
A
TL

-S
O

FT
-P

R
O

C
-2

02
5-

02
1

31
Ja

nu
ar

y
20

25

Modernizing ATLAS PanDA for a sustainable multi-
experiment future

Tatiana Korchuganova3,∗, Fernando Harald Barreiro Megino2, Kaushik De2, Wen Guan1,
Edward Karavakis1, Alexei Klimentov1, Fa-Hui Lin2, Tadashi Maeno1, Paul Nilsson1, Torre
Wenaus1, Zhaoyu Yang1, and Xin Zhao1on behalf of the ATLAS Computing Activity
1Brookhaven National Laboratory, Upton, NY, USA
2University of Texas at Arlington, Arlington, TX, USA
3University of Pittsburgh, Pittsburgh, PA, USA

Abstract. In early 2024, ATLAS undertook an architectural review to evaluate
the functionalities of its current components within the workflow and workload
management ecosystem. Pivotal to the review was the assessment of the Pro-
duction and Distributed Analysis (PanDA) system, which plays a vital role in
the overall infrastructure. The review findings indicated that while the current
system shows no apparent signs of scalability limitations or critical defects, sev-
eral issues still require attention. These include areas for improvement, such as
cleaning the historical accumulation of code over nearly two decades of con-
tinuous operation in ATLAS, further organizing development activities, maxi-
mizing the utilization of continuous integration and testing frameworks, bolster-
ing efforts toward cross-experimental outreach, spreading greater awareness of
workflows at the core level, expanding support for complex workflows, imple-
menting a more advanced algorithm for workload distribution, optimizing tape
and network resource usage, refining interface design, enhancing transparency
to showcase system dynamism, ensuring allocation of key developers to R&D
projects with clear long-term visions for integration and operation, and accom-
modating the growing diversity of resources. In this paper, we first highlight
the issues identified in the review, exploring their historical and cultural roots.
Then, we outline the recommendations derived from the review, and present the
solutions developed to address these challenges and pave the way to sustainably
support multiple experiments.

1 Introduction

The Production ANd Distributed Analysis (PanDA) system [1] has been the primary work-
flow management system (WMS) for the ATLAS experiment [2] since 2007, continuously
evolving to meet the demands of large-scale data processing and distributed computing. De-
signed to manage millions of computational jobs across a diverse set of resources, PanDA
has adapted to operate seamlessly on various platforms, including WLCG Grid resources [3],
commercial cloud services [4], and high-performance computing (HPC) facilities [5]. Also,

∗e-mail: tatiana.korchuganova@cern.ch

Copyright 2025 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



PanDA accommodates various job requirements such as multiprocessing, multithreading, and
jobs with varying memory needs. In recent years, the system has expanded to support a wide
range of processors, including ARM architectures, and has integrated the use of accelerators
like GPUs to optimize performance across heterogeneous computing environments.

In early 2024, the ATLAS experiment conducted an architectural review to evaluate the
functionality and performance of its workflow and workload management system. While no
critical defects or immediate scalability limitations were identified, several areas for improve-
ment were highlighted:

• Project Management: adopt a more structured, strategic approach to project management,
ensuring efficient resource allocation and goal tracking.

• Code Modernization: streamline and update legacy code accumulated over nearly two
decades to enhance maintainability and performance.

• Continuous Integration: expand the use of continuous integration (CI) and testing frame-
works to improve system reliability and accelerate development cycles.

• Workflow Awareness: integrate advanced workflow awareness into the system core to en-
hance decision-making and resource allocation.

• User Interface and Dynamic Monitoring: develop a more intuitive and accessible GUI to
improve usability across diverse user groups and to better visibility into system operations
with the near real-time monitoring and enhanced responsiveness.

• Sustainable R&D: prioritize R&D projects with clearly defined long-term integration and
operational goals to support sustainable system evolution.

These recommendations aim to ensure that the PanDA system remains robust, scalable,
and adaptable to future challenges such as the scale of the High-Luminosity LHC [6].

We introduced a new project management structure to streamline PanDA system develop-
ment in a form of four key streams. Each stream is led by a dedicated manager who oversees
task assignments, timelines, and progress. Streams cut across all components to enhance the
mobility of developers and ensure a more flexible and integrated development process. These
aspects will be discussed in detail in the following sections of this paper.

