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ABSTRACT

We investigate the operation of the limit cycle mechanism in accretion
disks around ~ 10AM{g black holes. We explore a regime of parameter space
relevant to these systems, and delineate a range of possible behaviors by testing
the response of our one dimensional, time dependent, hydrodynamic model to
variations in each of the control parameters in the theory. These parameters
are: the number of radial grid points N, the accretor mass M, the inner disk
radius Tipner, the outer disk radius 7ouier. the mass transfer rate into the outer
disk from the secondary star Mr. and the accretion disk viscosity parameter a
— parametrized in separate computations both in terms of radius (including a
step function between low and high states) and in terms of local aspect ratio
h/r.

For the class of models in which a is taken to vary in a step function between
the two stable branches of accretion, we find a tendency for the outbursts to
exhibit faster-than-exponential decays, in contrast to the observations. This
behavior cannot be substantially affected by taking a to vary with radius —

a x r¢ — as in previous works, nor is it affected by the numerical resolution.
Models in which o is a function of the local aspect ratio h/r can produce
robustly exponential decays as observed if a x (h/r)*, where n = 1.5. This
critical value for n is independent of the primary mass, unlike the critical €
value in the r¢ scaling. Numerically, we find that the transition front width is
equal to the geometric average of h and r. (It is this fact which leads to the
critical value n = 1.5 for exponential decayv.) Previous studies have lacked the
numerical resolution to make this determination. and in fact the specific results
presented in earlier papers were probably severely compromised by grid spacing

limitations. Finallv. for models in which the decay i1s produced by accretion
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onto the central object rather than by the action of a cooling front. we require

n = —2 for exponential decays.
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1. Background

The study of accretion disks has proven to be vital for understanding many diverse
phenomena in astrophysics — e.g., interacting binary stars, young stellar objects, and active
galactic nuclei. In this work we examine the possible role of time dependent accretion disk
behavior in the black hole X-ray novae (BHXN) — semi-detached binary systems in which
the Roche lobe filling mass donor star is a low-mass dwarf or subgiant and the accreting
star 1s a black hole. Not long after the limit cycle mechanism was discovered and put forth
as a possible explanation for the dwarf nova outbursts (Meyer & Meyer-Hofmeister 1981,
Bath & Pringle 1982), it became obvious that such a mechanism might also apply to low
mass X-ray binaries (Cannizzo, Wheeler, & Ghosh 1982, 1985).

The most well established BHXN are A0620-00 (Nova Mon 1975, orbital period

P,., = 7.75 hr, mass function f = 3.1My, McClintock & Remillard 1986), GS1124-68
(Nova Muscae, P, = 10.4 hr, f = 3.1Mg, Remillard, McClintock, & Remillard 1992),
(3520234338 (V404 Cyg, P, = 6.5 days. f = 6.3Mg, Casares, Charles, & Naylor 1992),
GRO J1655-41 (P,m, = 2.6 days, f = 3.4Mg; Bailyn et al. 1995), H1705-250 (Nova Ophiuchi
1977, Py = 12.5 hr, f = 4.0M5: Martin et al. 1995), and GS2000+25 (Porb = 8.3 hr,

f = 4.2Mg; Charles & Casares 1995). These systems were all discovered because of their
X-ray outbursts, and subsequent optical identifications led to the determination that they
were in binary systems. The X-ray outbursts exhibited by these systems tend to be long
(compared to dwarf nova outbursts). Most have only lower limits on the recurrence times,
since only one outburst has been observed. For A0620-00, outbursts occurred in 1917 and
1975, and for V404 Cyg, outbursts occurred in 1938 and 1989. During many of the brightest
outbursts — e.g., those of A0620-00, GS2000+25, GS1124-68, GS2023+338, and GRO
J0422432 — the X-ray flux rises to maximum within a few days, and subsequently decays

with an e—folding time of between about 30 to 60 days (White, Kaluzienski, & Swank
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1984, van Paradijs & Verbunt 1984, Mineshige, Yamasaki, & Ishizaka 1993, hereafter MY
Ebisawa et al. 1994). In addition, during the decay one sees secondary maxima in which

the X-ray light can temporarily increase by about a factor of two before resuming its decay

(Chen, Livio, & Gehrels 1993).

Previous workers investigated the possibility that the outbursts of the black hole
X-ray binaries are caused by a limit cycle mechanism operating in the accretion disk (e.g.,
Huang & Wheeler 1989, Mineshige & Wheeler 1989, Ichikawa, Mineshige, & Kato 1994).
The earlier studies were primarily interested in reproducing some features of the observed
light curves, but did not attempt a thorough investigation with the aim of understanding
uncertainties or shortcomings in the basic model. In the current work we perform a
systematic parameter study of the limit cycle instability in an attempt to understand what
realistic constraints can be placed on the model. More generally, we examine the question

of what basic model is capable of explaining the fundamental observational characteristics

of the outbursts seen in the BHXN.

2. Physical Considerations

The limit cycle mechanism has been well established and tested as a model for
outbursts in dwarf novae, and a detailed comparison between theory and observation has
been carried out. In part this was possible because of the existence of an extremely large
data base (e.g., Cannizzo 1993b, hereafter C93b). The observations of the BHXN are
not nearly as complete: in most instances our knowledge of the outburst properties of
these systems are based on a single outburst. Nevertheless, by assuming the limit cycle
mechanism to be at work in these systems, there are certain inferences we can draw based

on the existing observations.

One of the fundamental principles concerning the limit cycle is that, at a given annulus
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in the disk, there is a range of local mass transfer rates within which the instability

can operate. This range spans the regime from Mpax = M (Emax) to Mpin = M (Zmin),
which encompasses a dynamic range of about a factor of 10 (Cannizzo, Shafter, &
Wheeler 1988, hereafter CSW). Given that the local maxima and minima in X(Teg) lie
at roughly the same T.g independent of radius, the critical accretion rates associated
with these extrema vary roughly as 3. This comes about because of the local condition
oT4 = (3/87)GM Mr~3 (Shakura & Sunyaev 1973) through which Tq depends on the
function Mr—3. The disk spans a rather wide range in radius, so the actual unstable range,
given by v = Mm;n(router) / Mmax(rinner) is large. Another way of stating this is that the
disk will be globally unstable if the rate of mass transfer from the secondary star into the
outer accretion disk is less than Mmin(route,) and greater than Mmax(r;nner). For a typical
dwarf nova above the period gap, Touter/Tinner ~ 100, s0 v ~ 107. For a ~ 10M black hole
(with the last stable orbit at ~ 107 cm) in a binary with Porie ~ 8 hr, v ~ 1013. One
consequence of this large dynamic range of unstable behavior is that, in quiescence, the
maximum allowed rate of accretion onto the black hole is small — i.e., the rate of mass
loss from the inner annulus onto the central object cannot exceed Mmax('f'inner) or else
the instability would have already been triggered. Taking the expression for Mipnax from
CSW (Mmax =10'% g 57! r28m7%®") and adopting Tinner = 107 cm and M) = 10Mg gives
Miumax ~ 10% g s™'. This low value contradicts observations (Lasota 1995). For example,
McClintock, Horne, and Remillard (1995) infer a quiescent accretion rate onto the central
object of about 10! — 10'! g 57! in A0620-00, and Wagner et al. (1994) infer a quiescent
rate of about 1012 g s~! in V404 Cyg. These rates are much smaller than the mass transfer
rates between the two stars. Moreover, the characteristic temperatures derived from fitting
a blackbody spectrum to the quiescent X-ray fluxes are orders of magnitude larger than in
the model (e.g., ~ 0.2 keV for V404 Cyg from Wagner et al. 1994 versus a few tenths of an

eV for the model temperatures in quiescence).
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It has long been known that this discrepancy between theory and observation exists
for dwarf novae: the disk instability model works well to account for outbursts, but not
for explaining the levels of UV and X-ray flux observed in quiescence. It is interesting
that the margin of disagreement between theory and observation in terms of accretion
rate onto the compact object during quiescence is also large for dwarf novae: taking
Tinner ~ R(white dwarf) ~ 10*7 cm and M; ~ 1M, gives Minax ~ 10116 g 571 for the upper
limit allowed by theory, whereas the rates inferred from observations of dwarf novae are
~ 10'* — 10" g s7! (Eracleous, Halpern, & Patterson 1991, Mukai & Shiokawa 1993). Thus

the ratio of observed to theoretically allowed rates of accretion in quiescence is ~ 103.

Clearly, if the limit cycle instability is to apply to these systems, then some mechanism
extrinsic to the limit cycle must cause the inner edge to drain in such a manner that the
local evaporation is not communicated through the vertical disk structure as an increase
in effective temperature. Such a mechanism could be produced by a disk wind, which in
itself may be driven by coronal activity, if the disk viscosity is dynamo driven (Armitage,
Livio, & Pringle 1995). In our modeling with a = ag(h/r)" (where h is the local disk
semithickness and r is the local radius), where we try to reproduce the observed BHXN
light curves, we might have considered the additional process of material extraction from
the inner edge at a rate inferred from observations of A0620-00. This would have depleted
the surface density in the inner edge by some fraction. Also, Meyer & Meyer-Hofmeister
(1994) discuss a physical evaporation mechanism which may operate in quiescence in dwarf
novae, to account for the quiescent flux seen in the EUV and X-ray. A similar mechanism

may also work in quiescence in the black hole binaries to produce the observed fluxes (e-g.,

Narayan & Yi 1995).

