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Fast simulation with generative models at the LHC
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The increasing integrated luminosity of the data collected at the major Large Hadron Collider ex-
periments – ALICE, ATLAS, CMS and LHCb – necessitates increasingly large simulated samples.
Given that the computational resources won’t grow proportionally to the integrated luminosity,
how can the experiments produce these large samples? A key technique the experiments use to
address this challenge is replacing traditional detector simulation with generative machine learning
models. These generative models achieve O(10 − 1000) times improvements in computational
efficiency while maintaining high accuracy. Specifically, I discuss four solutions: ALICE’s sim-
ulation of Zero Degree Calorimeter with a Variational Autoencoder, ATLAS’s use of Generative
Adversarial Networks for calorimeter simulation, CMS’s end-to-end FlashSim simulation based
on Normalising Flows, and LHCb’s Lamarr pipe-line employing Generative Adversarial Net-
works. The speed-up and physics performance achieved by these solutions cements the status of
generative models as a viable, faster alternative to the established simulation techniques, which is
an important step towards addressing the computational demands of the current and future LHC
data analyses.
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1. Why do the LHC experiments need fast simulation?

The detectors of the major LHC experiments: ALICE [1] ATLAS [2], CMS [3] and LHCb [4], are
undergoing - or have undergone - upgrades targeting an order of magnitude higher luminosities
compared to Run 2 (2015–2018). The analysis of these larger data-sets requires correspondingly
larger simulated samples, which in turn require larger computing resources. The problem is that
this large increase in computing resources, especially the processing power, is not financially viable;
Figure 1 shows typical CPU usage of an LHC experiment; this is dominated by the detailed (also
called full) simulation with Geant4 [5], followed by fast simulation, which alone saturates the
pledged resources. To solve the processing power problem, the experiments therefore need to:

a) use fast simulation rather than the detailed simulation for a large fraction of events,
b) substantially speed-up fast simulation.

Detailed Simulation

Fast Simulation
MC Reconstruction 
User jobs 
Data Stripping

Pledged resources

Figure 1: Usage of LHCb CPU power at Tier0/1s during 2021. Adapted from [6].

Both steps involve a trade-off between the speed and accuracy. In terms of these, two approaches
have emerged:

• fast simulation of individual detector components in which the full simulation of the slowest
detector component (typically calorimeter) is replaced by a tailored fast simulation.

• ultra-fast simulation which simultaneously replaces multiple simulation and reconstruction
steps with fast approximations (a prototype of such approach is DELPHES [7]).

The fast simulation provides high accuracy and a limited speed-up, because the next slowest com-
ponent of the production chain becomes the bottle-neck. On the other hand the ultra-fast simulation
sacrifices some flexibility to deploy new object reconstruction, as it emulates the reconstruction at
the time of developing the simulation model. All the experiments have deployed or developed both
approaches. I limit the discussion to the work published by the experiments, because a collaboration
endorsement means the approach is contributing to resolving the experiment’s computing resources
problem. I focus on the most recent incarnations which harness generative machine learning (ML)
models - a technique of choice to simultaneously ensure high speed and accuracy.
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2. Fast Simulation

I first discuss fast simulation, which aims to replace the simulation of the most CPU consuming
detector with a generative model, whereas detailed simulation is used for the rest of the detector. For
each of ALICE, ATLAS, CMS and LHCb, the simulation of the calorimeter was the bottle-neck,
and all four experiments have presented a generative ML version of their calorimeter simulation.
Typically, this results in O(100) faster calorimeter simulation while retaining high accuracy, and a
O(10) speed-up of the detector simulation chain. I discuss the solutions by ALICE and ATLAS.

2.1 Fast Simulation of ALICE Zero Degree Calorimeter

ALICE has developed a fast simulation of the Zero Degree Calorimeter (ZDC), which measures
energy of spectators – particles that did not directly participate in collision. The ZDC is a system
of five sampling calorimeters placed about 120 meters upstream of the ALICE time projection
chamber. The ZDC read-out consists of 44 × 44 fibers (Figure 2a), and the corresponding images
are used as fast simulation inputs (Figure 2b).

(a) (b)

Figure 2: (a) ALICE ZDC read-out and (b) corresponding images used for fast simulation. Source: [8]

The best performing method is based on a Variational AutoEncoder (VAE), which consists of two
networks: an encoder compressing the data to a latent space, and a decoder trying to reconstruct
the original input data from this latent space. To improve the accuracy of the ZDC simulation,
a CorrVAE architecture with two latent spaces is used, one for user-defined properties, and one
for the rest [9]. In any detector simulation, the resulting images need to correspond to the images
produced by the input particles. For the ZDC simulation, this conditioning is introduced by a third
latent space encoding particle properties. The ZDC simulation based on CorrVAE is found to over-
perform simulations based on VAEs and generative adversarial networks. A prototype has been
integrated in ALICE’s production chain, and delivers a 100-times speed-up of the ZDC simulation.