2 Stream 1: Code-base optimization and modernization

PanDA has operated continuously for almost 20 years without a single declared downtime
for code updates by delivering backward compatible changes and ensuring transparent tran-
sitions. Downtime occurs only during unavoidable database interventions or broader outages
within CERN’s infrastructure, where the PanDA system is deployed. The continuous delivery
of features and the age of the project, however, have introduced complexities into the code-
base and it would be useful to transition to more state-of-the-art libraries. Recognizing the
need for modernization, we are undertaking a comprehensive effort to enhance our system,
improve workflows, and adopt contemporary practices.

We aim to improve our testing infrastructure significantly. Currently, developers rely on
independent development machines, but we plan to establish a staging environment for vali-
dating new releases. This environment will be extended with CI/CD capabilities and deployed
on Kubernetes [7], providing us with hands-on experience in operating Kubernetes-based
services. Such preparation will provide experience if we decide to migrate our production
infrastructure during a long shutdown.



A key priority is simplifying and modernizing our codebase. Focused on the oldest mod-
ules, we are replacing obsolete technologies such as XML and picklewith JSON and adopt-
ing modern libraries like requests in place of curl or pycurl. Additionally, we are rewrit-
ing our API to adhere to standards and publishing its documentation using OpenAPI [8].
Obsolete code and unused database tables are being removed, reducing the complexity of the
environment and the total number of lines of code (fig.1).

Figure 1. Evolution of lines of code number in PanDA server component over time

Most components have fully transitioned to Python 3, allowing us to leverage its advanced
features, such a f-strings and type hints. Python 2 compatibility has been dropped, and we
have integrated tools like pre-commit hooks to automatically format code using utilities like
Black [9], Flynt [10], and isort [11]. This ensures a consistent and modern codebase.

We have reduced reliance on external agents and packages by incorporating them into
our main codebase. This change not only simplifies operations but also reduces the number
of machines required, optimizing resources. To monitor service health, we introduced email
and Mattermost [12] notifications for immediate awareness of availability issues. These alerts
have enabled to debug issues on the spot, while they are still happening and in the same
conditions, instead of imagining some time later that there could have been a memory or a
network issue. Since the introduction of the alerts, we have significantly improved our service
quality.

Improved notifications also extend to team updates: whenever a team member updates
PanDA packages on a production machine, a Mattermost alert informs the rest of the team.
Combined with availability notifications, this ensures full infrastructure oversight. To align
with best practices, we are moving from informal communication methods like emails and
chats to a ticket-based system. With JIRA [13], we have automated processes such as closing
inactive tickets after six months and closing resolved tickets after two weeks.

These updates reflect our commitment to modernizing PanDA’s infrastructure, operations
and codebase, while continuing to deliver new features and services regularly.

3 Stream 2: System optimization and enhancement

PanDA faces several key challenges that require optimization in site definitions, job gen-
eration, workflow management, and resource allocation. Enhanced transparency, automa-



tion, and scalability are essential for addressing these limitations and supporting the system’s
growing complexity.

The relationship between PanDA queues and ATLAS sites reflects a foundational aspect
of the ATLAS workload management system. PanDA queues, introduced as an early ab-
straction layer, were later used as the foundation for defining ATLAS sites. To maintain
consistency, PanDA queue objects are retrieved from the Computing Resource Information
Catalogue (CRIC) [14] and subsequently used to construct ATLAS site objects. However,
this indirect linkage introduces several constraints, limiting flexibility in data management
and resource allocation. Addressing these constraints requires refactoring the internal object
structures and enabling more granular configurations of PanDA queues, which would better
support diverse storage requirements.

Job Execution and Definition Interface (JEDI) [1] experiences notable delays during job
generation, with approximately 1,000 jobs requiring several dozen seconds to create. The
main sources of this slowness include file replica lookups during the brokerage process, job
object creation, and database record insertions. To mitigate these delays, introducing caching
for frequently accessed data, optimizing database transactions, and implementing more effi-
cient threading strategies could improve performance.

Current workflow management within Database Engine For Tasks (DEFT) [15] has lim-
ited flexibility in workflow descriptions, lacking support for branching, looping or conditional
execution. This restricts the ability to optimize task orchestration, such as delaying merge
tasks until they are necessary. Incorporating a more expressive workflow engine capable of
handling these advanced patterns would significantly improve task orchestration.