There is another aspect of the problem which can be addressed in simple terms,

without the need for computations. In their formulation of the theory of the recurrence
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time for outbursts in the limit cycle model, CSW defined a dimensionless secondary mass
transfer rate ( = MT/Mmin(router). For high mass transfer rates such that ( > 1, the entire
disk is always ionized and resides permanently on the upper branch of solutions. For lower
mass transfer rates such that ¢ < 1, the disk is prone to the limit cycle instability. One of
the strengths of the model has been that the observed dividing point in mass transfer rate
between those systems permanently stuck in a high state, and those exhibiting outbursts,
agrees with the theoretical value corresponding to ¢ = 1 (Smak 1983). For most dwarf
novae which have been well studied, 0.1 < ¢ < 1, and the duty cycle for bursting behavior
is also large, in fact comparable to {. Now, for the BHXN it appears that both quantities
are much smaller. For instance, a simple estimate for the secondary mass transfer rate in
A0620-00 by McClintock et al. (1983) using the total energy released in the 1975 outburst
and the recurrence time of ~ 58 yrs gives My ~ 2 x 1015 g s™. Using the expression for
M. from CSW (Mmin =10'® g 57! rZ5m7087) taking M; = 10My and rouer = 1.4 x 10!
cm gives ~ 1.3 x 10'® g s™!, hence ( ~ 1073, In other words, the mass transfer rate would
have to be about a thousand times higher in A0620-00 for the disk to be stable in the high
state. Furthermore, the duty cycle for bursting behavior in A0620-00 is about 200 d/60 yr
~ 1072, again in line with the small { value. Recurrence times for the other bright systems

like A0620-00 might plausibly be one to several decades.

We comment briefly on irradiation of the outer portions of the disk by X-ray flux
produced near the inner edge. Tuchman, Mineshige, & Wheeler (1990) and Mineshige,
Tuchman, & Wheeler (1990) have discussed the effect of irradiation on the vertical structure

of the disk. There are two main issues regarding the irradiation:
(1) How important is reprocessing of X-ray flux into optical flux?
(2) Can irradiation affect the propagation of the cooling front?

It seems probable that most of the optical flux is indeed reprocessed X-ray flux,
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and, furthermore, for low mass X-ray binaries in which orbital periods and mass transfer
rates have been deduced, irradiation is capable of keeping the disk in the high state. A
well-studied example is Sco X-1, a neutron star binary with Pomitat = 18.9 hr (Gottlieb,
Wright, & Liller 1975). The inferred binary mass transfer rate is ~ 1079Mg yr~' (Vrtilek
et al. 1991), so that ¢ ~ 0.01, and yet the accretion disk appears to be in a permanent
high state. (The flux varies by only about a factor of two.) If M (r) is constant, then the
disk has a concave shape when seen in cross-section (Shakura & Sunyaev 1973), such that
the surface of the disk at all radii is directly exposed to the strong source of X-ray flux
from near the inner edge. For systems showing outbursts, however, the M (r) profile is not
constant with r. As shown by Cannizzo (1994), the flow pattern within the disk leads to an
overall disk shape which is convex rather than concave, when viewed in cross-section. This
convex shape shields the outer part of the disk from direct irradiation. Therefore direct
irradiation should not play a role in affecting systems with outbursts. It is not clear what

the effect of indirect irradiation by a scattering might be.

3. Model

The accretion disk limit cycle model has been described in many recent review articles
(e.g. Meyer-Hofmeister & Ritter 1990, Livio 1994, Cannizzo 1993a). The physical cause for
the instability is a hysteresis relation between the local mass flow rate (or local effective
temperature) and the disk surface density £. This hysteresis is sometimes referred to as the
"S-curve”. There are two allowed physical states within which an element of gas at a given
radius in the disk can reside: a "low viscosity” state which constitutes the lower branch
of the ”S”, and a "high viscosity” state which constitutes the upper branch of the ”S”.
Associated with each annulus in the disk, there exists a critical surface density Lmax, above

which the disk must be in a state of high viscosity, and another critical surface density Ymin,
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below which the disk must be in a state of low viscosity. The turning point of the S-curve
at the terminus of the upper branch defines ¥.;,, and the turning point of the S-curve at
the terminus of the lower branch defines ¥,,,x. The model operates as follows: Material
accumulates in a quiescent stage, during which time, the viscous time scale for matter
transport within the disk is very long compared to the mass transfer time scale for matter
arriving from the mass losing star. Matter piles up in the disk until £(r) > Xa.(r) at some
radius r. The level of viscous dissipation then increases dramatically, and this increase is
communicated to the adjacent portions of the still dormant disk through waves of enhanced
surface density which propagate both to smaller and larger radii. These pulses boost the
local surface density at each radius above ¥.x, thereby eventually initiating heating at all
radii. This heating drives most or all of the disk from the lower branch of the S-curve to
the upper branch. After this stage has ended, the disk finds itself in a high viscosity stage
wherein the viscous time is shorter, and material begins to flow onto the central object. As
this occurs, the surface density in the outer regions of the disk drops, until, at some point,
Y(Touter) is less than Lmax(Touter). This begins a cooling wave which propagates inward and
reduces the local surface density at each radius below X, so that the disk reverts back to

the low state. The outburst has ended and the quiescent interval begins again.

The general numerical model we employ is described in detail in C93b and Cannizzo
(1994). One of the changes that we introduce in the present work is that we allow the
viscosity parameter o to have the form a = ag(h/r)*. The usual finding from modeling
dwarf nova outbursts has been that, in order to obtain well defined outbursts, a must
be larger in outburst than in quiescence. This is achieved by using one value of a along
the lower stable branch of solutions (aca) and another along the upper branch (o),
or through an ag(h/r)" prescription (Meyer & Meyer-Hofmeister 1983), or some more
complicated procedure (Ichikawa & Osaki 1992). For any of these methods there are

basically two free parameters which characterize . One of the deficiencies in the class of
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models in which «a varies in a step function between the low and high states (but is constant
with radius), is that the outbursts tend to start at the inner disk edge (Lin, Papaloizou,
& Faulkner 1985, C93b, Ludwig et al. 1994). This tends to lead to outbursts with slow
rise times. Although some dwarf novae have slow rise outbursts, many also have fast rise
outbursts which are consistent with a triggering at large radii. For full generality, it is

probably a strength of the model to be able to produce outbursts which can begin at any
radius in the disk.

The time dependent model and steady state scalings we use are similar to those given
in C93b. The S-shaped curve which gives the relation between the effective temperature
and surface density was simplified to two straight lines (in log-log space). One change we
have made is a generalization of the scaling for the low state. Eqn. (13) of C93b gives
the scaling for T.(cold)(X, acod, 7). In that expression, a; = dlog T.(cold)/dlog ¥ = 0.75.
This value was taken to be representative of values obtained through vertical structure
calculations. In view of the uncertainties associated with those works, we do not fix a; to
be 0.75 in the present work. Instead, it can be varied somewhat depending on the specific
model. The general law is

Teoa = By5" 0l ym°rig?, (1)
where B, = 7.89 x 1071 B}, By = 5870/17.677* , az = 4ay; — 1, by = 4b; — 1, c; = 4¢; — 1.5,
b, = 0.7a1, ¢; = l.lay + 0.1, m; = M,/1Mg, and rio = r/10* cm (Meyer & Meyer-
Hofmeister 1981, Pringle, Verbunt, & Wade 1986). For models in which a = ao(h/r)* we

have

ban
\/_ﬁ) ’ 02/3 —c2

Lo = By 5% o (Q g @

C

where R is the ideal gas constant and {2 is the (Keplerian) angular velocity.
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4. Parameter Study for Models in which o = f(r)

We first discuss the results of a parameter study within the paradigm in which a is
independent of radius and varies in a step function between the lower and upper branches
of the S-curve. We adopt one value of acoq for the lower stable branch of solutions, and
another value ane for the upper branch. For our "standard” or default model in this section

we take acold = 0.01, anoe = 0.1, a mass transfer rate Mg = 6.3 x 106 g s™!

, primary
mass M; = 10Mg, and outer disk radius 1.5 x 10’ cm. For the slope of the lower branch
of the S-curve we take a; = dlog Teg/dlog ¥ = 5. For the parameters used to study the
BHXN, we find that the value a; = 0.75 used by C93b leads only to irregular fluctuations
in the luminosity, but not to regular outbursts. A larger value of a; is required to lower the
effective viscosity in the low state. We interpolate o logarithmically according to midplane
temperature between the lower and upper branches, where the midplane temperature is
that calculated at a given radius and time from solving the thermal energy equation. The
outbursts which occur under the assumption of anet/@colda =~ 10 tend to be relatively flat
topped, and this stage is followed by a rate of faster decay. The flat top is due to the
same physics as discussed in C93b for the "long” outbursts in SS Cyg — namely, that
large ratio of alphas leads to a large ratio of Xmax/Ymin, and after an outburst has been
triggered, significant mass must drain from the inner edge onto the accretor before the

surface density at the outer disk edge has dropped to the point that the cooling front can

begin to propagate.

One of the limitations imposed on the class of models discussed in this section arises
from the assumption that « is independent of radius. The thermal time scale ~ 1/(a{2) sets
the time step used in the computations via the thermal energy equation. When a transition
front exists at small radii near the black hole the requisite time step becomes extremely

small. Because of this limitation we are not able to take an inner radius smaller than about
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10® cm, and we are limited to no more than 200 grid points.

