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Adrián Pérez-Salinas,1, 2 Mahtab Yaghubi Rad,1, 3 Alice Barthe,1, 4 and Vedran Dunjko1, 3

1⟨aQa⟩L Applied Quantum Algorithms, Universiteit Leiden
2Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, Netherlands

3LIACS, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, Netherlands
4CERN, Espl. des Particules 1, 1211 Geneva, Switzerland

The conventional paradigm of quantum computing is discrete: it utilizes discrete sets of gates to
realize bitstring-to-bitstring mappings, some of them arguably intractable for classical computers.
In parameterized quantum approaches, widely used in quantum optimization and quantum machine
learning, the input becomes continuous and the output represents real-valued functions. Various
strategies exist to encode the input into a quantum circuit. While the bitstring-to-bitstring
universality of quantum computers is quite well understood, basic questions remained open in the
continuous case. For example, it was proven that full multivariate function universality requires
either (i) a fixed encoding procedure with a number of qubits scaling as the dimension of the input
or (ii) a tunable encoding procedure in single-qubit circuits. This reveals a trade-off between the
complexity of the data encoding and the qubit requirements. The question of whether universality
can be reached with a fixed encoding and constantly many qubits has been open for the last five
years. In this paper, we answer this remaining fundamental question in the affirmative. We provide
a constructive method to approximate arbitrary multivariate functions using just a single qubit and
a fixed-generator parametrization, at the expense of increasing the depth. We also prove universality
for a few of alternative fixed encoding strategies which may have independent interest. Our results
rely on a combination of techniques from harmonic analysis and quantum signal processing.

a. Introduction — Quantum computing extends
the paradigm of classical circuits by adding to the
set of available logical operations new elements, as
allowed by the principles of quantum mechanics. The
conventional paradigm of quantum computing is still
discrete and relies on a discrete set of gates to realize
bitstring-to-bitstring mappings. Some of these mappings
can be arguably intractable for classical computers [1].
Motivated by near-term quantum computing limitations
and common implementations, recently there has been
substantial interest in settings where quantum computers
are used to realize continuous-valued functions depending
on continuous tunable parameters, which we refer to
as variational quantum computing. Such variational
approaches may be utilized in a plethora of contexts,
including quantum optimization [2–4] or quantum
machine learning [5–8], among others. In all cases,
an arguably fundamental question that can be asked
about function representation frameworks is that of its
universality.

For discrete computation, universality is well
understood, both in classical and quantum cases. Both
classical and quantum computing provide universality
in terms of the capacity to represent (or compute)
arbitrary boolean functions1. In the classical case,
Boolean universality can be achieved with just NAND
gates and FANOUT [9] and even in constant-width
settings [10], by querying n-bit inputs to compute

1 In the quantum case, we also have the universality of
(approximately) representing arbitrary unitary transformations,
which is also guaranteed for any so-called universal gate set, but
this is tangential to our discussion

n-bit boolean functions. Quantum computing can do
even better by representing arbitrary boolean functions
over n bits using just a single-qubit wire [11]. For
the continuous classical case, much is known about
the representation power of many models such as
neural networks [12, 13]. However, for the quantum
parametrized circuit representation of continuous
functions, certain fundamental questions have remained
open.

Various methods to represent continuous functions
with quantum circuits have been introduced in literature
[5, 8], commonly relying on the application of so-called
parametrized gates. In this setting, a parametrized gate
is defined by choosing a Hermitian generator H, and a
real-valued parameter t. Then, the parametrized gate
exp(iHt) is applied, in analogy to time evolution. Gates
of this type are composed to construct a larger quantum
circuit of some architecture U(θ,x), combining tunable
parameters θ with data x. A family of functions hθ(x) is
determined by applying the circuit to an initial state,
and then measuring the expectation value of a fixed
observable. Universality for this function family was
proven in two settings, namely (i) for fixed generators and
the number of qubits scaling with the dimension of the
problem [14, 15], and (ii) for tunable-weighted generators
wH, for w a real number, and single-qubit wires [16].
These results show a trade-off between the complexity
of the encoding strategy and the cost in qubit numbers,
which has practical and theoretical repercussions. These
proof techniques differ in nature, and there seems to be
no direct way to adapt the strategies of one or the other.
The fundamental question of whether it is possible to
achieve both, i.e. fixed-generator universality, with just a
single qubit, in analogy to the discrete case [11] remained
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open.
In this work, we resolve the aforementioned open