The brokerage algorithm employs a simplified approach, reducing multi-dimensional
weight calculations to a single scalar value. While effective in many cases, this approach
could be further optimized to better balance factors such as input data location, site per-
formance, and resource availability. For instance, giving greater weight to input data loca-
tion might reduce unnecessary data transfers, particularly for low-priority jobs where waiting
for an optimal site is acceptable. Refining the brokerage algorithm by adopting a multi-
dimensional scoring approach and dynamically adjusting weights based on operational prior-
ities could optimize resource allocation and reduce unnecessary overhead.

Inaccurate resource definitions during task submission often lead to inefficiencies. Tasks
requesting more memory or resources than required disrupt the brokerage process, neces-
sitating corrective actions through scout jobs. Grouping tasks by request and tag during
submission could allow shared resource evaluations, reducing the overhead associated with
scout jobs. Moreover, automating the detection and definition of retry rules for failed jobs us-
ing machine learning or pattern recognition could minimize human intervention and improve
recovery efficiency.

The lack of comprehensive system-wide metrics hampers effective workload management
and resource planning. While individual components such as Harvester [16] provide detailed
metrics, aggregated metrics at the system level, such as task time to completion (TTC), net-
work utilization, and fairness across stakeholders remain underdeveloped. For network usage,
optimizing data transfers based on priority and utilizing predictive analytics for data staging
could reduce load without negatively impacting TTC or other critical metrics.

PanDA and JEDI were initially designed for ATLAS workloads requiring [1-core, 8-core]
CPUs with [2GB/core, 4GB/core] memory configurations. However, growing resource het-
erogeneity, including the integration of GPUs and workloads with high memory or scratch
disk requirements, challenges the original system design. Establishing resource-specific
matchmaking strategies and updating scheduling algorithms to accommodate multi-GPU
configurations and varying memory requirements would ensure efficient utilization of hetero-



geneous resources. Encouraging community discussions on workload priorities and resource
allocation policies would further align system design with emerging needs.

4 Stream 3: Outreach

Outreach and community engagement have been pivotal components of the PanDA WMS
strategy throughout 2024. Since its foundation, PanDA has been an open-source software
project [17], welcoming contributions from outside the core team. Recognizing the impor-
tance of fostering a vibrant and collaborative user base, the PanDA team has initiated several
efforts aimed at strengthening ties with current users and encouraging new collaborations.

A major highlight has been the establishment of the PanDA Community Forum, which
serves as a platform for open discussions, information exchange, and collaboration among
various experiments utilizing or evaluating PanDA. The forum has brought together represen-
tatives from ATLAS [2], COMPASS [18], the Electron-Ion Collider (EIC) [19], DarkSide-
20k [20], and the Vera Rubin Observatory [21]. To date, nine Community Fora have been
held, consistently attracting participation ranging from 11 to 24 attendees per session. These
meetings have facilitated topical discussions, experiment-specific updates, and valuable feed-
back, enabling the PanDA team to tailor developments to the community’s needs. To enhance
accessibility and transparency, the PanDA team has circulated meeting minutes and created a
Google Group for announcements, ensuring that stakeholders remain informed. Furthermore,
plans are underway to organize a half-day workshop, potentially sometime in 2025, to deepen
engagement and collaboration.

In addition to fostering community dialog, the team has focused on improving user inter-
action and documentation. A revamped website at https://pandawms.org, updated documen-
tation [22] powered by Read the Docs [23], and new journal publications [1] have ensured
that users have access to clear and comprehensive resources. Initiatives such as the “Smiley
Task Feedback” feature have been implemented to gather user insights, further enhancing the
usability of the system.

Looking forward, the PanDA team aims to continue these community-building efforts, ex-
pand outreach activities, and enhance training materials. By actively engaging our user base
and responding to feedback, PanDA is positioning itself as a robust and adaptable solution
for diverse workflow management needs.

5 Stream 4: Interactive and dynamic workflow-oriented platform

The current PanDA monitoring system, BigPanDAmon, is a Django-based [24] web appli-
cation that provides comprehensive insights into the PanDA WMS, ranging from high-level
summaries to detailed computational job logs. Over time, it has evolved into a modular plat-
form [25] capable of integrating external monitoring components, such as ATLAS Athena
Nightlies CI monitoring [26].