The parameters we investigate in this section are the inner disk radius ripper, the mass
transfer rate from the secondary star into the outer edge of the accretion disk My, the
alpha parameter in the low state acoq, the central object mass M;, and the outer disk
radius outer- In the following tables we show seven quantities associated with the outbursts:
(1) the recurrence time for outbursts, (2) the rise time for the light curve (obtained by
calculating the rate of accretion at the inner edge) to change by a factor of 10 — measured
from the peak of the outburst, (3) the rise time for the flux to vary by 10? — again measured
from the time of Mpeax, (4) the rise time for the flux to vary by e, (5) the decay time for
the flux to drop by e — measured from the time of Mpeak, (6) the amount of time spent
on the plateau part of the outburst, and (7) the value of Mpeak. It is important to note
that, although the time scales given by (4) and (5) are cast in terms of e~folding times, the
functional form characterizing the outburst shape does not have an exponential shape for
models in which & = f(r): the plateau of the outburst has a slower-than-exponential form,
and the decay after the plateau has a faster-than-exponential form. Thus the e—fold times

in the tables are not to be confused with those of the next section.

Table 1 presents the results of a series of computations in which we vary rinner- This
is achieved by keeping the grid point spacing fixed and changing the innermost range of
the grid. In effect we are eliminating grid points from the inner regions of the disk by
doing this. The time scales we calculate are computed from following the outbursts defined
by the rate of mass loss from the inner disk. As we can see, the outburst properties are
relatively unaffected by the value of rigper for our "standard model”. As Tinner 1S made to
decrease, there is a very slight decrease in the recurrence time scale, and a somewhat larger
increase in the time scales directly associated with the individual outbursts — i.e., the rise

and decay times. The duration of the plateau stage of the outbursts is about 1 yr, and the
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time to decay by a factor of e from the peak is ~ 160 d. For these outbursts, the peak in
the rate of accretion onto the black hole is 10!° g s}, Since the Eddington luminosity is
Lgaq ~ 10% erg s! (M1/Mpg), and the accretion luminosity is Lac. ~ 0.1Mc?, the peak rate

of accretion is of order of the Eddington critical rate.

Table 2 shows the dependence of outburst properties on Mr. There is very nearly
an inverse correlation between recurrence time for outbursts and My. For our adopted a,
value, the viscous dissipation in quiescence is small, and the disk mass stored by the time
Y max is exceeded is close to the "maximum mass” Mpax = [ 27rr’dr’2max(r') (CSW). There
is virtually no effect on the time scales associated with the individual outbursts as Mr
varies. This is as one might naively expect, given that these time scales are dependent on

viscous and thermal processes whose rates are determined mainly by o.

Table 3 shows the effect of varying acqq while keeping apnoe constant. The recurrence
times for outbursts varies inversely with acq because acoq controls the critical surface
density Lmax which sets the amount of disk material in the quiescent state. The decreasing
disk mass for larger a4 also causes a decrease in the amount of time spent on the viscous

plateau, and the peak level of accretion.

Table 4 shows the effect of varying the primary mass M;. As M; increases, there is

a weak decrease in the recurrence time, consistent with the fact that Y. oc My 035

, and
trecurrence X SmaxT 2uter- We also see a general increase in the time scales associated with
outbursts — the rise and decay times. The reason for this is that the equilibrium disk mass
becomes smaller as M; increases, thus at a given radius h/r also decreases, and the thermal

and viscous times increase. The inverse correlation between the peak accretion rate and M,

is also consistent with the decreasing equilibrium disk mass.

Table 5 shows the effect of varying router- The effective mass of the stored material

. . ! ! ! . .
varies as r2,... This comes about because Myisk(r) = [ 277 dr X(r ), and in quiescence

e e —
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Y(r) ~ Emax(r), where ¥,,.; o 7. Hence the recurrence time t,e. also varies as r3,,.. (CSW).
The general response of the temperature of gas in a given annulus to an increase in the
mass at that annulus (i.e., the surface density) is a concurrent increase. This increases the
viscous dissipation and decreases the viscous and thermal time scales which accompany
outbursts. It may therefore seems paradoxical in Table 5 that as the disk mass increases,
the time scales associated with individual outbursts (i.e., the rise and decay times) also
increase. The reason for this is that the disk mass is being made to lie at progressively

larger radii, and the increasing time scales are due to the increasing amount of time required

to move material from the outer disk to the inner disk.

Cannizzo (1994) studied the decay rate of the optical flux following the decline from
maximum in dwarf novae outbursts and found that, for parameters relevant to dwarf
novae, roughly exponential decays could be produced if a o r®? — r%4. Consequently, we
attempted such a radial dependence of the viscosity parameter here. Figure 1 shows the
results of taking @ « r¢, where ¢ is varied in increments of 0.1 between 0 and 0.5. All
the runs shown seem to have a faster than exponential form, and a flat-topped plateau.
The difficulty in obtaining exponential decays with the a o ¢ prescription leads us to
believe that this functional form may not be the right one (i.e., the one nature has chosen).
Although Cannizzo (1994) could get a marginally acceptable exponential decay of the light
curve for dwarf nova parameters, the exponentiality was not very robust. For example, for
a given ¢, varying the central object mass affects the form of the decay. In light of this

consideration, we will not consider the r¢ scaling further in this paper.
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5. Parameter Study for Models in which a = g(h/r)

5.1. Steady State Considerations

The results of the previous section and of Cannizzo (1994) reveal the inadequacies of
models of the type a o r° in producing decays which are robustly exponential. We now
investigate the class of models for which a = ap(h/r)". This form has been used by many
limit cycle disk instability modelers, beginning with Meyer & Meyer-Hofmeister (1984),
and may have some physical basis (e.g., Meyer & Meyer-Hofmeister 1983; Vishniac &
Diamond 1992). Recent work on the magnetorotational instability for viscous dissipation
in accretion disks (Balbus & Hawley 1991) has not advanced to the stage where one can
make any statement about the functional dependence of a (Hawley, Gammie, & Balbus
1995). The parametrizations used for the steady state T.(X) relations are the same as
described earlier. In the previous section we utilized the physics of ¥,., associated with the
convection effect (see C93b for a description). The midplane temperature associated with
this local maximum in ¥(7.g) in the steady state solutions lies at T ~ 15,000 K. Various
workers (e.g., Mineshige & Osaki 1983, Pojmanski 1986, Cannizzo 1992, Ludwig et al.
1994) have shown how the value of ¥p,.x(convective) depends on factors such as the ratio of
mixing length to local pressure scale height in the disk which enter into the prescription for
convection. These workers and others have investigated the vertical structure of accretion
disks and shown that there are actually two separate hysteresis curves in the steady state
Teg — ¥ relation — one due to the changing strength of convection as M is made to vary,
and one based on the very steep temperature dependence of the opacity at T’ ~ 6000 — 8000
K (see also Faulkner et al. 1983). The midplane temperature associated with the convective
effect maximum X, (convective) is about 15,000 - 20,000 K, and that associated with the

opacity effect maximum Ya(opacity) is about 6000-8000 K.
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In the course of numerical experimentation using models with the local maximum
determined from the convective effect, we find that, for the models in which o = ao(h/r)",
one cannot produce enough of a variation in the integrated viscous stress W = [ aP(2)d?
in going from Ymin t0 Ymax to allow the creation and propagation of transition fronts in
the disk. The reason for this is that the ratio of midplane temperatures between Y min
and Smax(convective) in the steady state solutions is only about 2 (Cannizzo & Wheeler
1984), and since the kinematic viscosity coefficient varies as Tmidplane the jump in viscosity
in going from the low to high state is small. The fact that we now also have o o (h/r)"
(where h m) increases the jump slightly, but not enough to make a difference.
(Smak 1984 first showed that there must be a rather large increase in the viscosity in
going between the two states, or else the model is incapable of producing large and
well-separated outbursts.) The narrow dynamic range in viscosity between T midplane( Zmin)
and Timidplane( Emax[convective}) cannot be made appreciably larger through judicious choices
of ap and n. There was no similar problem in the amplitude of the jump in W between
the low and high states for models of the type discussed in the previous section, because
the step function character of the jump in « between the two states artificially ensures a
large jump in W. We conclude, therefore, that if a = ag(h/r)" is the correct scaling, then
the relevant local maximum is that produced by the opacity effect, and not that produced
by the convective effect. The ratio Trnidpiane( Emin)/ Tmidplane(Emax[opacity]) ~ 5 is sufficient
to ensure the production of large and well separated outbursts in the limit cycle model.
To complicate matters further, it is conceivable that a could be a function which varies as
(h/r)" within the hot branch, and then jumps discontinuously to a much smaller value in
quiescence (Armitage et al. 1995). In that case the arguments used in this paragraph would

not apply — that is, one could not exclude having Tmax(convective) trigger the instability.