question in the affirmative and show that single-qubit
quantum parametrized circuits with fixed generators
are universal for all multivariate continuous functions.
See Figure 1 for a graphical description. To achieve
universality under these conditions, our construction
demands deeper circuits. Our proof techniques
rely on approximating the tunable-weighted generators
with fixed encodings to arbitrary precision and then
combining these approximations for universality. Such
approximation is possible via a combination of techniques
from quantum signal processing and harmonic analysis.

b. Background on universality — Universality
has been a central concept in function analysis
Parameterizing arbitrary functions allows us to construct
controllable function families with the purpose of
implementing arbitrary functions. Consider a family
of parameter-dependent maps Gθ acting on a domain
space Fθ : X → Y. The challenge is to find a set
of parameters θ∗ such that the map gθ∗ ∈ Gθ, when
applied to any point in X fulfills gθ∗(x) ≈ f(x), for
arbitrary f(x). Expressivity of the function families
quantifies the range of maps that the family Gθ is capable
of implementing. Maximal expressivity is commonly
referred to as universality. This property guarantees that
Gθ is capable of capturing arbitrary functions, assuming
perfect optimization of θ2. The formal definition of
universality is as follows.

Definition 1 (Universality). Let G = {g(x)},F =
{f(x)}, g, f : Rm → C be two sets of functions. Then G
is universal with respect to F if

∀f(x) ∈ F ∃g(x) ∈ G s.t. ∥f − g∥p ≤ ε, (1)

for arbitrarily small ε > 0, where ∥·∥p is the p-norm for
Lp functions.

A central result on the universality of functions is the
Fourier theorem [17], lying at the core of foundational
results in functional analysis.

Theorem 1 (Fourier theorem [17]). Let GF
N = {gFN (x)}

be the set of functions gFN : [0, 1]m → C of the form

gFN (x) =
∑
n

cne
i2πn·x (2)

for n integers, and cn complex values. G is universal
with respect to square-integrable periodic functions in the
norm ∥·∥2.

The universal approximation theorem (UAT) is
another universality theorem, proving that single-layer
neural networks are universal. UAT provides robustness
to the field of ML.

2 In this manuscript, we will not discuss optimization strategies or
problems.

Theorem 2 (Universal approximation theorem, adapted
from [12]). Let GUAT

N = {gUAT
N (x)} be the set of functions

gUAT
N : [0, 1]m → C of the form

gUAT
N (x) =

N∑
n=1

αn exp (i(wn · x+ ϕn)) , (3)

for wn, αn, ϕn reals. G is universal with respect to
continuous functions in the domain [0, 1]m in the norm
∥·∥∞.

We remark that these theorems will be useful for
our results, but the list is by no means an exhaustive
representation of existing results.
c. Universality in parameterized quantum circuits —

Quantum circuits can also represent continuous functions
when using the proper ansatzes, usually discussed in
the context of QML. The data x is introduced into
the quantum processing pipeline, together with tunable
unitary gates, yielding a global operation U(θ,x). The
hypothesis functions defined by the quantum model are

hθ(x) = ⟨0|UL(θ,x) |0⟩ , (4)

Notice that the outputs of the functions are overlaps,
which can only be approximately computed through
measurements. In most practical implementations, a
measurement with respect to an observable is considered.
The definition above is however more general and will be
used in this manuscript.
We call a quantum circuit universal if the family of

hypothesis functions H = {hθ(x)} is universal, in the
conditions of Definition 1. To provide universality to
the quantum model, data is introduced through repeated
calls to a data-dependent gate. The data re-uploading
framework [8] comprises all circuits of the latter kind,
described as follows.

UL(θ;x) =

L∏
j=1

R(θj)V (x), (5)

where R(·) is a parameterised gate and V (x) is a possibly
parameter-dependent encoding gate.
We cover now two relevant results on universality for

data re-uploading models.

