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Abstract. Particle flow reconstruction at colliders combines various detector
subsystems (typically the calorimeter and tracker) to provide a combined event
interpretation that utilizes the strength of each detector. The accurate associa-
tion of redundant measurements of the same particle between detectors is the
key challenge in this technique. This contribution describes recent progress in
the ATLAS experiment towards utilizing machine-learning to improve particle
flow in the ATLAS detector at the LHC. In particular, point-cloud techniques
are utilized to associate measurements from the same particle, leading to re-
duced confusion compared to baseline techniques. Next steps towards further
testing and implementation are also discussed.

1 Introduction

Particle flow reconstruction represents a fundamental challenge in experimental particle
physics, encompassing both the identification of particle species and the precise calibration
of their energies from detector electronic readouts. This reconstruction process comprises
three essential steps: the aggregation of tracker hits into particle trajectories, the clustering of
calorimeter cell energies corresponding to individual particle interactions, and the association
between these reconstructed tracks and calorimeter clusters.

In scenarios where particles traverse the detector in isolation, producing well-separated
tracker hits and distinct calorimeter energy deposits, the reconstruction process is relatively
straightforward. However, the task becomes significantly more complex in environments
with multiple nearby particle trajectories and overlapping calorimeter deposits, particularly
in high-luminosity hadron collider experiments. These challenging scenarios necessitate so-
phisticated approaches to disentangle the contributions of individual particles and accurately
reconstruct their properties.

To address these challenges, the ATLAS experiment [1] has developed a dedicated par-
ticle flow algorithm that leverages the complementary information provided by the tracking
and calorimeter systems. This algorithm aims at optimizing both particle identification and
energy reconstruction by combining the superior angular and momentum resolution of the
tracking system with the calorimeter’s energy measurements. While effective, there remains
space for improvement through the application of modern machine learning techniques.
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2 Background and motivation

The current ATLAS particle flow algorithm [2] employs an iterative approach to particle
reconstruction. It processes tracks in descending order of transverse momentum (pT), asso-
ciating each track with the nearest topologically-connected calorimeter cluster (topo-cluster)
based on their angular separation ∆R1. For each track-cluster pair, the algorithm computes
the expected calorimeter energy deposit from the track’s momentum and compares it with the
measured cluster energy. In cases of significant discrepancy, the algorithm searches for addi-
tional topo-clusters to account for the full particle energy. Once the association achieves
satisfactory agreement, the algorithm subtracts the expected energy from the calorimeter
cells, retaining residual energy deposits only if they exceed expected fluctuations. Signifi-
cant remnants are then reconsidered in subsequent iterations, ensuring that energy not clearly
associated with the current track can be attributed to other particles in the event.

While this approach effectively combines tracking and calorimetric information, it faces
challenges in complex environments where multiple particles produce overlapping energy
deposits. These limitations have motivated extensive research into improving reconstruction
performance. A particularly promising direction involves machine learning solutions, which
span a broad spectrum of complexity. At one end, ambitious end-to-end architectures attempt
to handle the entire reconstruction pipeline [3], learning to simultaneously perform track
reconstruction, calorimeter clustering, and energy calibration. At the other end, focused task-
based solutions address specific reconstruction components independently, allowing for tar-
geted optimizations while maintaining modularity with existing reconstruction frameworks.
Among task-based approaches, image-based deep learning methods have shown particular
potential. For instance, a recent study [4] demonstrated significant improvements over tradi-
tional calibration strategies in both particle identification and energy calibration. However,
representing detector data as images presents two significant limitations. First, it introduces
inherent inefficiencies in representing naturally sparse detector data. Second, and more crit-
ically, the image-based framework does not provide a natural mechanism for incorporating
tracking information alongside calorimeter data.

To address these limitations, we propose a point cloud data representation for particle
identification and energy calibration. Point clouds offer several advantages: they provide a
more natural encoding of detector data, enable efficient processing of sparse detector hits, and
facilitate integration of heterogeneous detector information. This work focuses on developing
and evaluating deep learning methods specifically designed for point cloud data, comparing
their performance with both current reconstruction algorithms and image-based approaches.

3 Methods

Traditional image-based representations of detector data map individual detector electronic
units to pixels in a two-dimensional image, with their readout values encoded as pixel in-
tensities. For instance, calorimeter cells are represented as pixels with energy measurements
determining the intensity level (see Figure 1a).