2.2 Fast Simulation of ATLAS Calorimeter

At ATLAS, the calorimeter takes up about 80% of the detailed simulation time [10]. The fast
calorimeter simulation (AtlFast3) speeds it up through a hybrid of two approaches (Figure 3):

• FastCaloSim: a parametrised model, and
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• FastCaloGAN: using generative adversarial networks (GANs), a system of two networks in
which the discriminator network is trained to distinguish the detailed simulation from the fast
simulation samples produced by the generator network.
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Figure 3: Simulation tools for AtlFast3, depending on the detector region, particle type and energy [11].

One benefit of such hybrid approach is shown in Figure 4a; neither FastCaloSim nor FastCaloGAN
is able to reproduce the number of large-radius jet constituents, whereas the hybrid approach can.
Depending on the physics process, AtlFast3 speeds up the ATLAS detector simulation chain by
3–15 times (Figure 4b), and is used for about 50% of the simulated events.
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Figure 4: ATLAS fast calorimeter simulation: a) Number of constituents in large-radius jets in sam-
ples simulated with detailed simulation (circles), FastCaloSim & FastCaloGAN (triangles) and their hybrid
(squares) [12]. b) Simulation time per event, showing speed-up of fast (AF3) over detailed (full) simula-
tion [13].

3. Ultra-Fast Simulation

Next, I discuss ultra-fast simulation which replaces multiple simulation and reconstruction steps
with fast approximations, as sketched in Figure 5. This targets O(100− 1000+) speed-up of the full
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production chains, and emulates higher level algorithms, such as track reconstruction, in addition
to the detector simulation. While delivering very high speed-ups, such algorithms need to capture
very large sets of high level observables using a limited number of input features, and need to be
retrained in case reconstruction changes. I discuss the approaches by the CMS and LHCb.

Data
Analysis

Monte Carlo
Generator

Detailed Simulation

FlashSim

Figure 5: Comparison of production flows of FlashSim and the detailed simulation. Adapted from [14].

3.1 CMS FlashSim

CMS’ ultra-fast simulation, FlashSim [14], takes event generator events as input, and outputs
events with emulated simulation and reconstruction at a NANOAOD [15] level, used directly by
the analyses (Figure 5). The FlashSim is analysis-agnostic, and employs a normalising flow
(NF) model, in which complex distributions (output) are obtained from simple distributions (input)
through invertible, smooth function transforms. FlashSim deploys one model per physics object
(jet, 𝑏-jet, electron. . .), ran in a chain to capture correlations between the objects. Early results in
Fig. 6 show good modelling of these, and FlashSim achieves up to kHz event generation.

(a) (b)

Figure 6: CMS FlashSim performance for a) large radius jets and b) deep neural network discriminant
between VBF 𝐻→𝜇𝜇 signal and backgrounds. FlashSim in full, detailed simulation in dotted lines [14].

3.2 LHCb’s Lamarr

The LHCb’s ultrafast simulation [16] is split into charged particles (top branch of Figure 8) and
neutral particles (bottom branch). A set of GANs is used to emulate aspects key to LHCb’s analyses:
tracking resolution and charged particle identification. The performance of these GANs is shown
in Figure 8, for Λ0

𝑏
production with Λ0

𝑏
→ Λ+

𝑐𝜇
−𝜈𝜇, and Λ+

𝑐 → 𝑝𝐾−𝜋+. The good modelling
on the reconstructed mass of the Λ+

𝑐 (a) requires good modelling of the tracking resolution for the
𝑝, 𝐾−, 𝜋+ decay products. The proton reconstruction efficiency as a function of 𝑝T (b) requires
good particle identification. Lamarr is fully integrated into the LHCb’s production workflow and
achieves O(100) speed-up over the detailed simulation.
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Figure 7: Components of LHCb’s ultra-fast simulation. Adapted from [16].
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Figure 8: Performance of LHCb’s ultra-fast simulation in Λ0
𝑏
→ Λ+

𝑐𝜇
−𝜈𝜇, Λ+

𝑐 → 𝑝𝐾−𝜋+ decays. a) Recon-
structed mass of the Λ+

𝑐, b) proton selection efficiency [16].

4. Summary and Outlook

To address computing resource constraints, the LHC experiments harness generative fast simula-
tion approaches, including: ALICE’s ZDC simulation (CorrVAE), ATLAS’s calorimeter simulation
(GANs), and ultra-fast approaches: CMS’s FlashSim (NFs) and LHCb’s Lamarr (GANs). These
achieve O(10−1000) times speed-ups over the traditional production, and excellent physics perfor-
mance establishes the generative fast simulation as a viable alternatives to the detailed simulation.

An open question is: how to balance the required simulation speed-ups with the demands of
the LHC physics program, including %-level Higgs boson measurements and developments of next-
generation object reconstruction? Steps in this direction include: (1) developing fast simulation
of more detector components, such as inner trackers; (2) advancements in generative models, such
as diffusion models (DALL-E 2 [17], Imagen [18], StableDiffusion [19]) preferred in industry
over CorrVAEs, NFs and GANs; (3) Experiment-independent fast simulation tools, where LHC
experiments have made large progress, including ATLAS’s tool pygeosimplify [20] for building
simplified geometry and LHCb’s VAE calorimeter simulation based on the CaloChallenge [21].
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