Theorem 3 (Re-uploading: fixed encoding gates,
adapted from [18, 19]). Consider the single-qubit circuit

U f
L(θ,ϕ, λ;x) =

 L∏
j=1

e(iσzθj)e(iσyϕj)e(iσz2πx)


e(iσzθ0)e(iσyϕ0)e(iσzλ), (6)

with σ{y,z} being Pauli matrices, and x ∈ [0, 1]. Then

hL(x) = ⟨0|U f
L(θ,ϕ, λ;x) |0⟩ is universal with respect to

square-integrable functions in the norm ∥·∥2.

The proof can be found in Appendix 3.
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f : [0, 1]m → [0, 1]

· · · · · · · · · · · ·|0⟩ x1 θ1,1 x2 θ1,2 xm θ1,m x1 θ2,1 x2 θ2,2 xm θ2,m x1 θL,1 x2 θL,2 xm θL,m

f(x)

· · ·

· · ·

...
...

. . .
...

· · ·

|0⟩

θ0

x1

θ1

x1

θ2

x1

θL

f(x)

|0⟩ x2 x2 x2

...

|0⟩ xm xm xm

⇕

FIG. 1. Quantum circuits with parameters and fixed encoding
gates can represent multivariate continuous functions with
multiple qubits. In this paper, we show that single-qubit
quantum circuits retain universal representation capabilities.

Theorem 4 (Re-uploading: tunable encoding
gates [16]). Consider the single-qubit circuit

Uw
L (θ,ϕ,W, λ;x) =

L∏
j=1

e(iσzθj)e(iσyϕj)e(iσzwj ·x)

e(iσzθ0)e(iσyϕ0)e(iσzλ), (7)

with σ{y,z} being Pauli matrices, and x ∈ [0, 1]m. Then
hL(x) = ⟨0|Uw

L (θ,ϕ,W, λ;x) |0⟩ is universal with respect
to continuous functions in the norm ∥·∥∞.

Both results in Theorem 3 and Theorem 4 provide
universality under different conditions, with different
implications. It is worth it to investigate these differences
in detail. These observations will motivate the main
question of the present manuscript: is it possible to
guarantee universality with fixed encoding gates?, which
we answer affirmatively in Section d.
First of all, Theorem 3 is at the core based

on Theorem 1, while Theorem 4 relies on Theorem 2.
This difference triggers many other technical yet
important differences between the two results, such as
∥·∥2 or ∥·∥∞ distances between functions. Note that
∥f − g∥2 ≤ ∥f − g∥∞, and therefore Theorem 2 imposes
stronger constraints in convergence than Theorem 1.
Another important component is the periodicity of the
functions. Theorem 3 is by construction representing
periodic functions. Hence, it cannot accurately capture
the functions at the limits of the domain x ∈ [0, 1]
in general, unless the target function is continuous
everywhere, in particular, f(0) = f(1) [20]. This is
extensible to continuous functions by symmetrizing the
function and appropriately adapting the domain.

A prominent difference is the dimensionality of the
functions. Theorem 3 provides universality only for
univariate functions, while Theorem 4 does so for
multivariate functions. To understand this phenomenon,
it is possible to argue through counting degrees of

freedom [15], representing the specifications of functions
in a linear space. In the line of Theorem 1, an arbitrary
L-degree Fourier series requires O(Lm) coefficients to
be adjusted. The single-qubit model can provide at
most 2L free parameters. Therefore, universality is only
available for univariate functions, unless the number of
free parameters scales as O(Lm). This is only possible
by increasing the number of qubits. Free parameters in
n-qubit systems increase as 2nL, imposing n ∈ Õ(m), in
agreement with existing works [15]. On the other hand,
Theorem 2 guarantees universality for m-dimensional
functions with only O(mL) free parameters, matching
the reported resource requirements in Theorem 4. The
reason for this difference is deeply connected to the
presence of tunable weights, which allow to cover the
space of functions much more efficiently as compared
to fixed weights. We refer the interested reader
to Theorem 8 and Theorem 9 in the Appendix for more
details.
d. Universality with fixed encoding — Universality

for multivariate functions with fixed encoding gates is
possible, albeit in a less direct way than the results
given up until now. To demonstrate it, we argue that it
is possible to approximate encoding gates with tunable
weights to arbitrary accuracy making use only of fixed
encoding gates. This first result is leveraged to show
that the distance ∥·∥∞ between hypothesis functions
with tunable and encoding gates can be made arbitrarily
small, thus reaching universality.
We begin by defining a multivariate single-qubit re-

uploading model with fixed encoding gates.