This representation presents three significant challenges. First, detector components typ-
ically exhibit varying spatial granularity, which is difficult to capture in a fixed-pixel grid
where all elements must be uniformly sized and spaced. Second, particle detector data is

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre
of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring,
and the y-axis points upwards. Polar coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle
around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2) and is equal to the
rapidity y = 1
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inherently sparse, with only a small fraction of detector elements registering hits in any given
event. The image-based approach necessitates maintaining the full detector grid, resulting
in computationally inefficient representations dominated by empty pixels representing zero-
suppressed cells. Third, and perhaps most critically, the framework lacks a natural mecha-
nism for incorporating tracking information alongside calorimeter data. Indeed, tracker and
calorimeter components have distinct geometries and granularities, which exacerbates the
spatial representation problem. Hence, tracking information exists in a different geometric
space than calorimeter data, making their reconciliation in a 2D image representation partic-
ularly challenging. Any attempt to combine these heterogeneous detector signals in a unified
image framework requires artificial compromises that can lose important spatial correlations.

Point cloud representations address these limitations by modeling detector signals as
points in a multi-dimensional space (3D or more). Each point corresponds to a hit detector
element, characterized by its spatial coordinates, possibly augmented with additional features
(dimensions) such as energy deposits, timing information, hit confidence metrics, and more
(see Figure 1b). This approach offers several advantages: it naturally accommodates varying
detector granularity, efficiently represents sparse data by including only relevant units for each
event, and provides a unified framework for incorporating heterogeneous detector informa-
tion. In particular, tracking and calorimeter data can be represented in their natural geometric
forms while maintaining their spatial relationships in a common coordinate system.

Therefore, the point cloud representation is more suited to capture the genuine three-
dimensional structure of particle interactions in the detector while maintaining the sparsity of
the data. Also, it is possible to further augment this representation by including more features
as additional dimensions. This provides a powerful and more natural setting for developing
machine learning algorithms that can effectively process both tracking and calorimeter infor-
mation.
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(a) Image-based (calorimeter only) [4] (b) Point cloud (whole detector) [5]

Figure 1: Examples of different detector data according to image-based and point cloud rep-
resentations. The image-based approach (left) maps detector elements to a fixed grid, while
the point cloud representation (right) preserves the natural geometry of particle interactions.

3.1 Experimental setup

To establish a baseline for evaluating point cloud deep learning methods, we begin with a
simplified Monte Carlo simulation dataset. This approach allows us to validate the methods in



a controlled environment before addressing more complex scenarios such as multijet events.
The dataset comprises approximately 20 million single pion events, including both charged
(π±) and neutral (π0) pions, simulated using the full ATLAS detector simulation based on
Geant4 [6]. Pions are generated with uniform distributions in azimuthal angle ϕ, pseudo-
rapidity (|η| < 3), and the logarithm of true pion energy ranging from 0.2 to 2,000 GeV.

For training and evaluation, we select approximately 4 million events (3.5M for train-
ing and 500k for validation) meeting quality criteria and having exactly one track per event.
These events are roughly equally distributed between charged and neutral pions. This se-
lection ensures a clean topology for initial method development while maintaining sufficient
statistics for robust training of deep learning models.

Starting from these data, we compare point cloud versus image-based approaches on two
distinct learning tasks: i) particle identification and ii) energy calibration. For the identifica-
tion task, we implement a binary classification to distinguish between neutral and charged
pions using only calorimeter information, processing individual topo-clusters independently.
The energy calibration task, instead, is framed as a regression problem with two distinct
configurations. In the first configuration, the models predict calibrated energy using only
calorimeter information from single topo-clusters. The second configuration incorporates
both calorimeter and tracking information, considering one track and all associated topo-
clusters within a ∆R cone. This dual approach to energy calibration allows us to evaluate the
potential benefits of including tracking information while maintaining a controlled compari-
son with calorimeter-only methods.

Given the above settings, we evaluate several deep learning architectures designed to
process either point cloud or image-based representations of detector data. We focus here on
the most successful architectures studied in Ref. [5] (see also Ref. [4] for further details).

The Deep Sets model [7] provides a theoretical foundation for processing unordered col-
lections of detector signals. It implements permutation-invariant functions through a per-
point mapping Φ to a latent space, followed by a symmetric aggregation function. Each
point is characterized by features including cell energy, sampling layer, and angular positions
relative to the cluster center.

The Graph Neural Network (GNN) [8] extends this framework by explicitly modeling
relationships among detector elements. The architecture consists of four GNN blocks using
multi-layer perceptrons and permutation-invariant aggregation functions. Calorimeter cells
are represented as nodes connected by edges based on their geometric proximity, with fea-
tures encoding energy deposits and spatial information.

For comparison with previous approaches, we implement a Convolutional Neural Net-
work (CNN) that processes calorimeter information as image data. The CNN architec-
ture handles the varying granularity of different calorimeter layers by processing the finely-
segmented electromagnetic layer separately, while combining other layers with similar gran-
ularity. Starting from these representations, the network applies 3 convolutional blocks fol-
lowed by fully connected network layers.

Additionally, a baseline Dense Neural Network (DNN) with three hidden layers serves
as a reference model for the energy regression task. The DNN processes high-level features
derived from both tracking and calorimeter information, though without access to the detailed
cell-level information available to the point cloud models.

