Λ2. Using the operators in eq. (3), the local integrations [•] of the quark loops read
explicitly

[OΓ (𝑡1)] =
∫

[𝑑𝑈1]
∑︁
®𝑥

Tr
[
𝐷−1

Ω1
(𝑥, 𝑥)Γ

]
. (12)

In the distillation framework, the local integration is performed for the elementals and perambulators,
and the local integration of the quark loop at 𝑡1 reads for instance

[OΓ (𝑡1)] =
∫

[𝑑𝑈1]
∑︁
®𝑥

Tr
[
𝜙(𝑥)𝜏Ω1 (𝑥, 𝑥)

]
, (13)

where the perambulators are computed using eq. (8) with the approximated propagator 𝐷−1
Ω𝑟

.
In Fig. 1, we show the domain decomposition used in this work, where the temporal lattice

extent is split in four regions: Λ = Λ0 ⊕ Λ1 ⊕ Λ2 ⊕ Λ3 and the Dirac propagators are computed in
two overlapping regions: Ω0 = Λ3 ⊕ Λ0 ⊕ Λ1 and Ω1 = Λ1 ⊕ Λ2 ⊕ Λ3. Notice that we use periodic
boundary conditions. The details of the simulations are discussed in the next section.
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4. Numerical results

4.1 Details of the simulations

We discretise a four dimensional SU(3) theory using the Wilson action with periodic boundary
conditions. The gauge configurations are generated at 𝛽 = 6.0 and with a volume 𝑉/𝑎4 = 163 × 64.
In order to perform a two-level integration, we use molecular dynamic integration to sample
independent gauge configurations as discussed in [5]. First, 𝑁0 gauge configurations are generated
by updating the gauge fields over the full space-time. These represent the fields 𝑈𝐵 over which
we integrate in eq. (11). Second, for each of these stored gauge configurations, we generate a
new trajectory of 𝑁1 gauge fields according to the same probability distribution. Along these new
trajectories, the gauge fields are updated only in certain regions of the temporal extent, which are
the regions Λ0 and Λ2.1 Therefore, Λ0 and Λ2 are the dynamical regions, while Λ1 and Λ3 are
the frozen regions. In the simulation, the frozen regions have 𝑡/𝑎 ∈ {0, 1, 61, 62, 63} for Λ3 and
𝑡/𝑎 ∈ {29, 30, 31, 32, 33} for Λ1, while the remaining lattice sites compose Λ0 and Λ2.

We generate 𝑁0 = 101 level-0 gauge configurations and 𝑁1 = 200 level-1 (local) updates and
we label these gauge configurations 𝑈 (𝑖 𝑗 ) , where the superscripts 𝑖, 𝑗 refer to the 𝑖-th level-0 and
𝑗-th level-1 gauge configuration 𝑈 (𝑖 𝑗 ) , respectively. For each of the 𝑁0 × 𝑁1 gauge configurations,
we compute the full and approximated Wilson Dirac propagator using the Wilson clover action with
𝜅 = 0.13393, where the lightest pseudoscalar state has a mass 𝑚𝜋 ≈ 760 MeV. The quark mass was
tuned such that the lowest non-interacting 𝜋𝜋 energy is very close to the pure gauge scalar glueball,
which at a similar scale (𝛽 = 5.99) is 𝑚0++

𝐺
≈ 1560 MeV according to [15].

To compute the approximated quark propagator we adopt a domain decomposition method
[16] and impose Dirichlet boundary conditions. For instance, the quark propagator 𝐷−1

Ω0,𝑖 𝑗
(𝑥, 𝑥) is

computed on the configuration𝑈 (𝑖 𝑗 ) in the region Ω0, neglecting contributions from Λ2, see Fig. 1.

4.2 Analysis of disconnected 2-points functions with 1- and 2-level estimators

Using the 𝑁0 × 𝑁1 gauge configurations, which we store on disk, we compute the traces of
quark loops using the full and approximated Wilson Dirac propagators:

OΓ,𝑖 𝑗 (𝑡1) =
∑︁
®𝑥

Tr
[
𝐷−1

𝑖 𝑗 (𝑥, 𝑥)Γ
]

(14)