Definition 2 (Multivariate fixed re-uploading). A
single-qubit multivariate data re-uploading circuit with
fixed encoding gates is given by

Umf
L (θ,ϕ, λ;x) = L∏

j=1

m∏
k=1

N∏
n=1

eiθj,k,nσzeiϕj,k,nσyeiπxkσz


eiθ0σzeiϕ0σyeiλσz , (8)

where θ,ϕ, λ are real and tunable.

We will refer to the output function of the circuit
in Definition 2 as

hf
L(x) = ⟨0|Umf

L (θ,ϕ, λ;x) |0⟩ . (9)

The road towards proving universality is to show
that circuits as given in Equation (8) can approximate
circuits of the form given in Equation (7), with arbitrary
precision. In other words, one may approximate any
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≈ · · · · · · · · · · · ·w · x θm,N xm xm θm,1 θ2,N x2 x2 θ2,1 θ1,N x1 x1 θ1,2 x1 θ1,1

FIG. 2. Quantum circuit allowing the universality of quantum re-uploading models, with fixed encoding gates (in this figure
represented by {x1, x2, . . . , xm). By Theorem 5, we show that gates of the form eiwxσz can be approximated to arbitrary
accuracy by a re-uploading circuit with fixed encoding gates. The successive application of these approximations allow for an
approximation of eiw·xσz , where x is now multidimensional.

tunable encoding gate with enough layers of fixed
encoding gates.

The first step is to approximate gates of the form
eiwxσz , where x is the input and w is a tunable real
weight. Inspection of Definition 2 allows us to identify
the condition

Rj,k(θj,k,ϕj,k, x) ≡
N∏

n=1

eiθj,k,nσzeiϕj,k,nσyeiπxkσz

≈ eiwkxkσz , (10)

as a requirement for the approximation. In the previous
equation, the parameters θj,k,ϕj,k will be chosen to
match the right hand for any wk ∈ R to a precision ε.
This intuition is supported by the following result.

Theorem 5. For a gate R(θ,ϕ, x) as given
in Equation (10), for any w ∈ R and for any ε > 0,
there exists a value N such that

∃ (θ,ϕ) s.t.

sup
x∈[0,1]

∥R(θ,ϕ, x)− exp (iwxσz)∥F ≤ ε, (11)

where ∥·∥F is the Frobenius norm.

The proof can be found in Appendix 4.

Corollary 1. In the assumptions of Theorem 5, the gate
R(θ,ϕ, x) is realizable in depth

N ∈ Õ
(
w + ε−2

)
. (12)

The proof can be found in Appendix 5.
Subsequent applications of approximations as given by

Theorem 5 allow us to find the parameters θ′,ϕ′ such
that, for given W,θ,ϕ

Umf
L′ (θ′,ϕ′, λ′;x) ≈ L∏
j=1

eiθ
′
jσzeiϕ

′
jσyei

∑m
k=1 wj,kxkσz

 eiθ
′
0σzeiϕ

′
0σyeiλ

′
=

Uw
L (θ,ϕ,W, λ;x). (13)

For this next step, we will leverage Theorem 5 to
approximate with arbitrary accuracy the output of a
quantum circuit as in Equation (7). In a nutshell, we
take our previous result to approximate a gate of the form
eiwkxkσz . Then, we can subsequently apply these gates to
approximately obtain

∏
k e

ixkwkσz = exp (i
∑

k xkwkσz),
which are tunable weights. This step bridges the gap
with models relying on tunable weights.

Lemma 1. Consider the re-uploading models
Uw
L (θ,ϕ,W, λ;x) from Equation (7) and

Umf
L′ (θ′,ϕ′, λ′;x) from Equation (8). Then for any

ε > 0, there exists a value L′ ≥ L such that

∀(θ,ϕ) ∃(θ′,ϕ′) s.t.∥∥Tr ((Uw
L (θ,ϕ,W, λ;x)− Umf

L′ (θ′,ϕ′, λ′;x)
)
|0⟩ ⟨0|

)∥∥
∞

≤ ε (14)

The proof is available in Appendix 6. We refer the
reader to Figure 3 for a graphical intuition of this proof.

