ATL-DAQ-PROC-2025-002

30 January 2025

@

AthXRT: Centralized FPGA Management for Accelerated
Algorithms in Athena

Quentin Berthet!-*, on behalf of the ATLAS Collaboration
'DPNC, University of Geneva, CH-1205 Geneva 4, Switzerland

Abstract. The integration of FPGAs as heterogeneous hardware accelerators in
high-performance computing environments, such as the Athena framework used
in the ATLAS experiment, presents significant opportunities for algorithm ac-
celeration. However, it also introduces challenges in device configuration man-
agement. AthXRT is a centralized service designed to simplify and streamline
FPGA configuration file management within the Athena framework. Supporting
both native XRT and OpenCL APIs, this service offers a flexible, future-proof
solution for FPGA management, enabling the seamless integration of acceler-
ated algorithms into the Athena environment.

1 Introduction

The increasing demand for computational power in high-energy physics (HEP) has driven
the exploration of heterogeneous computing solutions, including the use of FPGAs as ac-
celerators. FPGAs, with their massively parallel processing capabilities and energy-efficient
design, are being investigated as potential solutions to accelerate data-intensive tasks in the
Event Filter (EF) of the ATLAS experiment.

The Athena framework [1], the software infrastructure used in the ATLAS experiment
[2], integrates a variety of algorithms and computational techniques for both online trigger
and offline physics object reconstruction. In the context of the Phase II upgrade of the LHC
and with the increase in computing power resulting from higher luminosities during Run 4 of
the LHC, FPGAs are being considered as accelerators to offload computations to dedicated
hardware. Currently, tracking, muons and calorimeter sub-systems of the EF are actively ex-
ploring FPGA-based solutions to accommodate the increased workload. Additionally, other
online and offline algorithms within Athena may also benefit from hardware acceleration in
the future.

Despite significant efforts to simplify their usage, FPGA development and operation re-
main demanding and differ fundamentally from traditional CPU and GPU software work-
flows. One key difference is that FPGAs require a configuration file (commonly referred to as
a bitstream) to define the interconnection of internal logic elements, thereby materializing the
hardware architecture needed to execute a specific algorithm. Figure 1 illustrates the process
of converting a Register Transfer Level (RTL) hardware description—or a C/C++ implemen-
tation using High-Level Synthesis (HLS)—into a list of logic gates, known as a netlist, and

*e-mail: quentin.berthet@cern.ch
Copyright 2025 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

Development Run-time

| Kernels
H
' sources

s e L T e Cicr+ | XRT .
" 1| NativeXRT OpenCL | Mem |
R REEEEEEEEt SEEE . | User space : libxrt & tools | I A

Netlists

L | Linux PCle drivers |

FPGA Implementation =
platform (place&route) PCle
- bitstream S -
: Binary [A
file kernell kernel2 | | ! Device : PCle FPGA accelerator board

L o FPGA
) ", | bitstream / kernels E Mem

Figure 1. FPGA development flow and communication with software accelerators.

subsequently into a device-specific bitstream. This bitstream can contain multiple acceler-
ated algorithms, often referred to as kernels. Loading this bitstream takes a non-negligible
amount of time, ranging from tens of milliseconds to several seconds. As a result, dynamic
switching of bitstreams (or algorithms) is not desirable in latency-constrained systems such
as the ATLAS trigger. Furthermore, the loaded bitstream becomes a shared state, making
the management of FPGA configurations across Athena algorithms challenging, particularly
when handling multiple FPGA devices or algorithms simultaneously. This challenge is com-
pounded by the lack of centralized bitstream management within the Athena framework,
placing the responsibility on algorithm developers to use low-level XRT or OpenCL APIs
to perform these actions themselves. AthXRT [5] addresses these challenges by providing a
centralized service that manages AMD FPGA accelerators configuration files during system
initialization, allowing multiple algorithms to utilize FPGAs without runtime overhead.

2 AthXRT presentation

As currently integrated into Athena, AthXRT is designed to avoid boilerplate code and make
the FPGA loading process more robust and error-resistant in the least intrusive and constrain-
ing way possible, simplifying the work of algorithm developers. As illustrated in figure 2,
it serves as an intermediate layer between Athena user algorithms and the Xilinx Runtime
(XRT) library [3] provided by AMD (formerly Xilinx) for programming and communicat-
ing with the Alveo line of PCle-attached FPGA accelerators. AthXRT, implemented as an
Athena service, primarily manages the configuration and loading of bitstreams (referred to
as XCLBIN files in AMD nomenclature) onto the accelerators. By centralizing this process,
AthXRT reduces the complexity of managing multiple FPGA devices and provides a unified
configuration interface seamlessly integrated into existing Athena practices. This centraliza-
tion facilitates the early detection and resolution of bitstream conflicts that may arise when
multiple algorithms require incompatible XCLBIN files and compete for FPGA resources.