OΩ1
Γ,𝑖 𝑗

(𝑡1) =
∑︁
®𝑥

Tr
[
𝐷−1

Ω1,𝑖 𝑗
(𝑥, 𝑥)Γ

]
, ŌΩ0

Γ,𝑖 𝑗
(𝑡0) =

∑︁
®𝑦

Tr
[
𝐷−1

Ω0,𝑖 𝑗
(𝑦, 𝑦)Γ

]
, (15)

with 𝑥 = (®𝑥, 𝑡1) and 𝑦 = (®𝑦, 𝑡0). In particular, we use distillation to estimate the traces. In
Fig. 2, we show a comparison between scalar quark loops using the full and approximated quark
propagators in eqs. (14), (15), respectively. The scalar quark loops computed with the full propagator
(orange) fluctuate within the errors around a constant value. The data points inside Λ1 and Λ3 are
noisier because the gauge fields are not updated in these regions. Notice that the orange data
points are shifted along the x-axis to increase visibility. The scalar quark loops computed with the
approximated quark propagator (blue) fluctuate also within the errors around the same constant value
when the quark loops are sufficiently distant from the other dynamical region. The approximation

1The gauge configurations are well spaced along both levels to suppress any autocorrelation effects.
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31.2
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〈OΩr

I (t)〉 〈OI(t)〉

Figure 2: Comparison between the 1-point functions of scalar quark loops using the approximated (blue)
and full (orange) quark propagator. The scalar channel has non-vanishing expectation value because it has
vacuum quantum numbers. The blue vertical bands highlight the location of the frozen regions Λ1 and Λ3.
These estimates are computed using eqs. (14)-(15) with 𝑖 = 1, ..., 𝑁0 and 𝑗 = 1, ..., 𝑁1, and the errors are
estimated on the level-0 configurations using the Γ-method.

gets better with the distance from the other dynamical region, as expected from the exponential
locality of the quark propagator. Near the boundaries, and therefore close to the other dynamical
region, there are visible effects due to the Dirichlet boundary conditions. These effects are then
taken into account for the final two-level estimator of the two-point functions. Inside the internal
region of the boundaries (𝑡/𝑎 = 0, 30, 31, 32, 62, 63), we use the full propagator in both cases, which
explains why the quark loops coincide in these sites.

Using the quark loops computed with the full propagator, we estimate the disconnected two-
point functions with the traditional sampling as

𝐶1-lvl
Γ (𝑡1, 𝑡0) =

1
𝑁0𝑁1

∑︁
𝑖 𝑗

OΓ,𝑖 𝑗 (𝑡1)ŌΓ,𝑖 𝑗 (𝑡0). (16)

The superscript "1-lvl" refers to the fact that the operators are correlated both along level-0 and
level-1, i.e., treating the gauge configurations along the two levels as a single trajectory. Using
the observables computed with the approximated propagator instead, we estimate the disconnected
two-point functions using both 1-level and 2-level integrations, respectively

𝐶1-lvl
Γ (𝑡1, 𝑡0) =

1
𝑁0𝑁1

∑︁
𝑖 𝑗

OΩ1
Γ,𝑖 𝑗

(𝑡1)ŌΩ0
Γ,𝑖 𝑗

(𝑡0), (17)

𝐶2-lvl
Γ (𝑡1, 𝑡0) =

1
𝑁0

∑︁
𝑖

[
1
𝑁1

∑︁
𝑗

OΩ1
Γ,𝑖 𝑗

(𝑡1)
] [

1
𝑁1

∑︁
𝑘

ŌΩ0
Γ,𝑖𝑘

(𝑡0)
]
. (18)

The difference between eq. (16) and eq. (17) is the approximation adopted for the quark propagator
in the latter. Therefore, the correction due to this approximation can be estimated as

𝛿(𝑡1, 𝑡0) = 𝐶1-lvl
Γ (𝑡1, 𝑡0) − 𝐶1-lvl

Γ (𝑡1, 𝑡0). (19)

This correction is then added to the (improved) two-level estimator in eq. (18)

𝐶2-lvl
Γ (𝑡1, 𝑡0) = 𝐶2-lvl

Γ (𝑡1, 𝑡0) + 𝛿(𝑡1, 𝑡0) (20)
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0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
(t1 − t0)/a

10−4

10−3

10−2

10−1

Error of C̃2−lvl
I (t1, t0) and C2−lvl

I (t1, t0)

σ̃C(N1 = 1)

σ̃C(N1 = 1)/10

σ̃C(N1 = 1)/200

σC(N1 = 1)

σ̃C(N1 = 1)

σC(N1 = 50)

σ̃C(N1 = 50)

σC(N1 = 200)

σ̃C(N1 = 200)

Figure 3: Statistical errors of the two-level estimators for the disconnected scalar two-point functions before
(empty circles) and after (filled circles) adding the correction in eq. (19). The empty (filled) circles correspond
to the error of the estimator in eq. (18) ((20)) in the scalar channel.

to obtain a corrected two-level estimator for the two-point functions. For the error analysis, we use
the Γ-method [17] to compute the errors on the level-0 configurations.