For the final step, we just need to consider Lemma 1
and the triangular inequality. A model with tunable
weights can approximate any function (with certain
technical requirements) with arbitrary accuracy, and
a fixed-weight model can approximate a model with
tunable weights as well. Then, single-qubit fixed-weight
models are universal approximators, at the expense of an
overhead in depth.

Theorem 6. Consider the model Umf
L′ (θ′,ϕ′, λ′;x)

from Equation (8). The set of output functions H =
{hf

L′}, with

hf
L′(x) = ⟨0|Umf

L′ (θ′,ϕ′, λ′;x) |0⟩ (15)

is universal with respect to multivariate continuous
functions f : [0, 1]m → C with the constraint |f(x)|2 ≤ 1,
in the norm ∥·∥∞.

Proof. This corollary is an immediate consequence
of Lemma 1. The considered model can approximate
a multivariate function hL(x) = ⟨0|Uw

L (θ,ϕ,W, λ;x) |0⟩
output by a model with tunable weights. The triangular
inequality implies that∥∥hf

L′(x)− f(x)
∥∥ ≤∥∥hL(x)− hf

L′(x)
∥∥+ ∥hL(x)− f(x)∥. (16)

Each of the summands can be made arbitrarily small,
thus guaranteeing universality.

e. Implications for approximating functions beyond
those generated by quantum circuits — We extend the
obtained result to a more general theorem of functional
analysis

Corollary 2. Let GL,N = {gL,N (x)} be the set of
functions gN : [0, 1]m → C of the form

gL,N (x) =

L∑
j=1

γj

m∏
k=1

N∑
n=−N

cj,k,ne
iπnxk , (17)



5

⇒

FIG. 3. Graphical description of the proof for universality.
Consider the curved blob to be a representation of a set of
functions. Triangles are components specified by different
gates in the circuit. The re-uploading model with tunable
parameters (left) is represented by triangles with tunable
sizes and shapes, while fixed encoding gates (right) are
represented by fixed-shaped triangles, but tunable in size.
We can approximate the large tunable triangles with small
fixed-shaped triangles. In the limit, any curved blob can be
approximated by many small triangles.

for x ∈ [0, 1]m,wn ∈ Rm, αn, ϕn ∈ R. There exists a N
such that GN is universal with respect to the set of all
continuous functions f : [0, 1]m → C, in the norm ∥·∥∞.

The proof can be found in Appendix 7.
f. Arbitrary-dimensional systems — The final result

of this manuscript is a generalization of the uni-
variate encoding eiwxσz to a specific and more restricted
multi-variate case. The motivation to study these
cases stems from quantum signal processing which
computes functions of N -dimensional matrices rather
than functions of the entries of the matrix. Specifically,
we consider the case where the m-dimensional input is
embedded into a matrix as a direct sum of the form

Vm(x) =

m∑
k=1

|k⟩⟨k| ⊗ eiπxkσz/2, (18)

instead of a tensor product of m 2x2 matrices as is
done in [14]. In Appendix 10, we consider an even
more restricted additional case when the encoding matrix
contains each feature of the input as a diagonal element.

Our quantum circuit only includes Vm(x) and not any
controlled version of it. Thus, we fix the relative phase
with extra dimensions, ensuring the unitary is an element
of in SU(2m). However, this choice does not hinder the
generality of our arguments. Any change in the relative
phase can be given by an affine transformation. If the
obtained model is universal, this implies it is capable of
applying arbitrary affine transformation. We choose this
construction for its convenience for the proof.

We define a data re-uploading model with fixed
encoding gates and arbitrary dimensionality as

Definition 3 (Re-uploading: fixed encoding gates and
arbitrary dimensions). Consider the circuit

U(Θ,Φ,λ;x) = L∏
j=1

R(θj ,ϕj)Vm(x)

R(θ0,ϕ0)Vm(λ), (19)

where R(θ,ϕ) are the specifications through Euler angles
of arbitrary SU(2m) matrices.