Although the viscosity parameter o is now allowed to vary depending on local

conditions, the values a(Zmax) and a(Zmin) are dependent only on radius. The values of
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the midplane temperature at the turning points in the S-curve depend on «, which now

depends on temperature through the h/r scaling. Solving the relevant expressions for T

gives:

n(bz—azsy)
T[L—;—)((n/l’)(slaz—bg) — 0.26681(1232 5;12 aobg—agsl (%) r}(.)laz—cz ml‘(l.laz—cz)/3, (3)

where Tinax = Tmidplane(Xmax) — the temperature at the upper terminus of the lower branch,

51 = 10'% and s; = 0.7; and

min Q r

(1-3s2)n/7
T /196G21) — 9755 (0.266% 55)%/7 ol 327 (\/ﬁ> a0 mp¥e (4)

where Tinin = Tmidplane(Zmin) — the temperature at the lower terminus of the upper branch,

Sy =1013%, and s, = 0.7.
5.2. Numerical Results

Figure 2 shows the results of a numerical experiment in which we simulate the decay of
an outburst. This is accomplished by taking an initial surface density profile £(r) o r=3/4
characteristic of the standard Shakura & Sunyaev (1973) steady state disk, and putting all
grid points in the high temperature state. This would correspond to conditions in the disk
near the time of maximum light in an outburst after the heating front had just finished
transforming the entire disk to the upper stable branch of the S-curve. For our initial profile
Y(router) = 0.958 min(Touter) and T'(r) = Thoi(r) for all r. This initial condition ensures the
immediate creation of a cooling front at the outer edge. For these runs we take ripner = 107
cm, Touter = 1.5 x 10! cm, and M, = 10M,,. Figure 2 shows the evolution of ¥, T', and a

during the decay of an outburst. The pattern is much the same as that found in previous
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works. The dashed lines in each panel show conditions at Xmax and Yin. The calculated
radial profiles of ¥ and 7" within the hot part of the disk follow roughly the standard r3/4
Shakura & Sunyaev (1973) law. The viscosity parameter o increases very weakly with

radius out to the hot/cold interface. and then falls markedly going into the cold region.

5.2.1.  Effect of Varying Number of Grid Points

Figure 3 shows the results of experiments in which the number of grid points in the
radial direction N is varied between 300 and 1000. The motivation for going through
this exercise is the finding by (!93b of the effect on the computed light curves caused by
varying N. It is import to take enough grid points so that the small scale features in the
transition fronts are well resolved. For our adopted parameters, Touter/ Tinner =2 10, we
cannot cover the dynamic range in disk radii with our grid spacing using less than about
300 points. The first panel shows the “light curves” determined from the rate of accretion
al the inner disk edge. (We are implicitly assuming that the observed soft plus hard X-ray
fAluxes from BHXN correspond directly to the rate of accretion onto the central object.)
The second panel contains curves showing the locally defined e—folding decay time te—fold =
|d1n Migner/dt|™! corresponding to cach light curve in the first panel. Note that, for smaller
N, we systematically overestimate fe_oiq. Lhe reason for this can be understood at least
partially by considering the third panel. This shows the number of grid points contained
within the cooling front Np, as a function of radius. In the code, we define an integer tcold
denoting the innermost grid point ‘0 the cold state, and another integer ihot g1VINg the
outermost grid point lying in the hot state. As in C93b and €94, we employ the thermal
energy equation only for grid points such that tho <t < ieoid. For the radial extent of the

front, Ng = fcold — thot — -

The third panel of Figure 3 shows that, as the front propagates to smaller radii, Nr
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decreases. This is mainly due to our grid spacing Ar o y/r. The fractional width of the
cooling front is always small compared to unity (~ 10 %), and unless many grid points are
utilized, we overestimate the radial length scales associated with variations within the front.
The values in Figure 3 and following figures are 50 day moving averages through the data,
therefore the fact that Nz < | means that, on average, less than a single grid point defines
the cooling front. During a majority of the time (for which Np < 1) two adjacent grid
points spanning the front are entirely in thermal equilibrium. The temperature at the inner
point is decreasing only by virtue of the decrease in surface density associated with mass
outflow across the hot/cold interface. Note the strong upturn in the te_fo1q curves associated
with the times when Ng drops below unity. At this point, the cooling front is effectively
prevented from having a region of strong variation which is narrower than the grid spacing,
and we begin to underestimate dramatically the decay time. For the figures shown below
we take N = 1000 grid points, unless otherwise stated. We note that previous studies of
the accretion disk limit cycle model used about 20-40 grid points to cover the entire disk,
and must have therefore considerably underresolved the fronts. The consequences of this

underresolution will be addressed in the discussion section.

5.2.2.  Effect of Varying Model Parameters

Figure 4 shows the effect of varying the exponent n in the ag(h/r)" law. The results
shown in the second panel contain a major new result: for n > 1.5 the decay form is slower
than exponential, while for n < 1.5 it is faster than exponential. The n = 1.5 curve is
very close to exponential: f._1q varies by less than ~ 10% after the initial (transient)
configuration has been lost at t > 150 days. (Although 150 days is comparable to the
observed durations of outbursts in the BHXN, the departure from exponential decay in

the models shown here is linear. so that once the transient ends we immediately begin to
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see what the nature of the decay is. Therefore the specific duration of the transient is not
relevant.) Much more importantly, the next few figures will show that the critical value
n = 1.5 is independent of other parameters, such as the primary mass. Therefore, solely on

the basis of the observed ubiquity of exponential decays, it would appear that one can infer

n ~ 1.5.

Note that there was a reflection of the cooling front at around ¢ = 320 days in the
n = 1 model. This re-triggering often happens, when the surface density profile left over in
the cool state, behind a cooling front, is such that ¥ > E,,ax. If the two surface densities
are comparable, then the exact triggering criterion can depend sensitively on details of
the computation, such as the differencing scheme used in handling the advective terms
(i.e., forward differencing, versus backward or mixed), and the number of grid points. For
example, for N = 600, the n = 1 model does not show a re-triggering. On the other hand,
one should not discount these heating front reflections as being entirely numerical. The
over-buildup of surface density (relative to Lmax) behind the cooling front is a real, physical
effect which may play a role in the observed secondary maxima. Without a great deal more
testing, it is impossible to say just how much of this effect is numerical and how much
is physical, therefore we would not want to make general claims about the nature of the

secondary maxima based on these results.

Figure 5 shows the effect of varying the proportionality constant g in the o scaling,
while keeping all other parameters fixed. Here we use the optimal n = 1.5. The constant
ap is varied by 0.3 dex between each curve. The second panel of Fig. 5 shows that fe_fod
is inversely proportional to ag. (Note the re-triggering of an outburst in the logap = 2.0
curve.) Figure 6 show the effect of varying the mass of the black hole, while keeping all other
parameters fixed. We set n = 1.5 and logap = 1.7. As in Fig. 5, there is a simple relation

between t._golq and M; — here a direct proportionality instead of an inverse proportionality.
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The te_go1q curve for My = 5Mg, begins to rise at t ~ 300 days due to the loss of resolution
of the cooling front, and the t._gq curve for M; = 20Mg shows a re-triggering at ¢ ~ 400

days.

Figure 7 shows the effect of varying the outer disk radius, while keeping all other
parameters fixed. This is equivalent to changing the orbital period of the system. Note in
the first panel that the level of the rate of accretion onto the black hole increases with royter.
In the last section we saw that, for models in which « is constant, the mass of the stored
gas varies roughly as the cube of the binary separation. For these models the increase is
weaker because Ynax(r) does not vary as strongly as r. From the second panel we see that
the e—folding time scale for the decay is relatively insensitive to router- This is unfortunate
in the context of the ”Bailey relation” — an observed proportionality between t._g14 and
orbital period in the decay of the dwarf nova outbursts. This implies a nearly linear relation
between te_fold and Touter, as first shown by Smak (1984). (As noted earlier, the e—folding
times given in Tables 1-5 are not related to this te-so1q, because the outbursts in the
previous section are not exponential.) One of the successes of the o o« r* scaling adopted
by Cannizzo (1994) was that it could reproduce the Bailey relation. It is not immediately
clear what the implications of this finding are. Perhaps the much smaller dynamic range in
accretion disk radii for the dwarf novae changes the relation between t._g1q and royter for
the ag(h/r)" scaling from what we have inferred in this work. Future work must address

this issue by testing the ao(h/r)" scaling for dwarf novae in a systematic fashion as was

done by Cannizzo (1994).
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6. The Width of the Transition Front

The physics associated with the nature of the decay — exponential versus non-
exponential — is worth looking at in more detail. The form of the decay strongly depends
on the velocity of the cooling transition front, which, in turn, depends on the width of the
front. At the interface between the hot and cold state of the disk there is a very strong
outflow of matter. The local mass flow rate under general, non-steady conditions, can be

written as

M(r) = 2xrv.(r)2(r), (5)

where the local flow velocity is

dl dlogT
oor) = —3 (o4 dlog = dlog T} (6)
r dlogr = dlogr

where v is the kinematic viscosity coefficient (Lin, Papaloizou, & Faulkner 1985). We adopt
the convention that v, and M are negative for inflow and positive for outflow. Matter flows
outward across the cooling front and thereby allows the front to proceed inward, so the

front speed is related to the flow speed by the ratio of surface densities on either side of the
front. In traversing the cooling front to larger radii, ¥ increases by ~ 2 — 3, but T' decreases

by ~ 10 — therefore the expression for the cooling front speed reduces approximately to

o~ P (7)

w

where vp = (2/3)arh%Qr is the viscosity coefficient evaluated in the hot state just interior
to the cooling front. w is the width of the transition front determined by the radial length
scale for variation in temperature T' (Osaki 1989), and p ~ 0.5 is a factor which takes into

account the piling up of material inside the cooling front (see eqn. [3.11] of CSW). Using
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ar = ao(hr/rp)", ¢s = hpQlp, and p = 0.5 gives
Tgl+3)/2

(GM)40/2 (8)

cnt?
UVr XX (g

We find numerically that ¢, is constant with radius (see the uppermost dotted line in panel

2 of Fig. 2). In equation (8) we keep the cooling front width w as a general parameter.

