
A
TL

-S
O

FT
-P

R
O

C
-2

02
5-

01
7

23
Ja

nu
ar

y
20

25

Advancements in the in-file metadata system for the ATLAS
experiment

Peter van Gemmeren1, Attila Krasznahorkay2, Alaettin Serhan Mete1, Marcin Nowak3, and
Maciej Szymański1∗

On Behalf of the ATLAS Computing Activity†

1Argonne National Laboratory, Lemont, IL, United States∗∗
2University of Massachusetts, Amherst MA, United States
3Brookhaven National Laboratory, Upton, NY, United States

Abstract. The High-Luminosity upgrade of the Large Hadron Collider (HL-
LHC) will increase luminosity and the number of events by an order of magni-
tude, demanding more concurrent data processing. Event processing is trivially
parallel, but metadata handling is more complex and breaks that parallelism.
However, correct and reliable in-file metadata is crucial for all workflows of the
experiment, enabling tasks such as job configuration, decoding trigger infor-
mation, and keeping track of event selection. Therefore, ATLAS is enhancing
its current in-file metadata system to support metadata creation and propaga-
tion in more robust ways. This work presents developments in the evolution
of the metadata system. We investigate storage technologies tailored for in-
file metadata payload, exploring advancements in the ROOT framework, which
is used for storing data collected by the ATLAS experiment. We also discuss
the challenging process of summarising the content of metadata objects when
combining information from several sources.

1 Introduction

The in-file metadata system is a cornerstone of High Energy Physics (HEP) software, playing
a critical role in ensuring the reliable description of events within files and the files them-
selves. This reliability is a prerequisite for all workflows within the HEP domain. Over
the years, the in-file metadata infrastructure of the ATLAS [1] experiment at CERN’s Large
Hadron Collider has undergone significant evolution, adapting to the developments of Event
Data Models (EDM) and needs of physics analyses. A notable advancement in this area has
been the adaptation to multi-threaded (MT) processing [2].

As we approach the era of the High-Luminosity Large Hadron Collider (HL-LHC), the
number of events is expected to increase by an order of magnitude, necessitating more con-
current data processing capabilities. Unlike event processing, metadata handling presents
unique challenges, particularly in the merging procedure of metadata payloads. In response
∗e-mail: mszymanski@anl.gov, speaker
∗∗Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, under

contract DE-AC02-06CH11357
†Copyright 2025 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is

allowed as specified in the CC-BY-4.0 license.

mailto:mszymanski@anl.gov
https://www.anl.gov/prime-contract


to these challenges, ATLAS is actively enhancing its in-file metadata system to support more
robust methods of metadata creation and propagation, ensuring the infrastructure can meet
the demands of future HEP workflows.

2 In-file metadata in ATLAS

The ATLAS experiment employs a comprehensive metadata system that categorizes informa-
tion into distinct domains. These domains can be broadly classified into event-specific and
file-specific metadata, as detailed in Table 1.

Table 1. ATLAS Metadata Domains

Domain Description
EventStreamInfo Event sample description, used for production
EventFormat Summary of event layout, used for analysis
FileMetaData Event and provenance summary
ByteStream Run parameters
Interval of Validity Information with lifetime other than event or file
BookKeeping Event selections, cuts
LumiBlock Luminosity blocks stored in file
TriggerMenu Trigger configuration
Truth MC weights, generator details

The in-file metadata system plays a vital role in multiple aspects of ATLAS operations.
It enables job configuration using input file information, facilitates software component ini-
tialisation, and enables the instantiation of C++ objects using names stored in the file. Addi-
tionally, it handles trigger information decoding, monitors event selection and the integrated
luminosity of the analysed data, and allows for user-specific annotations. These capabilities
make the system fundamental to all ATLAS workflows, including reconstruction, simulation,
derivation, and analysis. The example of the on-disk metadata content in a typical Monte
Carlo file used as an input for physics analysis is shown in Listing 1.

The metadata processing and I/O infrastructure is deeply integrated within Athena [3],
the software framework of the ATLAS experiment based on C++ and Python. One of the
main challenges of the in-file metadata design was to provide a practical way of caching the
metadata in memory in a data store, which in principle is independent from the file [4]. At
its core, the service component called MetaDataSvc orchestrates metadata propagation tools
through file incidents (opening and closing the input files). Metadata describing the event
sample is typically created via tools operated by AthenaOutputStream algorithm(s) (one
for each output file), after each processed event. Such a design requires generally two tools
per metadata domain that need to operate together. We evaluated a simplified design using a
single tool with dual modes (creation and propagation), but found that the current approach
of using two separate tools per category offers better flexibility with minimal additional com-
plexity.