AthXRT init

Athena .

! NativeXRT || OpenCL | >1 “FpGA =1

1| algorithms || algorithms | v I v

! A A . [config Expecting one
i .| binar FPGA . = and only one

. AthXRT Service] (xclbir)mf) et XCLBIN

'X'R'.r"l """""" I-""", count ? ¢

|| User space XRT library |! >1 >1 _“XCLBIN

count ?

! | [1
I| Kernel PCle drivers |;

S v [

PCle FPGA accelerator Load one XCLBIN per FPGA‘ Load same XCLBIN on all FPGA ‘ Load XCLBIN

' L | I
m AthXRT ready

Figure 2. Position of AthXRT inthe Figure 3. AthXRT FPGA configuration file loading logic.
software stack.

2.1 Device enumeration and configuration

AthXRT abstracts both device enumeration and the configuration loading interface of the
XRT library. Using an Athena Python configuration mechanism, user algorithms can specify
one or more XCLBIN files to be loaded in preparation for a run. During the initialization
of AthXRT services, the list of requested XCLBIN files is collected and matched against the
list of accelerator devices identified during enumeration. A well-defined logic, illustrated
in Figure 3, determines how the service assigns devices to XCLBIN files, supporting the
following configurations:

¢ Single FPGA, single XCLBIN file.

e Multiple similar FPGAs, all loaded with the same XCLBIN file.

e Multiple similar FPGAs, each loaded with a unique XCLBIN file.
o Multiple different FPGAs, each loaded with a unique XCLBIN file.

In the event of an error during device configuration, such as when the number of XCLBIN
files exceeds the available devices, the service terminates the run with a clear error message.
Upon successfully loading all XCLBIN files, the acceleration kernels in the system are in-
spected and stored alongside their respective device handles, allowing for future retrieval
of the device handle associated with a specific kernel. Once all devices are configured, the
service completes its initialization.

2.2 User algorithms and API support

During initialization, user algorithms can query the AthXRT service to retrieve a list of de-
vice handles associated with a specific kernel. While no strict naming convention is enforced
for kernels, it is expected that their names are unique by function and version. Kernels with
the same name, even on different devices, should be functionally interchangeable. User algo-
rithms are free to select one or multiple kernel instances from this list and use them as needed.
A simplified example of the initialization and usage of the service by two user algorithms is
illustrated in Figure 2.2. It is important to note that the underlying XRT library manages

AthXRT [Athena Alg 0 | AthenaAlgn | [Devicen |
s load .xclbin :
init T = P
: : L]
init init
get_devices_by_kernel_name()y— ==

create xrt::bo
bo.sync(TO_DEVICE)
create xrt::kernel

. kernel.start()
kernel.wait()

- . run
wait :
<

bo.sync(FROM_DEVICE)

Y

. \: kernel.start()
kernel.wait() >

wait
<
! !

concurrent access to the same kernel, ensuring that multiple threads—or even multiple al-
gorithms—can access the same kernel without issues. Kernel executions are obviously still
exclusive and are serialized over time. In the context of multi-threaded Athena (AthenaMT
[4]), this provides a significant advantage: by allowing multiple threads of the same algorithm
to share the same kernel, data transfers to and from the device can be overlapped with kernel
executions. This efficient resource sharing not only hides transfer latency but also increases
overall computational throughput.

AthXRT supports both native XRT and OpenCL APIs provided by the underlying library,
giving developers the flexibility to choose the API best suited to their use case. Internally, the
service uses the OpenCL API to program the boards and retrieve the lower-level XRT API
handles afterward. Once the service is initialized and the FPGA devices are programmed,
user algorithms can interact with the devices directly and transparently. They can create
buffers and interact with specific kernels without being constrained by API choice or addi-
tional run-time abstractions. This approach eliminates the need for dynamic configuration
loading, which is time-intensive and prone to introducing delays during critical execution
stages. More importantly, it prevents multiple successive programming operations on de-
vices—a potential issue if FPGA loading were handled by user algorithm initialization code,
where two algorithms might compete for the same device. Furthermore, AthXRT is designed
to be as unobtrusive as possible for user code. Once the devices are programmed, the service
imposes no constraints on API usage or run-time interactions, allowing developers to work
within their preferred paradigms.