What is the crucial property of the cooling front transition speed which determines
whether or not the decay will be an exponential process? The answer to this question
can be gleaned by careful consideration of the evolutionary sequences depicted in Figure
2 for a run tuned to produce exponential decay. In this context, by ”exponential decay”
we mean that the rate of accretion at the inner disk edge has an exponential form in
time. Most of the mass flow of the gas lying in the hot region is outward mass flow at the
cooling transition, however, and not mass accretion onto the central object. The small,
or consequential, mass loss at the inner edge is driven by the mass of gas in the hot state,
and the mass of gas in the hot state is determined by the location of the interface between
the hot and cool states — that is, by the location of the cooling front. Therefore, for the
mass loss rate at the inner edge to decay exponentially with time, the mass of the hot disk
must decay exponentially with time, the radius of the cooling front must decay exponentially
with time, and the speed of the cooling front must decay exponentially with time. Once this
point has been appreciated. one can adopt the required form for the front speed vg o rr in
equation (8) and work backwards to find the front width w. Doing this using n = 1.5 gives
w = Vhprg — the cooling front width is the geometric average of the disk radius and the
disk thickness (evaluated in the hot state just interior to the cooling front). This means

that, for self-consistency, the width of the cooling front must in general be v/Aprg.

This "postdiction” is easily verifiable with our high resolution runs. Figure 8 shows,
on a log-log scale, the variation of the fractional front width w/r with radius as the cooling

front moves inward, for the n = 1.5, log ag = 1.7 model. For comparison we show also _\/h/r
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and h/r, where h is evaluated in the annulus just interior to the cooling front. The dotted
curve shows the log of the number of grid points lying within the cooling front. At log r(cm)
~ 9 we begin to lose numerical resolution, and the resulting slope w/r o« r~1/% at smaller
radii is caused by the grid spacing limitation w — Ar, where Ar o /7. We numerically
determine w by taking 7(icold) — T(thot). From Fig. 8 we see that w/r closely follows \/h—/?
— i.e., w = Vhr. We have also followed w/r for models in which (1) n =1 and 2, (2)
varies in a step function between the low and high states (with no radial dependence), (3)
different terms in the energy equation are set equal to zero (the two advective terms, and
the radial viscous flux term), and (4) the dimensionless specific heat ¢,/(R/u) is set equal

to 2.5, and therefore not allowed to vary with partial ionization. For all these runs w/r

follows \/h—/r

Although we have not been able to derive this result from first principles, it appears
to be a fundamental consequence of mass and angular momentum conservation, coupled
with the fact that there is strong mass outflow in the vicinity of the cooling front. Figure 9
shows the evolution of the local flow speed and mass flux accompanying the n = 1.5 model.
As noted earlier, the flow patterns result from local gradients in temperature and surface
density. It is noteworthy that the relaxation to a lowest energy configuration, which the
surface density diffusion equation always tries to enforce, leads to a flow pattern such that,
for the inner region of the hot state disk where mass flow is inward, M is independent of
radius, and for the outer region of the hot state disk where mass flow is outward, M o r3.
(The exponent ”3” here is quite approximate, given that the law only applies over a dynamic
range of about a factor of 2 in radius.) The reason for this particular functional form is
not now understood from first principles, but probably holds a clue to the explanation for

w = FTF.

Previous workers have investigated the width of the front. The first consideration was
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by Meyer (1984) who argued, by comparison with the width of combustion waves, that the
front width is narrow, w =~ h. Papaloizou & Pringle (1985, see also Meyer 1986) proposed
a somewhat wider front, w ~ f'/2h, where f ~ 3 — 10 is a factor which takes into account
the increased thermal time scale due to partial ionization effects. One might at first think,
by considering Fig. 8, that our numerical results could be consistent with this if f ~ 100.
This can be ruled out, however, from our experiments where we simplify the thermal energy
equation and effectively set f to ~ 1. Furthermore, the functional form w = nh would not
have preferentially selected out n = 1.5 as being critical to exponential decay: equation (8)
shows that the critical value would be 2 because vp r;/ ? for w o hp. The next discussions
of w appeared in papers which quoted numerical results. For example, CSW looked at
previous computations showing the surface density and temperature evolution and noted
that w/r ~ 0.1, independent of radius (see also p. 333 of Mineshige 1987 and p. 56 of
Mineshige & Shields 1990). From Fig. 8 we see that this is roughly accurate, and indeed,
for the dwarf nova disks which had mainly been considered previously, the small dynamic
range in disk radius was such that the variation of w/r with r would have been minimized
and therefore not particularly noticeable in the computations. Again, however, our results
clearly exclude this relation for w. Also, if w were to vary as r, then, from equation (8),
n = 1 would be required to produce exponential decays because, for w x rr, we see that

1}/2
’UFOCTE;ZH-)/.

7. Discussion

We have presented the results of an investigation of the gross features involved in the
accretion disk limit cycle model for outbursts in the BHXN employing two types of scalings
for the viscosity parameter — o o« 7 and a o (h/r)". In the former models we utilize a step

function variation between o in the low and high states, whereas for the latter we do not.



Using the latter scaling, we are unable to execute the operation of the model by utilizing the
local maximum in the log 7. — log ¥ curves which is due to the convective effect. Without
the ad hoc jump in a, there is too little variation in the vertically integrated stress W
between Cmax and Ymin. We must therefore utilize the local maximum produced by the
opacity effect. The midplane temperature at Xmax for this feature is substantially less (see
the "T.;q” column in Table 2 of Cannizzo & Wheeler 1984), and therefore the contrast in

W between Y,,ax and Ein 1s greater.

As regards the propagation of the cooling front, we find that a self-regulating
mechanism operates to ensure that w/r = \/hp/rF, Where the subscript "F” refers to
the hot state of the disk just interior to the cooling front. This corresponds to the local
minimum in the S—curve. Given that the front speed is vp = vp[w, this gives vp =~

Q/F(hF/TF)B/ZQFTF = (XFCs(h[«'/l’F)l/z, where ¢, is the sound speed in the hot state.

We have detailed the cause for the exponential decay of the X-ray flux. The reason for
the decay is the exponential decay of the mass of gas comprising the hot state, which is
controlled by the location of the cooling front which divides the hot and cold states. Thus,
for exponential decay we require vy (= drp/dt) o< rp. Given that (1) vp = ap(hp/rp)3/2
Qprpe, (2) R2Q? = RT/p (from hydrostatic equilibrium), and (3) the temperature at the
lower bend in the S-curve, or. equivalently, in the hot disk just interior to the cooling front,
Ty, is independent of radius, we see that for n = 1.5 we obtain vg o rp. Previous studies
noted that w > k. but cast w either in terms of h (i.e., w ~ nh where n ~ 1 — 10), or in
terms of 7 (i.e., w ~ yr where \ ~ 0.1). Our finding of the relation between the character
of the decay of the bolometric flux and n led us to use our high resolution code to search
for a w = f(h,r) dependence. We believe the relation w = v/hr to be universal: our tests

have shown this to be independent of the way in which the input physics is parametrized.
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In summary, using w = \/hprg gives, as the general expression for the cooling front speed,
2
I"F ~ ﬁaocn+3/2 (T—F)( n+1)/4

= \an, ! (9)

where a = ap(h/r)" and ¢, = \/%TF/;LF.

[n this work we have paid particular attention to systematic effects in the modeling
which must be addressed in order to assess the reliability of the model and to understand
how trustworthy are the restrictions we place on the allowable input physics. We find, for
instance, that of order N ~ 1000 grid points are required to cover adequately the dynamic
range in disk radii which must be spanned for this problem. We are able to use such a large
number for the o & (h/r)* scaling taking ripner = 107 cm because our explicit code requires
O(N) operations per time step. whereas an implicit code requires O(N?) because of the
grid matrix inversions. This comes about because, in an explicit code, the updated values of
the physical quantities at a given grid point are determined by spatial differences of values
taken at the previous time step. whereas in an implicit code, the values used in the spatial
differences are those from the following time step. Therefore, in solving a diffusion equation
for instance, one must invert a tridiagonal system of equations using the implicit method
(Press et al. 1986). For the explicit method, one merely computes the small changes in the

variables at each grid point and adds them to the previous values.