The review identified the need for greater dynamism and interactivity in the monitoring
interface, along with the ability to submit user tasks and workflows directly through the GUI.
The current reliance on Server-Side Rendering (SSR) using Django’s built-in template en-
gine, jQuery [27], and AngularJS [28] limits the application’s interactivity and scalability.
To address these limitations, we explored modern frontend frameworks that support Client-
Side Rendering (CSR). This shift highlighted the necessity of decoupling the frontend from
the backend, which requires a redesign of the backend architecture as well to implement a
fully separated REST API. The importance of this transition is supported by the fact that
more than half of requests to BigPanDAmon retrieves data in JSON format.

https://pandawms.org


We tested the two most popular frontend frameworks, React [29] and Angular [30], by
creating a simple application that implements the full cycle of the create-read-update-delete
(CRUD) functionality for an artificial task object. This application was built with a Django-
based backend and two separate frontends, one using React and the other Angular, to evaluate
their capabilities for our needs. Angular seemed a more sophisticated option for the new plat-
form as it provides a comprehensive, out-of-the-box solution with a strict enforced structure,
ensuring separation of components, services, HTML, and TypeScript [31] code. Its built-in
testing tools further streamline development. While Angular has a steep learning curve due to
its core concepts, TypeScript, routing, and state management, it becomes more manageable
over time. In contrast, React offers greater flexibility but relies heavily on external libraries
to create a complete project.

We are at the initial stages of developing the new platform application, laying the founda-
tion for a more modern and robust system. From the beginning, we are going to incorporate
code quality tools like pylint [32] and black [9] to ensure consistency and maintainability
throughout the development process. Our primary focus is on implementing the authentica-
tion and authorization service. Following this, we will develop an interactive GUI for user
analysis task and workflow submission and monitoring. Once these core features are in place,
we plan to migrate existing modules from the BigPanDA monitoring to the new platform in-
crementally.

6 Summary

The PanDA WMS, vital to the ATLAS experiment for almost 20 years, is evolving to meet
growing distributed computing demands. A 2024 architectural review highlighted the need
for code modernization, enhanced interactivity, improved project management, and sustain-
able R&D. Key efforts include transitioning to modern libraries, adopting CI/CD pipelines,
optimizing job generation and resource allocation, and fostering collaboration through com-
munity forums and improved documentation. A new interactive monitoring platform is being
developed using Angular with a decoupled Django-based backend, starting with a GUI for
user analysis task submission and monitoring. This systematic modernization ensures PanDA
will remain robust and scalable for the High-Luminosity LHC and beyond.

References

[1] T. Maeno, A. Alekseev, F.H. Barreiro Megino, K. De, W. Guan, E. Karavakis, A. Kli-
mentov, T. Korchuganova, F. Lin, P. Nilsson et al., PanDA: Production and Dis-
tributed Analysis System, Computing and Software for Big Science 8, 4 (2024).
10.1007/s41781-024-00114-3

[2] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J.
Inst. 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003

[3] Worldwide LHC Computing Grid (WLCG), https://wlcg.web.cern.ch/, accessed 13 Dec
2024.

[4] F.B. Megino et al., Accelerating science: The usage of commercial clouds in
ATLAS Distributed Computing, EPJ Web Conf. 295, 07002 (2024). 10.1051/epj-
conf/202429507002

[5] P. Nilsson, A. Anisenkov, D. Benjamin, W. Guan, T. Javurek, D. Oleynik, Harnessing
the power of supercomputers using the PanDA Pilot 2 in the ATLAS Experiment, EPJ
Web Conf. 245, 03025 (2020). 10.1051/epjconf/202024503025

https://doi.org/10.1007/s41781-024-00114-3
https://doi.org/10.1088/1748-0221/3/08/S08003
https://wlcg.web.cern.ch/
https://doi.org/10.1051/epjconf/202429507002
https://doi.org/10.1051/epjconf/202429507002
https://doi.org/10.1051/epjconf/202024503025


[6] I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Tech-
nical design report, 10/2020 (2020). 10.23731/CYRM-2020-0010

[7] Kubernetes - Production-Grade Container Orchestration, https://kubernetes.io/, ac-
cessed 13 Dec 2024.

[8] OpenAPI Specification, https://spec.openapis.org/oas/latest.html, accessed 13 Dec
2024.

[9] Black - The Uncompromising Code Formatter, https://github.com/psf/black, accessed
13 Dec 2024.

[10] flynt - string formatting converter, https://pypi.org/project/flynt/, accessed 13 Dec 2024.
[11] isort, https://pycqa.github.io/isort/, accessed 13 Dec 2024.
[12] Mattermost, https://mattermost.com, accessed 13 Dec 2024.
[13] Jira - Issue & Project Tracking Software, https://www.atlassian.com/software/jira, ac-

cessed 13 Dec 2024.
[14] A. Anisenkov et al., CRIC: Computing Resource Information Catalogue as a unified

topology system for a large scale, heterogeneous and dynamic computing infrastructure,
EPJ Web Conf. 245, 03032 (2020).