In Fig. 3, we show the statistical error for the scalar disconnected 2-point functions𝐶𝐼 (𝑡) using
the approximated and corrected two-level estimators, respectively in eqs. (18) and (20). While the
number of level-0 configurations is fixed to 𝑁0 = 101 and one quark loop is located at 𝑡0 = 24𝑎, we
vary the number of submeasurements and the location of the other quark loop. We do not observe
a significant bias introduced by the addition of the correction term, at least for this particular
observable. When the quark loops are in the same region, the error is fluctuating around a constant
value, which decreases like the standard sampling (1/

√
𝑁1); while when the quark loops are in two

different dynamical regions the error is decreasing as observed in the pure gauge analysis in [5]. In
particular, the variance scales with 1/𝑁2

1 , with additional corrections that decrease exponentially
with the distance from the frozen regions.

Weighted average Given that the correlators at different temporal source positions 𝑡0 fluctuate
differently at fixed Δ𝑡 = 𝑡1 − 𝑡0, especially with the two-level integration, we construct a weighted
average correlator as in [5], which reads

�̄�X(Δ𝑡) =
∑︁
𝑡0

𝑤(𝑡0 + Δ𝑡, 𝑡0)𝐶X(𝑡0 + Δ𝑡, 𝑡0) with X = 1-lvl, 2-lvl. (21)

The weight functions are chosen to be proportional to the inverse of the variance, i.e. 𝑤(𝑡1, 𝑡0) =
N𝜎2(𝑡1, 𝑡0)−1, and the normalisation N is chosen such that

∑
𝑡0 𝑤(𝑡1, 𝑡0) = 1 ∀ 𝑡1. In Fig. 4, we

show a comparison between the standard and two-level estimators of the disconnected two-point
correlation functions and their effective masses, using the scalar meson operator. The statistical
estimators for the 1-level and 2-level sampling are constructed using the same statistics, i.e. 𝑁0×𝑁1 =

101×200. With the two-level sampling, the signal survives a few more time slices, but the statistics
is still not enough to extract a reliable estimate of its effective mass, see right plot. Please note
that this is the signal of the disconnected contribution only. In order to extract the energy of the

7
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meff[MeV] of C̄X(∆t)

X=2-lvl

X=1-lvl

Figure 4: (left) Comparison between a 1-level (16) and 2-level (20) estimator for the weighted average
disconnected two-point functions of scalar quark loops; (right) Comparison between the two sampling tech-
niques for the effective masses of scalar disconnected two-point functions. The red dashed lines correspond
to the lowest non-interacting 𝜋𝜋 energy, while the black dashed lines represent the mass of the lowest scalar
glueball in pure gauge theory at 𝛽 = 5.99 [15].

scalar meson/glueball state, we will include the connected contributions, which we compute with
a 1-level integration as they do not suffer from a severe S/N ratio. If we are only interested in the
disconnected signal, increasing the submeasurements by a further factor of 5, and thus reducing
the error by a similar factor for 𝑡 > 11𝑎, would help to identify a plateau. As a comparison, we
add anyways in the right plot of Fig. 4 the values of the non-interacting 𝜋𝜋 energy and the scalar
glueball mass at a similar scale in pure gauge theory.

5. Conclusions

In this work, we have combined, for the first time, distillation techniques with a two-level
sampling algorithm to study two-point functions of quark loops. In order to use the two-level
sampling, a factorisation of the quark propagator is adopted, and the quark loops are submeasured
in different regions. We report results for the scalar two-point functions with a two-level algorithm
and we find that the error decreases as expected from our previous study in pure gauge theory.
In particular, we find that the two-level integration reduces substantially the statistical error of the
disconnected contributions, as showcased in Fig. 3. This also results in an error reduction in the
effective mass of the disconnected piece for the would-be 𝑓0 state, where the signal is extended for
longer distances, see Fig. 4. We conclude that a two-level algorithm is anyways a superior method
to study disconnected observables, and will be applied for future studies of glueballs in full QCD.
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