Furthermore, by taking a small time step and a large N in our explicit code we are able
to follow very fine scale structure within the transition fronts and thereby determine more
accurately the front speeds. llow do our findings regarding the exponential decay relate
to previous studies? From our experiments where we vary n, we expect n = 0 models to
give faster-than-exponential decays. Huang & Wheeler (1989), for example, look at models
for A0620-00 in which « varies in a step function between the low and high states. Their
Figure 3 giving the decline of the B band flux shows the expected faster-than-exponential

drop-off (see also Fig. 13 of (‘annizzo 1993b). The most systematic study to date which
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has explored the limit cycle mechanism in the BHXN is that of Mineshige & Wheeler
(1989). This study utilized an implicit code and took N = 21 grid points to cover a disk
which spans a dynamic range of 10* from inner to outer edge. Thus, in their modeling,
log(rit1/7i) = log(router/Tinner)/ (N — 1) = 4/20, or r;y1/r; ~ 1.6 for all grid points 7, giving
Ar/r = (rig1 — 1i)/[(rig1 + 7:)/2] = 0.45. This is clearly inadequate to resolve structure on
a scale ér/r ~ 0.1. Mineshige & Wheeler note that there is no change in their computations
upon doubling N to 41 grid points. This is expected since they are still well within the grid
spacing-dominated regime. Given this, it seems likely that their transition front widths
were underresolved, and that the decay rates in their models were limited by their grid
spacing. The underresolution is tempered somewhat by the fact that their logarithmic grid
spacing in which Ar/r is constant is more ideally suited to the natural decrease in front
width with decreasing radius than is our spacing in which Ar/r varies as 1/4/r. If one
desired, say, ~ 5 resolution elements within the front using the grid spacing in which Ar/r
is constant, this would require Ar/r = 0.02, necessitating the use of N = 465 grid points
(i.e., 10%/46° ~ 1.02). Mineshige & Wheeler (1989) considered models using the a « (h/r)"
scaling for 0.5 < n < 2.5. There is a slight variation in the degree of concavity of the light
curve decay shape as n was made to vary in their models. Mineshige & Shields (1990) used
the same code as that described in Mineshige & Wheeler (1989) and noted that, as regards
the decay, v & rr for n = 1. This is understandable if their transition front widths were
limited by their grid spacing. In that case w — Ar, and, since they adopt a logarithmic
grid spacing Ar o« r, this means that w was constrained in their models to vary as r, and
could not vary as vhr. From equation (8) we see that this would spuriously select n =1

as being the critical value for exponential decay because vp o r§,1‘+3)/ ? Jw:

(n+1)/2
F

if w o rp, we
see vp X T . This accounts for the fact that one still sees variations in the degree
of concavity of the decay of the light curve even in computations for which w o rF is

artificially imposed by the numerics. More recently Ichikawa et al. (1994) have examined
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the possible implications of applying Osaki’s thermal-tidal instability to the black hole
binaries. It is difficult to carry out a meaningful comparison of our results with theirs,
given that their model has approximately ten free parameters which can be adjusted.
Nevertheless, one possibly important piece of physics noted by Ichikawa et al. which might

affect the decay rate is a variable outer disk radius. Future work must address this issue.

In our models we use the observed exponential decay of the X-ray flux in the BHXN
to strongly constrain n to be 1.5. This constraint appears to be robust in the sense that it
does not depend on systematic effects such as our particular characterization of the steady
state physics (as long as a can indeed be parametrized as ~ (h/r)"). If n differs from 1.5
by more that ~ 10% we see a noticeable deviation from t._g14 being constant over, for
example, a ~200 day time span — a length of time during which t._1a Was observed to be
constant in A0620-00, GRO J0422+32, and GS2000+25. Furthermore, from the observed
value of te_golq of ~ 30 days (MYI) we can infer ag ~ 10*7 (for the a = ag(h/r)" law). The
constraint on this constant is less secure than the one on n because there are systematic
effects in the model which can affect the rate of decay but not the functional form of the
decay (i.e., exponential versus non-exponential). These systematic effects include such
factors as the precise scalings used to characterize the S-curve, and the finite differencing

scheme used in discretizing the disk equations.

In our models with o = ap(h/r)'®, we find that te_sq determined from the rate of
accretion onto the compact object depends to the same degree on ap and M, — an inverse
proportionality for the former parameter and a direct proportionality for the latter. This

also comes directly from the previous relation for vp. Taking n = 1.5 in equation (9) gives

dT‘F [875) RTF 15
~ — 1
it~ GM, ( e ) " (10)

where Tr = 30,000 K is the midplane temperature of the gas just interior to the cooling front

radius rg. So the e—folding time for rp is to_toa(rr) = (—dlnrp/dt)™! = (GM, [ap)c;3,
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1

where ¢; ~ 16 km s™'. From eqn. (4) we see ¢, o +/Tpin varies roughly as r=%925, The

mass of the hot gas enclosed by the cooling front at a given time varies roughly as 7%, so
te_fold(Minner) = (—dln 1\./lim,er/a(t)”1 ~ te_fold(7F)/2.6. Using the observed value of ~ 30
days for the e—folding decay time for the X-ray flux, and, assuming a ~ 10M accretor,
gives g ~ 50, in agreement with our numerical results. The law a = 50(h/r)!% is the same
as that employed by Meyer & Meyer-Hofmeister (1984) in their time dependent study of
dwarf nova outbursts. The fact that t._fq x M;/aq is interesting in view of the fact that
the observed e—folding times for BHXN are all ~ 30 — 50 days (MYTI). If we view g as a
universal constant, then the spread in the observed decay rates must be due to the spread
in black hole masses. (MY] noted also that, in their simplified decay model, the decay
time varies as M;/ag. This coincidence with our findings appears to be fortuitous, given
the fact that their decay time scaling depends only on the standard viscous time scale and
does not take into account the properties of the cooling flow.) The only shortcoming of the
(h/r)" law appears to be that there is no sensitivity of te_fold OD Touter (0T, equivalently,
Porbital) as is required in the Bailey relation for dwarf novae (Smak 1984, Cannizzo 1994).

Nevertheless, it is interesting that a simple scaling of our t._g,q to dwarf nova parameters

(i.e., M; ~ 1Mg) gives a reasonable number, i.e., t._goq ~ 3 days.

As we have sought in this work to understand the most basic attributes of the
BHXN, we have not addressed the question of the secondary maxima, nor the issue of disk
irradiation. However, in addition to the disk instability computations discussed previously
we have also looked at the situation where there is no S-curve in log T, — log 2 but rather a
monotonic ¥ — T, relation. This could correspond either to the class of models promulgated
by Hameury, King, & Lasota (1986, 1987, 1988), or to the situation in which irradiation
of the accretion disk is so strong that the cooling front is unable to propagate (Tuchman,
Mineshige, & Wheeler 1990, Mineshige, Tuchman, & Wheeler 1990). The absence of a

cooling front means that the decay of X-ray flux in an outburst can proceed only by



_32 -

the gradual accretion of stored disk matter onto the central object. This long standing
problem has been looked at by many investigators and, it has been shown for a variety of
assumptions, that power law decays occur rather than exponential decays (e.g., Mantle
& Bath 1983, Lyubarskii & Shakura 1987, Cannizzo, Lee, & Goodman 1990, MYT). The
reason for this can be seen by considering the diffusion equation for surface density in
which the time rate of change of ¥ is a function of radial derivatives of v¥, where v is the
Kinematic viscosity coeficient (2/3)(P/p)(a/S). The solution to the diffusion equation can
only assume an exponential form — ¥ = Yee !/t — if v is independent of local physical
conditions in the disk. For Pgas > Pradiation W€ S€€ that v o« oT. In order to offset the
natural variation of v with 7" which 1s inherent in the a—model, we must invoke a oc T71.
Hydrostatic equilibrium gives P/p ~ Q2h2%, so this constraint is equivalent to requiring

a = ag(h/r)* with n ~ =2 in order to get an exponential decay of the luminosity with a

hot disk.

With ao and n constrained by the observed X-ray decays, and Mi, Tinners and Touter
constrained by the known systemic parameters, we have exhausted our supply of adjustable
parameters. In our ” standard model” for the section where a = f(r) we produce outbursts
which have a long plateau preceding the exponential decay. This feature was shown to be
a success of the model in accounting for the long term behavior of 53 Cyg: a dwarf nova
showing alternating long and short outbursts — the long outbursts possessing a plateau
at maximum which precedes the faster, exponential decay. Although some BHXN show
plateaus, the brightest and best studied ones have much shorter plateaus or no plateaus.
In A0620-00, for instance, the plateau was about a week long for the 1975 outburst. To
avoid producing the plateaus and to preserve ag and n, we must somehow get rid of a large
fraction of the disk during the early stages of the outburst. There may be support for
this idea with the recent radio observations of mass ejection during the outbursts in some

BHXN (Mirabel & Rodriguez 1994, Tingay et al. 1995, Hjellming 1995). It is interesting
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that, at the beginning of an outburst the stored disk mass is roughly 4 x 10%° g in our
"standard model”, and the ejecta mass inferred by Mirabel & Rodriguez is ~ 2 x 10% g.
The disk mass could conceivably be ejected through radiation pressure during the early,
near-Eddington phase of accretion. On the other hand, in this paper we have not run
models using the a = g(h/r) law which progress through the complete cycle of outburst
and quiescence, therefore we do not know whether, for the default parameters used in the
a = g(h/r) section, the outbursts will be flat-topped. Based on the fact that Ymax/Xmin is
smaller for the a = g(h/r) models than for the o = f(r) models, the light curves may go

directly into the exponential decay phase immediately after the period of rising light has
ended.