4 Results

We evaluate our methods against established baselines for both classification and regression
tasks. For classification, we compare against the standard ATLAS electromagnetic cluster



classification probability (PEM
clus). For regression, we benchmark against both the electromag-

netic (EM) scale and local cell weighting (LCW) calibrations. Detailed descriptions of these
baseline methods can be found in [5].

4.1 Particle identification

The classification performance is evaluated comparing π0 rejection versus π± efficiency. Re-
sults are analyzed in two pseudo-rapidity ranges: the central barrel region (|η| < 0.7) and the
extended range (|η| < 3). As shown in Figure 2, all machine learning approaches significantly
outperform the PEM

clus baseline. At a fixed π± efficiency of 90%, the improvement in π0 rejec-
tion ranges from a factor of 2 to 8 (Table 1). The GNN architecture demonstrates particularly
strong performance, achieving the highest rejection across all efficiencies in both η ranges.
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Figure 2: Comparison of π0 rejection versus π± efficiency for different classification models.
Results are shown for the central barrel (|η| < 0.7, left) and the extended range (|η| < 3, right).
The lower panels show the ratio to the PEM

clus baseline performance [5].

Table 1: Neutral pion rejection at fixed charged pion efficiency of 90% for various classifica-
tion models. The CNN was only trained on the central barrel region.

Model Rejection @ 90% Efficiency
|η| < 0.7 |η| < 3

CNN 26.584 -
GNN 46.419 20.500
Deep Sets 24.814 7.608
PEM

clus 6.123 3.977

4.2 Energy regression

For the regression task, we evaluate performance using the energy response ratio R = Epredicted

Etrue
.

Two key metrics are considered: the median response, which indicates calibration accuracy,
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Figure 3: Energy response versus true cluster energy using only calorimeter data as in-
put [5]. Median response (left) and normalized energy resolution, IQR, (right) are reported
for π0 (top) and π± (bottom).

and a measure of energy resolution defined by IQR = Rmedian±σR. This is intended to capture
the central 68% of the energy response distribution, and is plotted as normalized by twice the
median to get rid of scale effects (Figures 3b and 3d).

Using only calorimeter information, the GNN shows significant improvement over both
EM and LCW baselines across the entire energy spectrum. The median response stays closer
to unity, while the normalized IQR shows improved resolution. The Deep Sets approach also
outperforms the baselines, particularly for charged pions at low energies. These improve-
ments effectively address long-standing calibration challenges at extreme energy values [4].

Including tracking information further enhances calibration performance (Figure 4). All
point cloud methods demonstrate improved accuracy compared to both the baseline calibra-
tions and the image-based DNN approach. This advantage becomes particularly pronounced
at higher energies, where the point cloud methods maintain better energy resolution.

5 Conclusions and outlook

We have presented a review of deep learning approaches for particle identification and en-
ergy calibration in the ATLAS detector using point cloud representations. These techniques
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Figure 4: Energy response versus true particle energy using both track and calorimeter data
as input [5]. Point-cloud techniques are compared against standard EM and LCW baselines.
Median response (top) and normalized energy resolution, IQR, (bottom) are reported with
(left) and without EM and LCW baselines (right).

demonstrate significant improvements over both traditional calibration techniques and previ-
ous image-based machine learning approaches.

The point cloud methods achieve up to eight times better neutral pion rejection at fixed
charged pion efficiency compared to standard techniques, while maintaining superior energy
response and resolution across a wide range of energies.

Importantly, incorporating tracking information alongside calorimeter data yields further
improvements in energy calibration performance, especially at higher energies.

Building on these promising results, we are extending our approach to address the seg-
mentation step of the particle flow reconstruction. This extension focuses on the challenging
task of cell-to-track matching, where the goal is to identify calorimeter cells whose energy
deposits primarily originate from a specific particle track. The method processes events by
considering one “focus track” at a time, with all calorimeter cells within a specified ∆R cone,
employing the specialized PointNet [9] architecture for cell assignment.

Initial results in simple topologies, such as ρ or ∆ decay scenarios, where events typically
contain a single track, demonstrate promising performance consistent with our previous find-
ings. However, the generalization to more complex environments, particularly dijet events



with multiple overlapping tracks and calorimeter deposits, presents additional challenges that
require further investigation. These challenges highlight the importance of developing robust
methods that can maintain performance across varying event complexities while preserving
the advantages demonstrated in simpler topologies.

Future work will focus on improving the robustness of our methods in complex envi-
ronments and exploring additional architectural innovations to better handle multiple over-
lapping particle signatures. The insights gained from this work provide valuable direction
for the development of next-generation particle flow algorithms that can fully leverage the
complementary strengths of tracking and calorimeter information.
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