This circuit is realizable in log2 (⌈2m⌉) qubits. If
log(2m) ̸∈ Z, the gate Vm(x) can be padded with 1’s
for implementation in qubit-based systems. Following
the rationale of Theorem 3, we identify now a building
block operator that allows for universal processing,
namely R(θ,ϕ)Vm(x) ∈ SU(2m). From the analogy
with Equation (6), we note that Vm(x) plays the role of
λ, which are specific angles in the Euler decomposition
of SU(2). The extension to Euler decomposition of
arbitrary dimensions [21] shows that R(θ,ϕ) is fully
specified by any unitary matrix in SU(2m), excluding
the relative phases among columns. We refer the reader
to Appendix 8 for a detailed description.

Theorem 7. Let U(Θ,Φ,λ;x) be the gate defined
in Definition 3. The family of output functions H =

{h(i)
L }, with

hL(x) = ⟨0|U(Θ,Φ,λ;x) |0⟩ (20)

is universal with respect to the norm ∥·∥∞ for all
continuous complex functions f(x), ∥f(x)∥∞ ≤ 1, for
x ∈ [0, 1]m. This model has a constant overhead in depth
as compared to the single-qubit case.

The proof can be found in Appendix 9. The sketch
of the proof is as follows. There exists a choice of
Θ,Φ such that the concatenation of layers of the form
R(θj ,ϕj)Vm(x) provides a matrix in a block form, such
that the first block is eiπxkσz , for any k, and the rest is
the identity matrix. This transforms a multidimensional
problem into a concatenation similar to Definition 2.
Application of results in Sec. d provides universality.
g. Conclusions — In this paper, we show that it is

possible to encode any continuous function of arbitrary
dimensions using single-qubit quantum circuits with
fixed encoding gates. This finding extends existing
results of universality for univariate functions with fixed
generators on multi-qubit, and multivariate functions
with tunable generators in single-qubit circuits. The
question of whether a trade-off between generators and
the number of qubits is needed is now closed. In addition,
we show that universality is also attainable if data is
introduced in the form of a diagonal unitary matrix
in Θ(logm) qubits, where m is the dimension of the
function to approximate. The results here depicted can
be interpreted as analogous to width-depth trade-offs in
boolean classical and quantum computing.
This paper opens new avenues to use quantum circuits

for representing multidimensional functions, with interest
for instance to generalize signal processing [22], or
designing broader quantum machine learning algorithms.
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[5] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Nature
567, 209 (2019).

[6] M. Schuld and N. Killoran, Physical Review Letters 122,
040504 (2019), arXiv:1803.07128.

[7] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii,
Physical Review A 98, 032309 (2018), arXiv:1803.00745.
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1. Extension of Theorem 1

Theorem 8 (Fourier theorem). Let GF
N = {gFN (x)} be the set of functions gFN : [0, 1]m → C of the form

gFN (x) =
∑
n

cn exp(i2πn · x) (21)

for n = (n1, . . . , nm) ∈ Nm, ∥n∥∞ ≤ N and cn ∈ C. For every square-integrable function f : [0, 1]m → C, f ∈ F there
exists a value N such that GF

N is universal with respect to F in the norm ∥·∥2. The optimal coefficients are

cn =

∫
[0,1]m

dxf(x)e−i2πn·x (22)

The interpretation of this theorem is direct in the language of Hilbert spaces. We consider functions as elements
of an infinite-dimensional Hilbert space. In this case, the basis of the space is the set {ei2πn·x}, with n a vector of
integers. The Hilbert space is equipped with the inner product

⟨f(x), g(x)⟩ =
∫
[0,1]m

f∗(x)g(x)dx, (23)

and in particular

⟨ei2πn·x, ei2πl·x⟩ =
m∏

k=1

δnklk , (24)

thus yielding an orthonormal basis. The Fourier theorem is nothing but the transformation of functions from arbitrary
forms to this Hilbert space picture.