Throughout this study our guiding principle has been to attempt to reproduce the
exponential decay for outbursts. Not all systems, however, exhibit this behavior. The most
notable exception is V404 Cygni, which was discovered in outburst by Ginga on 23 May
1989. There were large variations seen in the X-ray flux during the early stages of the
outburst — sporadic bursts during which the flux varied by ~ 10 — 100 over minutes to
hours (Terada et al. 1994). Most interesting, however, was the fact that the subsequent,
long-term decrease in fluz as the outburst faded followed a power-law form in time, not an
ezponential. This was seen in the X-ray, optical, and radio bandpasses (Han & Hjellming
1992). V404 Cyg also has by far the longest orbital period of those for which periods
have been determined. We propose the following scenario to account for the combination
of power-law decay in a system with such a long orbital period. We showed earlier
that the mass of gas stored in quiescence varies very roughly as the cube of the orbital
separation. The peak luminosities for the outbursts computed in this work, modeled to
be in systems characteristic of A0620-00 where Porpital = 8 hrs, are of order 0.1Lgqq. If
we increase P,bital dramatically, then, as the very large mass stored in the disk during

quiescence begins to flow onto the central black hole during the onset of instability, it
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quickly reaches the Eddington limit, at which point the thin disk approximation used in
this study breaks down and accretion becomes quasi-spherical. During the transition stage
from disk accretion to spherical accretion there may be violent variations in the central
flux due to non-axisymmetric instabilities in the flow. If the spin to mass ratio J/M is
large for V404 Cyg, the Lense-Thirring effect would tend to redirect gas elements which
approach the black hole on orbits out of the binary orbital plane into orbits which are more
nearly coplanar with the surface orthogonal to the black hole spin vector. At the points
of intersection between these elements and other parts of the disk there would be strong
shocks. This would continue as more and more of the material which had been stored at
large radii during quiescence continued to move to smaller radii. Support for this general
picture can be found by examining the X-ray spectral evolution of the outbursts. For most
of the systems — those mentioned earlier with P, ital =~ 10 hrs — one sees a soft component
at early times which is most likely produced by a standard, geometrically thin and optically
thick disk. As the outburst fades, the spectrum inevitably becomes harder and approaches
a power law which is thought to be produced by hot, optically thin gas. In V404 Cyg,
however, the soft component was never seen, indicating that a hot, optically thick disk was
unable to form. (Compare figures 4 and 10 in Tanaka 1989 showing GS2000+25 — a system
with an exponentially decaying outburst — and V404 Cyg). Against this picture, however,
we must add that GRO J0422+32, with a relatively short orbital period of ~ 5 hrs, also

showed only a hard spectrum during its outburst.

8. Conclusions

We have presented the results of a parameter study of the limit cycle mechanism to
account for outbursts in the X-ray novae. The basic observation defining the characteristics

of the outbursts in the X-ray flux of the brightest and most well studied systems are a fast
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rise, followed by an exponential decay with a time constant of 30 to 60 days.

Light curves for outbursts using the scaling o o« 7 taking apot/@cold = 10 show a slow
rise (i.e., ~ 50 days), followed by a long plateau stage, and then a very rapid, faster than
exponential decay. We have delineated the effects on the outburst properties by varying the

input parameters of the model in a controlled way.
Our runs with o o« (h/r)* produced several interesting results.

(1) On the numerical side, for the grid spacing Ar « 4/r, we find that O(1000) grid
points must be used in the modeling for our assumed dynamic range in disk radii of ~ 10%.
Fewer points leads to an inadequate resolution of the cooling front and an over-estimate of
the decay time scales. Studies which take O(20) grid points may be entirely limited by their
grid spacing. The grid spacing Ar x r used in these works, however, is more expeditious
for following the movement of transition fronts, and they would have required ~ 400 — 500
grid points to obtain a resolution in which about 5 grid points lie within the cooling front

at all radii.

(2) Numerically we find the cooling front width to be the geometric average of h and
r, evaluated in the hot state just interior to the cooling front. This leads to a cooling front
speed vp = ap(hp/rp)¥*Qprp. This result does not depend on how we parametrize the
physics of the accretion disk. It appears to be a fundamental consequence of having an

abrupt drop in the viscosity at some radius which induces a strong outflow.

(3) We constrain n to be 1.5 + 0.1 based on the exponential form of the decay. This
constraint appears to be robust in that it is independent of the other parameters in the
model. The value 1.5 is selected because, for a front width w = v/hr, this law leads to
v o rp. If w had varied as r the critical value for n would have been 1, and if w had varied

as h the critical value for n would have been 2. These dependencies come about because,
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. ) 1)/2
for w o rp, equation (8) gives vp rg,f“L Y/ , whereas for w o« hp, we get vp r?;/z. For

models with the correct dependence w = \/hprp, we find vp x 'rg,?"“)“.

(4) For the class of models in which n = 1.5, we derive the relation for the e—folding
decay time for the X-ray flux te_giqa ~ 0.38(GM;/ag)c;®, where ¢, >~ 16 km s™'. By
assuming a ~ 10M accretor in the BHXN, we constrain ag to be ~ 10"7 based on the

observed ~ 30 day time scale for the exponential decay of X-ray flux.

(5) If the cooling front is unable to propagate, and thus there is effectively a monotonic
relation between 7. and ¥ in the steady state physics, then n >~ —2 is required for
exponential decays. While some X-ray reprocessing is probably required to produce the
level of the optical flux observed in at least some systems (e.g., Cheng et al. 1992), the
irradiation of the disk cannot be so great as to affect significantly the steady state scalings

(as discussed in Tuchman et al. 1990).

Figure 1 of Ko & Kallman (1991) shows schematically two ways in which X-rays from
the accreting object can irradiate the disk. In their drawing, the disk is flared, in line with
the conventional Shakura & Sunyaev "outer disk” for which h/r o r®1?°. This assumes,
however, that M(r) is constant. Fig. 2b of Cannizzo (1994) shows that this is not true for
accretion disks containing a cooling front. In fact, h/r decreases with r so that the outer
disk is shielded from direct irradiation by the central source. Thus, even with irradiation
included, the cooling front should still be able to propagate. A more delicate issue is that
of reprocessing X-ray flux scattered from a corona overlying the disk. The efficacy of such a

process depends on assumptions made regarding the corona.

One of the goals of accretion disk research has been to constrain the viscosity — either
its magnitude or functional form. The value a = 50(h/r)"® may prove to be the long-sought
universal form. Meyer & Meyer-Hofmeister (1984) used exactly this same function in

their time dependent modeling of dwarf novae, systems with ~ 1Mg accretors. Huang &

e
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Wheeler’s (1989) results seemed to provide evidence that o may have to be lower in the
BHXN than it is in dwarf novae if the limit cycle model is to work. Our results have failed
to confirm this. It appears that a = 50(h/r)'® can work for both types of systems. The
only way to test this assertion will be to run parallel sets of computations on both types
of systems using the same code so as to negate systematic numerical differences between
codes. If there is one function for a that applies to all accretion disks, then the longer time
scales associated with the outbursts in the BHXN may be due to the fact that, in going
from dwarf novae to BHXN, M; is much larger and ( is much smaller. If o is constant,

the e—folding decay time varies with M; as we have shown, and the recurrence time varies

inversely with ¢ (CSW).

The study of just the decay of outbursts has proven in this work to be sufficiently
interesting that we chose not to follow the disk instability through several complete cycles
in order to investigate the rise times and recurrence times. That is the next obvious step,
and work is underway to do this. Now that we no longer have the freedom to vary « as
desired (e.g., Ichikawa et al. 1994), the results of such a study will be especially interesting
and should allow us to constrain the efficacy of mechanisms external to the standard limit
cycle model which might alter the surface density distribution during quiescence, such as
some evaporation process (e.g., Meyer & Meyer-Hofmeister 1994, Narayan, McClintock, &
Yi 1996). Such mechanisms have the potential to affect the rise times and recurrence times

for outbursts.
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FIGURE CAPTIONS

Figure 1. A collection of light curves of runs in which « varies as 7, where here ¢ =
0., 0.1, 0.2, 0.3, 0.4, and 0.5. The curves for larger ¢ decay more slowly. For ¢ = 0.4 and
0.5, there are several retriggerings of the heating front before the final decay to quiescence
begins. For all runs shown here and described earlier, the outbursts have a flat-topped
plateau portion and faster than exponential form. Thus these parameters cannot reproduce

the light curves for the systems such as A0620-00, Nova Muscae, J0422+32, and GS2000.

Figure 2. The evolution of surface density X, midplane temperature T', and viscosity
parameter a, as functions of radius during the decay of an outburst. The initial condition
for which E(r) = 0.95X nax(7outer) (r/'l‘outer)‘B/‘*. is shown by the dashed curve. The dotted
curves show the conditions associated with Y.x and Ypin. We take rigner = 107 cm,
Fouter = 1.5 x 101! cm, M, = 10M;. o = 10"7(h/r)*®, and N = 1000. These parameters
define our "standard model” for the a x (h/r)* law and are used by default in the following
figures, unless stated otherwise. Each curve is separated by 100 days of evolution. As time
increases the cooling transition front which marks the interface between the hot and cold
states advances to smaller radii. and the values of ¥, 7', and « in the inner regions of the
disk become smaller as material flows outward across the hot/cold interface and augments

the mass of the outer, cold disk.

Figure 3. The effect on the decay of an outburst of varying the number of grid points.
The initial condition is as in Fig. 2. We show four curves representing N = 300, 500, 700,
and 1000. The first panel shows the rate of accretion at the inner disk edge onto the central
black hole, in g s~'. The Eddington rate of accretion onto a ~ 10M, black hole is ~ 10" g
s, assuming a rest mass-to-energy conversion efficiency of ~ 10%. The second panel shows
the 50 day moving averages of the locally defined ¢—folding timescale (in days) from each

of the curves in the first panel. The third panel shows the 50 day moving averages of the
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number of grid points that lie inside the cooling front. As N increases we are better able
to resolve fine scale structure within the cooling front, and te_to1d(t) approaches a limiting
(constant) value. During the later stages of evolution where Np < 1, we see a systematic

rise in te_goq due to underresolution of the cooling front.

