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Abstract
The cross section for channeling electron-positron pair production in continuum states is
obtained for a crystal string potential proportional to p~' with p the distance to the crystal string.
For two dimensional Sommerfeld-Maue-like electron and positron wave functions matrix
elements and cross section are obtained for unpolarized photons. The fact that channeling

continuum pair production can only occur when the photon is hitting the crystal string at a small,
finite angle, is taken into account.
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1. Introduction

The production of electron-positron pairs by photons in a crystal is a process which has been
studied experimentally and theoretically for many years [1]. The theoretical studies have been
confined to semi-classical calculations, wich seem to give useful results for experimental
applications. The usefulness of approximate semi-classical methods must be considered in the
light of the fact that exact calculations are difficult and in general complicated.

The present paper presents a quantum mechanical calculation of pair production in a crystal for a
. « . kl 2 \172 . .
crystal potential proportional to / / p. with p= (x‘ + 3 ) . the distance to the crystal string.

With this potential the Dirac equation has high-energy two-dimentsional Sommerfeld-Maue-like
solutions, as shown in the preceding paper [2] which can be used for exact calculations of the
matrix elements. The calculation is similar to the calculation by H. A. Bethe and L. C. Maximon
[3] of pair production on single atoms, although the present two-dimensional calculation proves
to be more complicated. It is of course gratifying for the authors to note that matrix element
calculations can be performed in two dimensions with similar methods to those used by A.
Sommerfeld [4] and that the integrations give hypergeometric functions as in the three-
dimentsional case which is not abvious prior to the calculation. These questions are discussed
explicitly in Appendix 1.

2. The matrix elements

With a potential V(p) which does not take into account the crystal structure along the crystal
string, no momentum can be transfered in the string direction, which we take as the Z-axis,

q.=k.—p;-p. =0 2.1)

where ¢, is the momentum transfer and &, p . p . are the momenta of the photon, positron and
electron, respectively. Now if the photon momentum is parallel to the crystal string, k. = o,

momentum and energy balance cannot be maintained. In order to obtain pair production, then, k

must have a transverse component, k . giving §, =k . —P.— P, - Only photons hitting the
crystal string at a small angle =4, /o larger than

1 min m

5min = > T (22)

can produce pairs. The minimum value & is obtained from the useful high energy, small
angle relation

@ * - _(D_ -y — N _ii__ 2 ~
E—(m) ) (p:) =& rE " (2.3)

These considerations do not seem to have been considered to be of importance and taken into
account in the published papers on semi-classical calculations.

The cross section for pair production is given by
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with o the fine structur constant and o the photon energy. M is the matrix element
M:jdfqu_(w Gy (F ) (2.5)

with (7 ) the positron and electron wave functions. ¢ the photon polarization and ¥ the
Dirac vector matrix.

It is convencient to factor out the z-dependent part of the matrix element, which is

L . . . N
A je’(*””’ “Fas = oaLslg)) (2.6)

0

for large coherence lengths L. Integrating out the redundant coordinates in Eq. (2.4) we find the
physical cross section per unit length of the crystal

d's/L =(2—j[)7§—)w 1"p}—];ifp—:&_p;dp;d@fmp;d@ 2.7)
with the transverse part of the matrix element
M, =u [dpF (B)j CE"F (B, (28)
where F,(p) is obtained from Eq. (6.6) in 1.
F.(p)= M[l + ;}vv v H id, :é:?i(mm f)jé)) 2.9)
L,

and u, are the free particle positron and electron spinors. and d, = d

t

d=7a %c with the

parameters defined in I. The electron and positron wave functions describing produced particles
are accordingly asymtotically given by plane waves plus cylindrical ingoing waves.



When the sum over electron and positron polarizations and the average over photon polarizations
are performed we find
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+(E‘ E - +-(}3, ~k)(l3, k))(‘i‘ *li*lj)

+2 Re[b‘/,'((i‘ )=kl )+ e ax((7 5 )-(p AN k))]}

(2.10)

Where the integrals /,, /_ and / are given by

1= [dpF (p_)e" 1 (p)

I - i dPpF (p)e 'V 1 () @11)

L=t oV F Gl s ()

2FE

where

F.(p)= F(?idt Ziilpip ffp)) (2.12)
As first used by A. Sommerfeld [4] and later by A. T. Nordsieck [5] an integral

I, = [dpp™ F (e 'k (5) (2.13)

is defined which makes it possible to derive all integrals from 1, by the use of the relation

VL(prJF IBMS) = (’/7‘ ! p)VF (p.p+ ﬁjﬂ))
which gives

O (==
1= _gl()(px ,g))’ ., 2.14)

ji = (ipf /2Et)V/), 1,,(/3i €)

[t

The calculation of the integral /,, tollowing A. Sommerfeld's {4] method of integration, also
used by Nordsieck [5] is performed in Appendics 1.

Performing the derivations in Eq. (2.14) we find the final results for the integrals
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with F' the hypergeometric tunction and
21

x=(2/D.0)¢ (pp -5 p )+ 20a, 5 )Na 5}
3 The cross section

In the further calculation it is convenient to introduce the vectors V. and v

V,=p'-E(k /o)
and note that
Go=k=pi-p =-V.+1").

Further

Dt = qi +2((_ji ﬁ; ) = %(”1: + l/jz)

¥

which shows the convenience of introducing in analogy to reference [3]

)

g=(m’+v2)" m=(m 1)

With these notations equations in the previous chapter simplify considerably.