2. Extension of Theorem 2

Theorem 9 (Universal approximation theorem, adapted from [12]). Let GUAT
N = {gUAT

N (x)} be the set of functions
gUAT
N : [0, 1]m → C of the form

gUAT
N (x) =

N∑
n=1

αnσ (wn · x+ ϕn) , (25)

for x ∈ [0, 1]m,wn ∈ Rm, αn, ϕn ∈ R, and σ(·) a discriminatory function. For every continuous function f : [0, 1]m →
C, f ∈ F there exists a N such that GUAT

N is universal with respect to F in the norm ∥·∥∞. Discriminatory functions
are those satisfying ∫

[0,1]m
dµ(x)σ(w · x+ ϕ) = 0, w ∈ Rm, ϕ ∈ R ⇔ µ = 0, (26)

for µ being Borel measures. In particular, ei · is a discriminatory function.

The interpretation of this theorem can be done in terms of the Hilbert space discussed in Theorem 8. For arbitrary
w, ϕ, discriminatory functions satisfy that they have non-zero overlaps with all elements in the basis of functions. For
exponential functions

eiwx =

∞∑
n=−∞

cn(w)e
in2πx, (27)

cn(w) =
−i

(2πn− w)

(
eiw) − 1

)
. (28)

This property, together with the Hahn-Banach theorem, guarantees dense covering of the space of continuous functions,
hence universality. We refer the reader to the original statement of the UAT in Ref. [12] for an in-depth proof.
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3. Proof of Theorem 3

Proof. We recall theorem 3 in [19], formulated as follows.

Theorem 10 (Generalized quantum signal processing). Consider the building block

R(θ, ϕ, λ) =

(
ei(ϕ+λ) cos(θ) eiϕ sin(θ)
eiλ sin(θ) − cos(θ)

)
. (29)

Then, ∀L ∈ N, ∃θ,ϕ ∈ RL+1, λ ∈ R such that: L∏
j=1

R(θj , ϕj , x)

R(θ0, ϕ0, λ) =

(
P (eix) ·
Q(eix) ·,

)
(30)

with P (eix), Q(eix) being polynomials of degree L subject to the constraint |P (eix)|2 + |Q(eix)|2 = 1, ∀x. The gate R
is defined as

In the same reference, corollary 5 demonstrates that P (eix) can be chosen arbitrarily. Additionally, theorem 6 in
the same reference implies that it is possible to obtain arbitrary polynomials of the form

P ′(eix) = e−ikxP (eix) (31)

if the data is transformed according to x → −x in the last k layers.
We focus in this last result. Notice that changing the sign of x is equivalent to performing an inversion, as(

e−ix 0
0 1

)
= e−ixX

(
eix 0
0 1

)
X. (32)

We identify (
eix 0
0 1

)
= eix/2

(
eix/2 0
0 e−ix/2

)
= eix/2eix/2σz (33)(

e−ix 0
0 1

)
= e−ix/2

(
e−ix/2 0

0 eix/2.

)
= e−ix/2e−ix/2σz (34)

By querying L times the first operator and L times the second, consecutively, we can represent any polynomial by
virtue of [19]. These gates are accessible with the same query, plus the unitary transformation that can be absorbed
in the gates before and after. The global phases are compensated. Thus, following this recipe, we can find arbitrary
polynomials of the form

P (eix) =

L∑
j=−L

cje
i jx. (35)

These polynomials are Fourier series up to degree L, and thus this family of functions is universal as stated
in Theorem 1.
Finally, we bridge the gap between this result and our statement in Theorem 3. Notice that in this case x ∈ [0, 2π].

To maintain consistency with our result, we impose x ∈ [0, 1] at the expense of adding the factor 2π in the encoding.
The building block in Equation (29) is decomposable as Equation (6) up to global phases.

4. Proof of Theorem 5

Proof. We consider in this proof only approximations to w ∈ [−π/2, π/2]. Without loss of generality, this implies
arbitrary approximations for w ∈ R, since the integer approximation to w is attainable by just repeating the encoding
layer. Notice that, by definition, f(x) = eiwx satisfies |f(x)|2 = 1. By Theorem 3 we know that it is possible to
construct arbitrary polynomials P (eix) of degree at most N into a unitary matrix as

RN (θ,ϕ, x) =

(
PN (x) −Q∗

N (x)
QN (x) P ∗

N (x)

)
≈
(
eiwx 0
0 e−iwx

)
. (36)

