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Abstract. In April 2023, HEPScore23, the new benchmark based on HEP spe-
cific applications, was adopted by WLCG, replacing HEP-SPEC06. As part of
the transition to the new benchmark, the CPU corepower published by the sites
needed to be compared with the effective power observed while running ATLAS
workloads. One aim was to verify the conversion rate between the scores of the
old and the new benchmark. The other objective was to understand how the
HEPScore performs when run on multi-core job slots, so exactly like the com-
puting sites are being used in the production environment. Our study leverages
the HammerCloud infrastructure and the PanDA Workload Management Sys-
tem to collect a large benchmark statistic across 136 computing sites using an
enhanced HEP Benchmark Suite. It allows us to collect not only performance
metrics, but, thanks to plugins, it also collects information such as machine
load, memory usage and other user-defined metrics during the execution and
stores it in an OpenSearch database. These extensive tests allow for an in-depth
analysis of the actual, versus declared computing capabilities of these sites. The
results provide valuable insights into the real-world performance of computing
resources pledged to ATLAS, identifying areas for improvement while spot-
lighting sites that underperform or exceed expectations. Moreover, this helps to
ensure efficient operational practices across sites. The collected metrics allowed
us to detect and fix configuration issues and therefore improve the experienced
performance.

1 Introduction

The Worldwide LHC Computing Grid (WLCG) provides global computing resources for the
storage, distribution, and analysis of data generated by the Large Hadron Collider (LHC).
Combining around 1.3 million CPU cores across 164 data centers worldwide, the WLCG is
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a cornerstone of modern high-energy physics research. As computational demand increases,
CERN needs reliable accounting of the computing resources. Accurate accounting enables
experiments and stakeholders to understand available computing resources and utilize them
effectively.

The High Energy Physics (HEP) community has agreed to use dedicated benchmarks for
reporting computational capacities. In April 2023, the previously used HEP-SPEC06 (HS06)
[1] benchmark was replaced by HEPScore23 (HS23) [2]. As part of this transition, it be-
came essential to compare the CPU corepower, which is performance score per CPU core,
published by ATLAS [3] sites with the runtime corepower observed while running regular
jobs in production environment. One of the primary aims was to verify the conversion rate
between the old and new benchmark scores and ensure consistency across sites. Tradition-
ally, sites report their performance values annually, providing weighted averages of different
corepower values from various CPU models available at this site. However, until now, there
was no direct method to validate the numbers provided by these sites. The infrastructure
described in this work is designed to monitor and validate the reported values in a produc-
tion environment by running the benchmark on the grid. This approach not only verifies the
annual performance numbers but also enhances transparency and reliability in resource ac-
counting. It also allow for early detection of incorrect values and fix them as soon as it is
possible.

2 Submission Infrastructure

Figure 1: Submission infrastructure includes HammerCloud, PanDA, HEP Benchmark Suite,
ActiveMQ, OpenSearch, Grafana, Elasticsearch and Kibana enabling automatic and continu-
ous measurements of runtime corepower of compute resources provided by the WLCG sites
to ATLAS.

The submission infrastructure presented in Figure 1 is an ATLAS adaptation of the work-
flow described in detail in [4]. HammerCloud (HC) [5], a framework used for testing and
benchmarking WLCG resources, is used to dispatch identical jobs at regular intervals via
PanDa [6]. To achieve this, a HC template defining the workload, the environment, the sub-
mission schedule, and the list of targeted queues is created. PanDA queue is a concept on
the PanDA Workflow Management System (WMFS) of grouping and configuring a set of
resources together needed for processing workflows. Each WLCG Site can include mul-
tiple PanDA queues. Every four hours, the job is submitted at each queue. The job runs
the enhanced HEP Benchmark Suite [7], executing the HEPScore23 configuration, including



7 workloads from 5 experiments. Upon job completion, the benchmarking results are sent
through ActiveMQ [8] to the benchmarking OpenSearch [9] instance and are available for
inspection on a dedicated benchmarking Grafana [10] dashboard; simultaneously, PanDA-
specific information is sent to the ATLAS Elasticsearch (ES) [11] instance. Subsequently,
data from both sources is combined using a Python script and transmitted to the ATLAS ES
instance under the hepspec* index. The ATLAS ES instance hosts a Kibana [12] dashboard
for comprehensive visualization and analysis of the combined data.

3 Data Analysis

Over the past year, a large amount of data has been collected using the infrastructure described
in Section 2. Table 1 provides a statistical summary of the collected data. Each job runs on 8
cores, following the WLCG standards [13]. In each run, performance metrics of each server
were collected, along with additional system information, including user-defined metrics such
as machine load during script execution, average CPU frequency, memory and swap. These
extensive statistics allowed for a detailed analysis of the system performance observed during
benchmark runs and enabled comparison with the numbers reported by the sites.