In-memory metadata employs two distinct stores. The input store is dynamically pop-
ulated with content from each new input file and cleared when moving to the next one. In
parallel, an output store accumulates new content by appending to output metadata contain-
ers throughout the workflow runtime. At the job’s conclusion, metadata objects are written
to the output stream(s) using tools implementing abstract interfaces. In practice, these ab-
stractions are implemented using TTrees within ROOT [5] files, with metadata stored in a
dedicated TTree containing a single entry and sharing much of its I/O infrastructure with



/Digitization/Parameters:
DigitizedDetectors: ['pixel', 'SCT', (...)]
IOVDbGlobalTag: OFLCOND-MC21-SDR-RUN3-07
(...)

/Generation/Parameters:
HepMCWeightNames: { 'AUX_bare_not_for_analyses' : 193 , (...)}

/Simulation/Parameters:
ApplyPRR: True
BeamPipeSimMode: FastSim
(...)

EventFormatStreamDAOD_PHYS:
AntiKt10LCTopoJets: DataVector<xAOD::Jet_v1>
(...)

FileMetaData:
amiTag: e8453_s3873_r13829_r13831
beamEnergy: 6800000.0
beamType: collisions
conditionsTag: OFLCOND-MC21-SDR-RUN3-07
geometryVersion: ATLAS-R3S-2021-03-00-00
isDataOverlay: False
mcCampaign: mc21a
productionRelease: Athena-24.0.22
runNumbers: [410000]
simFlavour: FullG4_QS

StreamDAOD_PHYS:
eventTypes: ['IS_SIMULATION', 'IS_ATLAS', 'IS_PHYSICS']
itemList:
('xAOD::TrigMissingETContainer', 'HLTNav_RepackedFeatures_MET')
(...)

lumiBlockNumbers:
1
(...)

numberOfEvents: 401
processingTags: ['StreamDAOD_PHYS']

TruthMetaData:
evgenTune: A14 NNPDF23LO
generators: Powheg+Pythia8(v.307)+EvtGen(v.2.1.1)
mcChannelNumber: 601229
weightNames:
MUR1_MUF2_PDF260000
(...)

auto_flush: 80
file_comp_alg: 5
file_comp_level: 5
file_guid: 5DB82173-BEB7-C24D-88C2-171E29F814E7
file_size: 20555186
file_type: POOL

Listing 1: The example of the on-disk metadata content in a typical Monte Carlo file used as
an input for physics analysis. Note that ellipsis marks (...) are used for the sake of brevity.



event data. While this approach works reasonably well, it was not specifically designed for
the metadata use case, making it somewhat of an imperfect fit since TTree was optimised for
handling large datasets with multiple entries, whereas metadata, by its nature, consists of a
single entry containing information about the event sample and its wrapper file.

The transient representation of metadata attributes across all domains includes simple
types (Plain Old Data and std::string), containers (std::vector) of simple types, as well
as nested vectors, std::set, std::map, and std::pair, with most of these data structures
encapsulated within xAOD classes [6]. Despite the rich structure of metadata objects, their size
and I/O performance in production workflows are not significant concerns, as they represent
a relatively small fraction of the total file size - typically less than 1% of a Derived Analysis
Object Data (DAOD) [6] file, which is the main data format for physics analysis.

To take full advantage of all available computing resources, Athena supports differ-
ent concurrency modes. This includes multi-threading as well as multi-processing utilising
shared I/O to avoid having to merge output data files [7]. As each event’s data and process-
ing is independent of each other, they are trivially parallelisable, and thus data can simply
be appended. For metadata, however, the merge step requires domain-specific implementa-
tion to summarise metadata from different workers. Moreover, different metadata categories
require specific handling at various stages of processing. For example, ByteStream meta-
data is created during reconstruction and subsequently propagated, while others may need
to be updated at multiple steps of processing. This complexity necessitates the use of var-
ious Gaudi [8] components and requires sophisticated configuration approaches to support
different running modes.

Recent improvements in Athena job configuration [9] have significantly enhanced the
metadata system’s configuration which has become more modular and explicit, leading to
better maintainability and flexibility. Enhanced testing and validation procedures have been
implemented, resulting in improved infrastructure robustness and ensuring healthy metadata
content across all ATLAS workflows. These advancements represent a significant step for-
ward in the system’s evolution, providing a more reliable and efficient framework for meta-
data management in ATLAS operations.