(2.16)

(2.17)

(3.1)

(3.4)



Eq. (2.10) becomes for high energies and small angles
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Likewise the integrals Eq. (2.15) simplity
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/=C{d . ‘(Eﬁn)f'(,\')ﬂ{ﬁ*(,pib*éﬂni Q)—p—pLJG(X)}

f+:C‘pl —dqf £.L NF(x)+i Afn—/ g, — pl—pfﬁi G(x) (3.6)
2E, P Pl

=Bl g BE iy [ HE -1, - B =22 p |Gex)
2E. p.o ® L

where d = d,p| / E,, while x can be written as
EE 5oy o[
x=4pip] *‘Z‘&Vn(il +V ) cas‘( w) (3.7)
o) 2
where ¢, and ¢_ are the angles in the p plane given by

~ ﬂ\i -
9. P, = cos..

Alternatively x may be expressed as

2
.  EE L+ , L0
x=4pip] ?én{kl cos[ P10 )— (pr+p, )cos((‘i%ﬂ (3.8)

where the angles ¢, and ¢_ refer to the fixed vector & L

~

~t
k. p. =coso,.

In order to obtain the cross section. we want the polarization independent matrix element squared

written in terms of F(x) and G(x). We define the coefficients f, g, and A, rewriting Eq. (3.5) in the
form

éz;wz = %]('f{f}ﬂx )+ gl(}(x)r + him F* (x)G(x)]}_ (3.9)

After some algebra we find
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EX+EY, . . , : . E . - -(E E°
h=—p’s ~(p Evie ~plEVI ) e mi(p EE - pE n‘)+E‘ —EnV, V| ———
A © E E
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EE ! . o
+—’;’§n(mm +VoV )(NJ ~-1?_Ei)}+(pf+p4)m‘w(ivn)+
& -

Note that fand g are symmetric in + <> —, while 4 is antisymmetric.
The cross section Eq. (2.7), averaged over photon polarizations and summed over electron and
positron poarizations, then becomes

1 2a IN N[

oy LR + g6 + i P ()6

gl plE -p.E| o
(3.11)
xp dp.do”p dp do

with f, g and 4 given in Eqgs (3.10, a-c), and F(x) and G(x) in Eq. (2.16). The normalization factors
are according to Eq. (6.8) in |

/

N, = (coshﬁdi Yo
where X is a phase. This gives

e —rd, e +ad

2

N.N_ (3.12)

coshnd . cosh Tcdi
which in the high energy limit gives

]\r N ‘2 :46—737“/_
A

The cross section is then given by
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(3.13)

Appendix 1

In order to calculate the integral /, Eq. (2.13) we follow the method of A. Sommerfeld [41 who
calculated the corresponding integral in three dimensions. The function 1,

!
2

b | o~

I :jdpdch[id: ilpipep ,5))814}&;)]:(71{1” ,. ,-i(p1p+p+.;3)) (A1)

becomes when the integral representation of the Kummer function!

1
Flaye;x)= Bje”t""(] ) " (A.2)

0

is introduced

! ,
I,=B,B_ |du™""(I-1) " jduu’ " (1 —u) >
0 +
4

(t
I(Lpfspwf Pop /'7'(5)/‘:( popep plu
x | dpdpe :
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I'(Fid, )r(; tid, )

where B, =

The p and ¢ integrations give

vo |~

!
—id
5

/ / 1 ‘ B
1, = 2nB+B_jdn*“’- W1—g) jduu“’ Hi—u) (47 B) (A.4)
[ {

where
A=s—i(tp1+up;). ]é:ql+tﬁj+u[3’.

It is important that the quadratic terms in 4° + B” cancel giving a linear function in  and u.

IAs demonstrated by A. Sommerfeld. the integration path can alternatively be described by a loop in the
complex plane encircling the points 0 and |



(AJ +Bz)7é =(u - hu) / A (l—ﬁu) ) (A.5)

with

a=ql+2(g, p —icp;
and

b=20pip;—p.-p )i+ 2iep, —G, - p.).

where we have neglected £ terms, since they do not contribute to /,. Introduction of (A.5) in
(A.4) gives a hypergeometric function

/

)] o ! —id_
- - b 2 ! b b
Jduu"l"'(l — u) ( /- - u) =B F(l,id S ) = B<I(1 - v) ,

) : a A\ D 2

a a

and this is a crucial point in the integration, the index 1/2 in the Kummer function matches the
power 1/2 from the spatial integration reducing the hypergeometric function to a simple function
which makes it possible to obtain a hypergeometric function as a result of the final t-integration. In
the three-dimensional case of A. Sommerfeld the crucial index is 1.

The integral is now

I
+d
5

(a-b)

i

! 4
I, =2mB, [du'(1-1) " a

[

The integral has, considered as a loop integrand. the tour branch points:
=00 =1 1=-¢ /2g,-p-iep)  (a=0)

220G —igp,
and /= q. ( rP 18[7*) (a—b:())

Apipi-B'p -G:p +epi]

while the integrand vanishes as 7~ at infinity.
The change of variable, conserving the limits (0,1)

Y

f=—3
v—I+1,

changes the integral into

1 i/
I, = B,Cavw (] ~v) " (1= xv) ™ (A.6)
0
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with

L i~ pip )+ 2G5 a5 ) - 2ielpid e, + pr(G:P))
(D' —2isp! (D - 2iep;)

and

> s, N id
c-m a4 g
q; \ D, =2iep; D - 2igp,

where we always neglect ¢” -terms.

The integrand in terms of the new variable has the branch points v, =0, v,=/1,

v, =0, and the integral /, is a hypergeometric function
Y
I, =2nK F(—zd, id tox J

21 2

Following the prescriptions in Eq. (2.14) and remembering that
iF —id _,id_ ix) =2d.d F( I—id I+id 5 x)
dx 21 2 2 2

one finds the integrals /, and /, given in Eq (2.15).

(A7)

v, =1/x and
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