Table 1: Benchmarking jobs statistics

No. # No. Sites No. CPU Walltime [min] % of total walltime

187045 139 251 81 0.06

3.1 Declared and Runtime Corepower

The corepower of a server has historically been defined as the HS06 per core, serving as a
key metric to evaluate computing capabilities based on specific hardware. With the transition
from HS06 to HS23 in April 2023, the corepower metric is now represented as HS23 per
core. To ensure a smooth transition, it was initially agreed that corepower values would be
converted one-to-one for each site. Currently, HS23 is the WLCG standard, and sites are
expected to provide updated corepower values.

The corepower value reported by a site, referred to here as declared corepower, represents
the weighted average of the corepower of different CPU models available at given queue on
a site. A single site may consist various hardware resources that are grouped into different
queues. The objective of this study was to compare the declared corepower values in ATLAS-
CRIC [14] with the performance observed during job execution, hereafter referred to as the
runtime corepower. To calculate runtime corepower, the weights of different CPU models
available at each queue were first derived using all available data from PanDA jobs, leveraging
the walltime_x_core, defined as the product of job walltime and the number of cores. The
weight of each CPU model (x) at a given queue was computed as defined in Eq. 1.

wx =

∑
i on jobs walltime_x_corex

i∑
x on CPU

∑
i on jobs walltime_x_corex

i
(Eq. 1)

Subsequently, the weighted average corepower for each queue was calculated using only CPU
models for which benchmarking data was available, as presented in Eq. 2.



corepower_runtimequeue =

∑
x on CPU wx · corepower_runtimequeue

x∑
x on CPU wx

(Eq. 2)

For the analysis, only queues with complete weights data were included. The relative
change in corepower for a given queue (q) was then defined as the ratio of runtime corepower
to declared corepower, minus one, as presented in Eq. 3.

relative change =
corepower_runtimeq

corepower_declaredq
− 1 (Eq. 3)

It is important to note that systematic uncertainties are inherent in the measurements, and
these were carefully considered in this study. Sources of uncertainty include variations in
HS23/HS06 scaling [15], fluctuations in runtime HS23 probes, dynamic CPU configurations
as switching between hyper-threading enabled and disabled without reporting, performance
variations due to system load, and errors in weight calculations critical to the analysis. To
address these uncertainties, a discrepancy threshold of ±25% was established. Only relative
changes exceeding this threshold were classified as significant discrepancies, so those ones
where numbers reported by queues differ substantially from measured runtime corepower.

4 Analysis of Relative Change Corepowers

Figure 2: Relative Change following Eq. 3 for PanDA queue, grouped by site. More than
one data point per site indicates that the site provides more than one PanDa queue. The
shadowed region highlights critical discrepancies. The size of the marker is proportional to
site contribution level calculated based on its walltime_x_core.

Measurements carried out throughout 139 sites enabled a comprehensive corepower anal-
ysis for 72 of them, where complete weight data was available, as shown in Figure 2. The
different sites were anonymised and shown on the x-axis, with the relative change on the
y-axis. The conservative acceptance threshold of 25% highlights the large discrepancies.
A relative change of zero represents a perfect match between the declared and the runtime
corepower, it can be seen that most of the points are within the treshold range. Positive rel-
ative change indicate underreporting of the declared corepower by the queue on given site,
whereas negative values suggest overreporting. From Figure 2, it can be observed that 32%
of the analyzed sites show critical discrepancies. Two hypotheses were considered to explain
these discrepancies: (a) the queues at these sites are either underloaded or overloaded, and/or
(b) the declared corepower values are inaccurate.



4.1 Corepower vs Load

To test the first hypothesis, a corepower versus load analysis was conducted. The average
load information during the benchmark execution was retrieved and correlated with the mea-
sured performance. The load/physical core metric is defined as the measured load divided by

(a) Queue with negative relative change (b) Queue with neutral relative change

(c) Queue with positive relative change (d) Queue with positive relative change

Figure 3: Corepower vs load/core correlation of 4 typical cases of queues with: (a) negative
relative change, (b) neutral relative change, (c) positive relative change, (d) positive relative
change, ARM server. The dashed red and blue lines represent the declared and runtime
corepowers respectively. Each color marker identifies a different CPU model on a given
queue.

the number of physical cores. As a consequence a fully loaded server with hyper-threading
disable or enable will have a load/physical core value of 1 or 2 respectively. In Figure 3, the



plot reveals a correlation between machine load/physical core and performance: as the load
increases, the performance decreases. This is being especially visible in the range from 1 to
2 of load/physical core.