3 Summarising metadata content

Merging metadata presents unique challenges compared to the straightforward concatena-
tion of event data. In fact, it depends on the semantics of particular attributes. The merging
process must account for different metadata types, where some values are expected to remain
constant throughout the job execution, whereas others are mutable and can be updated accord-
ing to various rules. Additionally, the merging strategy needs to consider how many events
from the input files were processed, particularly for metadata categories such as luminosity
information.

A robust merging procedure is essential not only for combining files but also for support-
ing concurrent workflows, in particular when summarising the information collected by the
workers in the multi-processing mode. While ROOT’s hadd utility might seem like a natu-
ral solution for merging files, implementing it for metadata would require teaching metadata
objects to merge themselves, detecting input compatibility, and determining appropriate han-
dling strategies for different metadata types. However, this approach is limited to classes
inheriting from TObject, making it unsuitable for our metadata system.

The metadata objects in ATLAS follow several distinct merging scenarios. In the
case of unique accumulation, applicable for example to EventFormat and TriggerMenu,
new values are appended to existing ones with deduplication. For example, merg-
ing collections containing [electrons,muons] and [electrons,photons] results in



[electrons,muons,photons]. Natural addition applies to cases like event counts in
EventStreamInfo, where values from the inputs are simply summed.

For certain metadata fields, particularly in FileMetaData, the system adopts a first-value
priority approach. When values are identical (such as beam energy across files), no special
handling is needed. However, when differences occur, the system uses the first encountered
value. This may be acceptable in some cases (like different software release versions) but
potentially problematic in others (such as mixing collision and MC data), necessitating ap-
propriate warning or error mechanisms.

The most complex scenario involves processing-dependent metadata, exemplified by
LumiBlock metadata. To obtain the meaningful luminosity information, one needs to keep
track whether LumiBlocks are complete (all events processed), incomplete (partial process-
ing), or suspect (more events processed than expected from the information taken from an
external database).

Currently, metadata merging is handled by dedicated tools within the Athena framework.
This approach presents challenges due to category-dependent handling requirements, partic-
ularly in shared I/O mode. Another critical design consideration is that metadata describing
the event sample must remain readable even without events present, which is essential for
workflows such as derivation production where the output event collections may be empty.

4 Storage technology

RNTuple is ROOT’s future I/O system for HEP data [10]. As the successor to TTree, it offers
a more performant, modern, and robust solution for data storage. As ATLAS transitions
its event data storage to RNTuple [11], we are taking the opportunity to revisit the way we
persistify the in-file metadata. Our goal is to establish a robust storage solution suitable for
the HL-LHC era that is both appropriate and performant, while facilitating robust merging
capabilities. This re-evaluation prompts us to reconsider our current approach, seeking an
equivalent standard to event data tree storage and examining the concept of file granularity in
the context of potential object store usage.

It is worth noting that there is no standardised approach to metadata storage across High
Energy Physics experiments. The diversity of solutions used by experiments suggests poten-
tial benefits from cross-experiment collaboration and standardisation efforts.

In our investigation of alternative storage solutions, we have developed two prototypes.
The first implements metadata storage in RNTuple, following our work with event data and
including adaptations of auxiliary Python tools (used for e.g. file peeking and validation).
Such an approach is a natural evolution of the currently employed solution which is our basic
scenario for the future metadata storage technology. One needs to emphasise that since TTree
will enter legacy phase, we need to take some action concerning in-file metadata storage
anyway. However, while we have not found any showstoppers of persistifying metadata in
RNTuple, there are also no significant advantages over the current solution based on TTrees.
RNTuplewas also not specifically designed for single-entry data samples. While we observed
a tiny increase in on-disk size compared to TTree, this is entirely negligible given the small
size of metadata compared to event data.

The second prototype explores metadata storage in ROOT-keyed containers based on TKey,
reviving an implementation that dates back to the LCG POOL project [12]. However, this
approach has proven suboptimal, relying on an old, low-level API and failing to address the
fundamental challenge of metadata merging.

Looking forward, our preferred direction aligns with the planned user-provided metadata
feature in RNTuple, as outlined in the RNTuple architecture document [13]. This upcom-



ing capability appears to offer the most promising solution for our metadata storage needs,
potentially providing both the flexibility and performance required for the HL-LHC era.