2.3 Example code and testing

AthXRT is integrated into the main Athena branch and is accompanied by example code pro-
vided in the AthExXRT package [6]. This package includes vector addition and vector mul-
tiplication example algorithms that utilize the AthXRT service with both XRT and OpenCL
APIs. These examples demonstrate how user algorithms can implement communication with
both AthXRT and the accelerator device, as well as provide kernel code that can be compiled
into effective hardware kernels within an XCLBIN. The examples have been extensively used
to test configurations involving multiple devices, multiple kernels, and multiple APIs oper-
ating simultaneously. Tests were conducted at the University of Geneva on a pair of Alveo

VCKS5000 accelerators, as well as on an ATLAS testbed equipped with an Alveo U250 and
an Alveo U50.

3 Future Work

While the current implementation of AthXRT focuses on managing the configuration of
AMD FPGAs, future work may extend its support to additional hardware platforms and APIs.
This would enable broader compatibility with diverse accelerator ecosystems, including other
FPGA vendors and potentially non-FPGA hardware accelerators, fostering greater flexibility
and scalability for heterogeneous computing environments.

There is also significant potential for AthXRT to evolve into a comprehensive FPGA
configuration management system. Such a system could streamline the entire lifecycle of
XCLBIN files, including their building, storage, cataloging, and versioning. By centraliz-
ing these processes, AthXRT could significantly reduce the overhead associated with man-
aging FPGA-accelerated workflows, enabling developers to focus more on algorithm de-
sign and optimization. Additionally, incorporating features such as automated dependency
tracking, compatibility validation, and rollback mechanisms would further enhance the re-
liability and maintainability of FPGA-accelerated systems. These advancements would not
only simplify the development and maintenance of FPGA-accelerated algorithms but also
establish AthXRT as a robust tool for managing heterogeneous computing resources in high-
performance environments like Athena.

4 Conclusion

AthXRT provides a centralized and efficient solution for managing FPGA configurations
within the Athena framework. By offloading the configuration of FPGAs to a centralized
service during initialization, AthXRT eliminates runtime overhead and simplifies the use of
FPGAs in high-performance applications. With its support for both native XRT and OpenCL
APIs, AthXRT offers flexibility and scalability, making it a valuable tool for heterogeneous
computing in the ATLAS experiment. The integration of AthXRT into the Athena frame-
work, along with its extensibility for future use cases, positions it as a key component for
enabling efficient use of hardware accelerators in scientific computing.

References

[1] ATLAS Collaboration. (2024). Athena: Software framework for ATLAS experiment.
Zenodo. https://doi.org/10.5281/zenodo.2641996

[2] ATLAS Collaboration. "The ATLAS Experiment at the CERN Large Hadron Collider.”
JINST 3 (2008) S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

[3] AMD. (2024). Xilinx Runtime (XRT). GitHub repository. https://github.com/Xilinx/XRT

[4] Charles Leggett et al. (2017). AthenaMT: upgrading the ATLAS software framework
for the many-core world with multi-threading. Journal of Physics: Conference Series.
https://dx.doi.org/10.1088/1742-6596/898/4/042009

[5S] ATLAS Collaboration. AthXRT code source in ATHENA Gitlab repository. https://gitlab.
cern.ch/atlas/athena/-/tree/main/Control/AthXRT/AthXRTServices

[6] ATLAS Collaboration. AthXRT examples in ATHENA Gitlab repository. https://gitlab.
cern.ch/atlas/athena/-/tree/main/Control/AthenaExamples/AthExXRT

https://doi.org/10.5281/zenodo.2641996
https://doi.org/10.1088/1748-0221/3/08/S08003
https://github.com/Xilinx/XRT
https://dx.doi.org/10.1088/1742-6596/898/4/042009
https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthXRT/AthXRTServices
https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthXRT/AthXRTServices
https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthenaExamples/AthExXRT
https://gitlab.cern.ch/atlas/athena/-/tree/main/Control/AthenaExamples/AthExXRT

	Introduction
	AthXRT presentation
	Device enumeration and configuration
	User algorithms and API support
	Example code and testing

	Future Work
	Conclusion

