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Quantum Gates Measurement
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QUANTUM COMPUTING
Basic idea: performing computations using
guantum mechanical systems
The Qubit is the elementary unit of
information of a quantum computer
It is 2-level quantum system that can be
manipulated by guantum gates
Quantum circuit: multiple qubits manipulated
by a collection of quantum gates
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MACHINE LEARNING WITH QUANTUM CIRCUITS
Variational Quantum Classifier algorithm
Data are fed into a quantum circuit with
trainable gate parameters
Measurements of the final qguantum state are
mapped to classification predictions

Variational @ . A classical optimizer compares predictions with
Quantum Circuit targets and updates the parameters of the circuit

\ DATASET gpen Data'™

pp — bb inclusive di-jets sample
Updates the parameters of LHCb simulations at /s = 13

TeV. 5 types of particles are

considered, selecting the ones with
rel

the highest p7~" in the jet:
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b vs b TAGGING WITH QUANTUM MACHINE LEARNING
In b-jets, the information on the charge of the b-
qguark is diluted in the particles produced in the
hadronization and fragmentation processes
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16 variables from the jet structure

Inclusive Quantum Machine Learning (QML)
algorithm for the charge tagging of b-jets
Entanglement could allow quantum models to
exploit correlations among jet’s particles
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POSSIBLE APPLICATION

RESULTS Forward-Central bb production

* Several quantum models have been tested on noiseless simulators asymmetry
* Quantum models are compared to a Deep Neural Network (DNN) and tagging
with the muon charge (u-tag) in terms of the b-jet charge tagging power
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to computational constraints The same number of jets was used for training
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