[15] M. Borodin, et al., The ATLAS Production System Evolution: New data processing
and analysis paradigm for the LHC Run2 and High-Luminosity, Journal of Physics:
Conference Series 898, 052016 (2017). 10.1088/1742-6596/898/5/052016

[16] T. Maeno, F.H. Barreiro Megino, D. Benjamin, D. Cameron, J.T. Childers, K. De,
A. De Salvo, A. Filipcic, J. Hover, F. Lin et al., Harvester : an edge service harvesting
heterogeneous resources for ATLAS, EPJ Web Conf. 214, 03030 (2019). 10.1051/epj-
conf/201921403030

[17] PanDA WMS GitHub project, https://github.com/PanDAWMS, accessed 13 Dec 2024.
[18] P. Abbon et al., The COMPASS experiment at CERN, Nuclear Instruments and Methods

in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 577, 455 (2007).

[19] F. Willeke, J. Beebe-Wang, Electron ion collider conceptual design report 2021 (2021).
10.2172/1765663

[20] C.E. Aalseth et al. (DarkSide-20k), DarkSide-20k: A 20 tonne two-phase LAr TPC for
direct dark matter detection at LNGS, Eur. Phys. J. Plus 133, 131 (2018), 1707.08145.
10.1140/epjp/i2018-11973-4

[21] E. Karavakis et al., Integrating the PanDA Workload Management System with the
Vera C. Rubin Observatory, EPJ Web of Conf. 295, 04026 (2024). 10.1051/epj-
conf/202429504026

[22] PanDA documentation, https://panda-wms.readthedocs.io/en/latest/index.html
[23] Read the Docs: Full featured documentation deployment platform, https://about.

readthedocs.com, accessed 13 Dec 2024.
[24] Django Framework, https://www.djangoproject.com
[25] T. Korchuganova, A. Alekseev, A. Klimentov, T. Wenaus, Z. Yang, BigPanDA monitor-

ing system evolution in the ATLAS experiment, EPJ Web of Conf. 295, 04010 (2024).
10.1051/epjconf/202429504010

[26] J. Elmsheuser et al., A Roadmap to Continuous Integration for ATLAS Software Devel-
opment, J. Phys.: Conf. Ser. 898, 072009 (2017).

[27] jQuery, https://jquery.com, accessed 13 Dec 2024.
[28] AngularJS, https://angularjs.org, accessed 13 Dec 2024.
[29] React - the library for web and native user interfaces, https://react.dev, accessed 13 Dec

2024.

https://doi.org/10.23731/CYRM-2020-0010
https://kubernetes.io/
https://spec.openapis.org/oas/latest.html
https://github.com/psf/black
https://pypi.org/project/flynt/
https://pycqa.github.io/isort/
https://mattermost.com
https://www.atlassian.com/software/jira
https://doi.org/10.1088/1742-6596/898/5/052016
https://doi.org/10.1051/epjconf/201921403030
https://doi.org/10.1051/epjconf/201921403030
https://github.com/PanDAWMS
https://doi.org/10.2172/1765663
https://doi.org/10.1140/epjp/i2018-11973-4
https://doi.org/10.1051/epjconf/202429504026
https://doi.org/10.1051/epjconf/202429504026
https://panda-wms.readthedocs.io/en/latest/index.html
https://about.readthedocs.com
https://about.readthedocs.com
https://www.djangoproject.com
https://doi.org/10.1051/epjconf/202429504010
https://jquery.com
https://angularjs.org
https://react.dev


[30] Angular - the web development framework for building modern apps, https://angular.
dev, accessed 13 Dec 2024.

[31] TypeScript: JavaScript With Syntax For Types, https://www.typescriptlang.org, ac-
cessed 13 Dec 2024.

[32] Pylint - code analysis for python, https://www.pylint.org, accessed 13 Dec 2024.

https://angular.dev
https://angular.dev
https://www.typescriptlang.org
https://www.pylint.org

	Introduction
	Stream 1: Code-base optimization and modernization
	Stream 2: System optimization and enhancement
	Stream 3: Outreach
	Stream 4: Interactive and dynamic workflow-oriented platform
	Summary