Figure 4. The effect of varying the exponent n in the scaling o = ap(h/r)™. In this
and subsequent models we take N = 1000. The parameters are the same as before, with
the third panel now showing the cooling front speed (in units of km s~1) determined by
following the movement of 7(ihot) — the outermost radial point at any given time which is in
thermal equilibrium on the upper stable branch of solutions. To keep the values for te_g1d
in a common range, we adjust o for each run: forn =1, ap = 10°7; for n = 1.5, ap = 101'7;
and for n = 2, ap = 10*7. From the second panel we see that the law a o (h/r)! gives a
faster-than-exponential decay (i.e., te_old decreasing with time), the law a o (h/r)? gives a
slower-than-exponential decay (i.e., te_foid increasing with time), and the law o « (h/r)t®
gives close to an exactly exponential decay (i.e., te—fold constant). Note that the n = 1.5

curve is the same as the N = 1000 curve in Fig. 3.

Figure 5. The effect of varying the proportionality constant ao. The parameters are the
same as before (i.e., n = 1.5, M; = 10Mg, and N = 1000), and the small numbers beside
each curve give log ag. The cooling front reflects into a heating front at ¢ ~ 140 days in the
log ap = 2.0 curve. The heating front moves outward until ¢ ~ 180 days, at which time it is
again reflected inward as a cooling front. The locally defined e—folding time varies inversely
with g, as one might naively expect. For ease of viewing we include a dashed line showing

te_tord = 0 in the second panel.

Figure 6. The effect of varying the primary mass M;. The input parameters are the
same as before (i.e., n = 1.5, ag = 10"7, and N = 1000), and the small numbers beside

each curve indicate M; in units of 1 Mg. The e—folding time is directly proportional to the
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central mass. For ease of viewing we include a dashed line showing t._fo1a = 0 In the second

panel.

Figure 7. The effect of varying the orbital period of the binary, keeping other
parameters fixed. The small numbers beside each curve indicate the limiting outer disk

radius 7outer/10'! cm, taken to be ~ 0.7 of the Roche radius of the primary.

Figure 8. The variation of the width of the cooling front with radius as the front
progresses inward. As earlier, we show moving 50 day averages. This run is for our
nstandard model” for exponential decay: n = 1.5, logeg = 1.7, and My = 10Mo. The
cooling front begins at the right hand side of the graph near log r(cm) = 11 and moves to
the left as the front progresses to smaller radii. The two dashed curves show y/h/r and h/r,
both evaluated at the outermost "hot” grid point ipet. The solid curve gives the front width
w = 7(tcold) — T(thot), €xpressed in units of radius. In general, the total width of the front
exceeds by some nominal factor the region of greatest variation (Osaki 1989), therefore w/r
lies a little above \/l—zﬁ The dotted curve shows the number of grid points lying inside
the cooling front Ng. As Np drops below unity, we artificially constrain w to equal the
grid spacing Ar, and since Ar o /7 in our model, w/r —ox r~1/2, Thus w is spuriously

dominated by the grid spacing for log r(cm) < 9.

Figure 9. The variation of the local flow parameters ve(r) and M(r) for the standard
model. The dashed lines indicate initial conditions, and the dotted lines show conditions
associated with Cmax and Ymin- Each curve is separated by 100 days of evolution. The
amplitudes of the local flow speed and the local mass flux decrease with time. For the inner
disk radii v, and M(r) are negative, while for the outer radii they are positive. At a given
time step roughly the outer half of the hot disk is flowing outward, and roughly the inner
half is flowing inward. For the outflow M(r) x r®, and for the inflow M(r) approaches a

constant.
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Table 1

Effect of Varying rinner

ri(cm) | N° trec | tra tr2 tre tde tp log Mpeak
(cm)® (yr) | (days)? | (days)® | (days)! | (days)? | (days)* | (g s™')’
10° | 103 | 70.8 | 46 42 29 150 339 18.99
108° | 107 | 70.5 | 48 44 30 161 360 18.96
10% | 110 | 70.3 | 50 46 30 168 374 18.94
10° | 160 | 72.7 | 45 42 29 150 337 19.00
1083 | 166 | 72.4 | 46 43 29 160 357 18.97
108 | 170 | 72.2 | 47 44 30 167 369 18.96
1075 | 172 | 72.0 | 48 45 31 170 376 18.95

¢ Inner disk radius.

* Number of radial grid points.

¢ Recurrence time between successive outbursts.

4 Rise time for ]W-mner to change by 10°, measured from the time of maximum Minner.
¢ Rise time for Minne, to change by 10, measured from the time of maximum Minner.
/ Rise time for ]\./Ii,mer to change by e, measured from the time of maximum Minner-

9 Decay time for Minner to change by e, measured from the time of maximum Minner.
» Time spent on the "plateau” of the outburst.

* The maximum value of Mipner.
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Table 2

Dependence of Outburst Properties on My

Mr | NP | tree | tes te tre tde t log Mpeak
(Mg yr™t)° (yr)° | (days)? | (days) | (days)! | (days)? | (days)" | (g s7")"
0.25 x 1072 | 170 | 260.5 | 47 44 30 170 347 18.91
0.5 x 107 | 170 | 137.1 | 48 45 30 169 358 18.93
1x107° | 170 | 72.2 | 47 44 30 167 369 18.96
2 x107° | 170 | 38.3 | 47 43 30 166 388 18.98
4%107° | 170 | 20.5 | 46 41 29 166 425 19.00

¢ Mass transfer rate from the secondary star.

> Number of radial grid points.

¢ Recurrence time between successive outbursts.

4 Rise time for Minner t0 change by 10%, measured from the time of maximum Miper

¢ Rise time for Migner tO change by 10%, measured from the time of maximum Minner.

f Rise time for Minner to change by e, measured from the time of maximum Minner.

9 Decay time for Minner to change by e, measured from the time of maximum Mi,mer.

» Time spent on the "plateau” of the outburst.

* The maximum value of Minner.
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Table 3
Effect of Varying acoq while Keeping ano, Constant
Oya | NP | tree |t i bre tae |t log Mpeax
(yr)° | (days)? | (days)* | (days)! | (days)? | (days)* | (g s7')°
0.005 |{ 170 | 145.2 | 38 35 25 128 465 19.32
0.0075 | 170 | 97.4 | 43 40 27 150 412 19.11
0.01 | 170 | 72.2 | 47 44 30 167 369 18.96

@ Viscosity parameter along lower branch of S—curve.

> Number of radial grid points.

¢ Recurrence time between successive outbursts.

d Rise time for Mipner t0 change by 10%, measured from the time of maximum Mi,mer.
¢ Rise time for Minner to change by 10%, measured from the time of maximum Mim,er.
f Rise time for Mipner t0 change by e, measured from the time of maximum Mi,me,.

9 Decay time for Minner to change by e, measured from the time of maximum Mim,e,.
b Time spent on the ”plateau” of the outburst.

* The maximum value of Minner-
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Table 4

Effect of Varying Primary Mass M,

My | N | tre | tes » tre td.e to log Mpeak
(Mo)* (yr)° | (days)® | (days) | (days)/ | (days)® | (days)* | (g s™')’
5.0 | 170 | 88.9 | 38 35 24 119 256 19.19
75170 | 78.7 | 42 39 27 144 317 19.05
10.0 | 170 | 72.2 | 47 44 30 167 369 18.96
15.0 | 170 | 64.0 | 57 53 37 203 | 459 18.82
20.0 | 170 | 59.5 | 63 59 40 236 538 18.72

® Mass of the accreting black hole.

5 Number of radial grid points.

¢ Recurrence time between successive outbursts.

4 Rise time for Mipner t0 change by 103, measured from the time of maximum Minner.
¢ Rise time for Minner to change by 10%, measured from the time of maximum Minner-
f Rise time for Mi,mer to change by e, measured from the time of maximum Mim,e,.

¢ Decay time for Mim,er to change by e, measured from the time of maximum Minner.
h Time spent on the "plateau” of the outburst.

* The maximum value of Mipner-
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Table 5

Effect of Varying router

ro | NP | teee | tes te tre tde t log Mpeak
(10*" cm)* (yr)° | (days)® | (days)” | (days)/ | (days)? | (days)" | (g s7")"
0.75 | 170 | 10.3 | 32 28 19 119 297 18.24
1.00 | 170 | 23.1 36 33 23 136 314 18.54
1.25 | 170 | 42.8 | 43 39 27 152 342 18.77
1.50 | 170 | 72.2 | 47 44 30 167 369 18.96
1.75 | 170 | 112.6 | 53 49 34 180 395 19.11
2.00 | 170 | 165.7 | 56 52 34 196 425 19.25

¢ Quter disk radius.

b Number of radial grid points.

¢ Recurrence time between successive outbursts.

4 Rise time for Minner to change by 10°, measured from the time of maximum Minner.

¢ Rise time for Mi e to change by 10?, measured from the time of maximum Minne,.

f Rise time for M-mner to change by e, measured from the time of maximum Minner.

9 Decay time for Minner to change by e, measured from the time of maximum Mim,er.

h Time spent on the "plateau” of the outburst.

* The maximum value of Miner-
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