5 Conclusions

This paper presented our ongoing work to enhance the ATLAS in-file metadata system in
preparation for the HL-LHC era. The metadata system represents an integral component of
the ATLAS software ecosystem and is crucial for supporting a successful physics programme.
Our investigations have focused on multiple areas of improvement, particularly regarding the
in-file metadata storage mechanisms and their optimisation.

We are particularly interested in the development of user-defined metadata capabilities
within the RNTuple. This advancement would open new possibilities for more flexible and
efficient metadata handling. As we continue to develop these systems, we recognize the
importance of collaboration within the broader high-energy physics community to establish
common strategies for addressing the growing challenges of metadata processing.

Our efforts are directed towards creating more robust methods for summarising metadata
objects, a task that has become increasingly challenging given the requirements for concur-
rent processing to achieve higher data rates. This work represents an important step forward
in preparing the ATLAS metadata infrastructure for the demands of future experimental con-
ditions at the HL-LHC.

References

[1] G. Aad et al. (ATLAS), The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003

[2] Berghaus, Frank, Krasznahorkay, Attila, Martin, Tim, Novak, Tadej, Nowak, Marcin,
Schaffer, A.C., Tsulaia, Vakho, van Gemmeren, Peter, ATLAS in-file metadata
and multi-threaded processing, EPJ Web Conf. 251, 03006 (2021). 10.1051/epj-
conf/202125103006

[3] ATLAS Collaboration, Athena (2021), https://doi.org/10.5281/zenodo.
4772550

[4] D. Malon, P. Van Gemmeren, R. Hawkings, A. Schaffer, An inconvenient truth: file-
level metadata and in-file metadata caching in the (file-agnostic) ATLAS event store, J.
Phys.: Conf. Ser. 119, 042022 (2008). 10.1088/1742-6596/119/4/042022

[5] R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev,
S. Linev, D. Piparo, G. GANIS et al., root-project/root: v6.18/02 (2020), https://
doi.org/10.5281/zenodo.3895860

[6] G. Aad et al. (ATLAS), Software and computing for Run 3 of the ATLAS experiment
at the LHC (2024), 2404.06335.

[7] A. Serhan Mete, P. van Gemmeren (ATLAS), Shared I/O Developments for Run 3 in
the ATLAS Experiment, PoS ICHEP2022, 219 (2022). 10.22323/1.414.0219

[8] LHCb Collaboration and ATLAS Collaboration, Gaudi (2024), https://doi.org/
10.5281/zenodo.14018447

[9] W. Lampl, A new approach for ATLAS Athena job configuration, EPJ Web Conf. 214,
05015 (2019). 10.1051/epjconf/201921405015

[10] J. Blomer, P. Canal, F. de Geus, J. Hahnfeld, A. Naumann, J. Lopez-Gomez, G.L.
Miotto, V.E. Padulano, ROOT’s RNTuple I/O Subsystem: The Path to Production, EPJ
Web Conf. 295, 06020 (2024). 10.1051/epjconf/202429506020

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1051/epjconf/202125103006
https://doi.org/10.1051/epjconf/202125103006
https://doi.org/10.5281/zenodo.4772550
https://doi.org/10.5281/zenodo.4772550
https://doi.org/10.1088/1742-6596/119/4/042022
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.22323/1.414.0219
https://doi.org/10.5281/zenodo.14018447
https://doi.org/10.5281/zenodo.14018447
https://doi.org/10.1051/epjconf/201921405015
https://doi.org/10.1051/epjconf/202429506020


[11] A.S. Mete, M. Nowak, P. Van Gemmeren (ATLAS), Tech. rep., CERN, Geneva (2024),
https://cds.cern.ch/record/2905189

[12] D. Duellmann, The LCG POOL project: General overview and project structure, eConf
C0303241, MOKT007 (2003), physics/0306129.

[13] ROOT Project, RNTuple Architecture (2024), accessed: 11.12.2024, https:
//github.com/root-project/root/blob/v6-34-00-patches/tree/ntuple/
v7/doc/Architecture.md#future-features

https://cds.cern.ch/record/2905189
https://github.com/root-project/root/blob/v6-34-00-patches/tree/ntuple/v7/doc/Architecture.md#future-features
https://github.com/root-project/root/blob/v6-34-00-patches/tree/ntuple/v7/doc/Architecture.md#future-features
https://github.com/root-project/root/blob/v6-34-00-patches/tree/ntuple/v7/doc/Architecture.md#future-features

	Introduction
	In-file metadata in ATLAS
	Summarising metadata content
	Storage technology
	Conclusions

