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MACHINE LEARNING WITH QUANTUM CIRCUITS
Variational Quantum Classifier algorithm

1. Data are fed into a quantum circuit with 
trainable gate parameters

2. Measurements of the final quantum state are 
mapped to classification predictions

3. A classical optimizer compares predictions with 
targets and updates the parameters of the circuit

QUANTUM COMPUTING
• Basic idea: performing computations using 

quantum mechanical systems
• The Qubit is the elementary unit of 

information of a quantum computer
• It is 2-level quantum system that can be 

manipulated by quantum gates 
• Quantum circuit: multiple qubits manipulated 

by a collection of  quantum gates
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𝒃 vs ഥ𝒃 TAGGING WITH QUANTUM MACHINE LEARNING

• In b-jets, the information on the charge of the b-
quark is diluted in the particles produced in the 
hadronization and fragmentation processes

• Inclusive Quantum Machine Learning (QML) 
algorithm for the charge tagging of b-jets

• Entanglement could allow quantum models to 
exploit correlations among jet’s particles

DATASET
𝑝𝑝 → 𝑏ത𝑏 inclusive di-jets sample 
of LHCb simulations at 𝑠 = 13
TeV. 5 types of particles are 
considered, selecting the ones with 

the highest 𝒑𝑻
𝒓𝒆𝒍 in the jet:

For each particle Global variable

16 variables from the jet structure

RESULTS
• Several quantum models have been tested on noiseless simulators
• Quantum models are compared to a Deep Neural Network (DNN) and tagging 

with the muon charge (𝜇-tag) in terms of the 𝒃-jet charge tagging power

𝜖𝑡𝑎𝑔= 𝜖𝑒𝑓𝑓 1 − 2𝜔 2

Efficiency Mistag

Complete 16 variables dataset Reduced 4 variables dataset (𝝁 + 𝑸𝒕𝒐𝒕) 
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POSSIBLE APPLICATION
Forward-Central 𝒃ഥ𝒃 production 

asymmetry 

𝐴𝑏ത𝑏
𝐹𝐶 =

𝑁 Δ 𝑦 > 0 − 𝑁(Δ 𝑦 < 0)

𝑁 Δ 𝑦 > 0 + 𝑁(Δ 𝑦 < 0)

Δ 𝑦 = 𝑦𝑏 − 𝑦ത𝑏
The statistical uncertainty on the 
asymmetry is directly related to  
the 𝒃-jet charge tagging power

𝜎 𝐴𝑏ത𝑏
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DNN performs better on the complete dataset. 
QML models were trained on 1/50th of jets due 

to computational constraints

DNN and QML show the same performance on a 
reduced dataset. Both outperform 𝝁-tag.

The same number of jets was used for training
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