Four examples were selected to illustrate typical behaviors with respect to the relative
change results. Figure 3a shows a queue where the declared corepower exceeds the runtime
corepower. This queue was fully utilized, but the CPU models in use are from 2012. In this
case, the scaling ratio between HS23 and HS06 is 0.7, as taken from Figure 4 in [2], which
explains the detected negative relative change. This shows that the values for very old queues
should be updated as soon as possible to better plan resource utilization. The second case,
shown in Figure 3b, represents one of the largest queues, where the relative change is close
to zero. Here, the site demonstrates efficient utilization across all available servers, with no
discrepancies observed.

The Figure 3c provides a third example suggesting that, in many cases, the server is not
fully loaded, which could be one of the reasons for the observed higher runtime corepower
compared to the declared value. However, this does not appear to be the sole cause. As
seen in the figure, there are two servers whose performance match precisely the declared
corepower value of 8.74. This observation suggests that the declared corepower might not
have been updated to reflect the presence of other, more modern servers in the queue. Instead,
it appears to rely on outdated values associated with older hardware, failing to account for
the contribution of additional servers with higher performance capabilities.

The fourth example, presented in Figure 3d, is a special case involving a single CPU
model on a given queue, Neoverse-N1 based on ARM architecture. Unlike the x86 servers,
weaker correlation between load and performance is observed. However, a significant dis-
crepancy is evident — a factor of nearly two between the runtime corepower and the declared
corepower, favoring the runtime measurement.

The analysis shows that even if there is correlation between the average load of a server
and its performance, it is not the only cause of the discrepancies. But it is important to notice
that if all servers in a queue would have been consistently underloaded, a positive relative
change would be observed, meaning the runtime corepower would appear higher than the
declared value. On the other hand, if all servers in a queue would have been consistently
overloaded, what is defined as a load above 2 for systems with hyper-threading enabled or
above 1 for those with hyper-threading disabled — a negative relative change would be ob-
served, indicating the runtime corepower would appear lower than the declared value, if the
declared value would be set correctly.

Another consideration related to the load involves the method of calculating runtime core-
power, which is based on the average performance across the entire load range. It was im-
portant to verify whether this approach could be responsible for the observed behavior of
different queues. To address this, a separate analysis was conducted using only measure-
ments taken when servers were fully loaded. It was assumed that this approach would reduce
discrepancies in relative change to within the established threshold.

The results, presented in Figure 4, show fewer data points, as fewer servers were fully
loaded during the measurements. While this approach did slightly reduce discrepancies in
some of the cases, it did not bring them entirely within the expected threshold. This finding
confirms that calculating performance across the full load range is valid and that the uncer-
tainty associated with this method is minimal and acceptable for the analysis.

4.2 Analysis of Declared Corepower Data Sources

The declared corepower values used by ATLAS are sourced from the ATLAS-CRIC, where
they are directly being reported by site administrators from each site or loaded from other



Figure 4: Relative change for different sites calculated when servers were fully loaded

data sources. A detailed analysis of these values revealed that 80% of the PanDA queues
were cloned from pre-existing ones, with 50% inheriting their corepower values from the
original queues. This practice has significant implications for multiple queues employing
newer architectures, such as x86 and ARM-based queues shown in Figure 3c and Figure 3d,
where the discrepancy with the outdated declared corepower is larger.

ATLAS-CRIC serves as the central place, where site administrators can update these
values, but it is also an integration point for multiple data sources. During this analysis,
discrepancies between the various data sources were also identified and reported accordingly,
with corrective actions currently underway.

Considering the combined contributions from all sites and weighting them by their
walltime_x_core, the discrepancies between the declared corepower and the runtime core-
power values result in an overall 6% advantage in favor of the runtime performance. While
this result is positive, it highlights the need to update declared corepower values. Failure to
do so could increasingly affect decision-making processes that rely on accurate reported data.

5 Conclusions

The automated HEPScore23 submission infrastructure via PanDA and HammerCloud pro-
vides a novel approach, previously unavailable for validating the corepower values declared
by sites, offering a reliable cross-check for the official accounting system. By leveraging the
HEP Benchmark Suite, additional system metrics were collected, enabling a detailed analy-
sis of the runtime versus the declared corepower values. The observed relative changes re-
vealed significant discrepancies for several queues, highlighting differences between declared
and actual runtime performance. These discrepancies have the potential to impact decision-
making processes, leading to inefficiencies and complications in resource allocation.

A systematic analysis has shown that outdated declared corepower values are a primary
source of these discrepancies, underlining the importance of regular updates in the data
source. While server load does influence performance, it alone does not fully justify the ob-
served differences. The presented methodology for measuring the runtime corepower proved
effective in identifying queues on sites with large discrepancies, enabling quick reporting and
resolution. This approach not only ensures better accuracy and transparency in resource ac-
counting but also enhances operational efficiency and fosters better decision-making for the
ATLAS experiment and WLCG at large.
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