In the language of Theorem 3, P (x) is a Fourier-like polynomial of eiwx up to degree N . In particular, we choose the
polynomial to be a Cesàro mean of the function eiwx.
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Definition 4 (Cesàro means). Let f : R → C be a continuous function with period 2π, and let gFn (x) be its n-term
Fourier series. The Cesàro mean of order N is given by

PN (x) =
1

N + 1

N∑
n=−N

gFn (x), (37)

or equivalently

PN (x) =

N∑
n=−N

N + 1− |n|
N + 1

cne
inπx. (38)

This choice of PN (x) implies several convenient properties. First, PN (x) can be understood as the convolution of
the function eiwx with the Féjer Kernel [23]

KN (x) =
1

N + 1

N∑
n=0

n∑
k=−n

eikx. (39)

which satisfies ∫
x

dxKN (x) = 1. (40)

Thus

∥PN∥∞ = sup
x∈[0,1]

∣∣∣∣∫ dteiw(x−t)KN (t)dt

∣∣∣∣ ≤ sup
x∈[0,1]

|eiwx|
∣∣∣∣∫ dtKN (t)dt

∣∣∣∣ = 1. (41)

Therefore, we can implement this function within a unitary operation. Note that in this and subsequent proofs, the
∞-norm for functions is made explicit as supx∈[0,1] to avoid confusion with matrix norms.

Second, we can recall Fejér’s theorem [23].

Theorem 11 (Fejér’s theorem). Let f : R → C be a continuous function with period 2π, and let PN (x) be its N -term
Cesàro mean. Then PN converges uniformly to f as N increases, that is for every ε > 0 there exists N satisfying

sup
x∈[0,1]

|f(x)− PN (x)|∞ ≤ ε. (42)

Choosing PN (x) as the corresponding Cesàro mean, we choose θj,k,ϕj,k such that Rj,k(θj,k,ϕj,k, x) implements
PN (x) and QN (x) as in Equation (36). With this choice, we can now write the Frobenius norm of the difference
matrix as ∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz

∥∥
F
=

√
2
√

|PN (x)− eiwx|2 + |QN (x)|2. (43)

The Frobenius norm can be bounded as follows. We use first the triangular inequality and convexity of functions to
reach

|eiwx − PN (x)| ≥ 1− |PN (x)| ≥ 1− |PN (x)|2

2
=

|QN (x)|2

2
, (44)

hence ∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz
∥∥
F
≤

√
2
√

|eiwx − PN (x)|2 + 2|eiwx − PN (x)|. (45)

By virtue of Fejér’s theorem, we can make the supremum norm of this function arbitrarily small, as long as eiwx

satisfies the continuity assumption. We enforce this constraint by finding the Cesàro means of an auxiliary related
function, following the techniques in [20]. We define the period of this auxiliary function as

a(x) =

{
eiwx 0 ≤ x ≤ 1

eiw(2−x) 1 < x < 2
, (46)

and compute the Cesàro means of this function. This function is equivalent to eiwx in the domain x ∈ [0, 1], and it
also fulfils all the requirements of Fejér’s theorem. We just need to ensure that our model is capable of expressing
polynomials of einπx. This follows immediately from the definition of Rj,k(θj,k,ϕj,k, x), which has eiπxσz in it. Thus,
we can find a gate Rj,k(θj,k,ϕj,k, x) satisfying that for all ε > 0 there exists a N such that

sup
x∈[0,1]

∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz
∥∥
F
≤ ε, (47)

and concludes the proof.
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5. Proof of Corollary 1

We begin with the function defined in Equation (46). This function is continuous and periodic. Its Fourier series
is given by the sets of coefficients

cn =

∫ 1

0

ei(w−n)xdx+ ei2w
∫ 2

1

e−i(w+n)x = −i
w
(
(−1)neiw − 1

)
w2 − (nπ)2

. (48)

We bound now supx∈[0,1]

∣∣PN (x)− eiwx
∣∣. The definition of PN (x) from Appendix 4 implies

PN (x)− eiwx =

N∑
n=−N

cn
−|n|
N + 1

einπx −
∞∑

|n|=N+1

cne
inπx, (49)

hence by the triangular inequality

sup
x∈[0,1]

|PN (x)− eiwx| ≤ 2

N + 1

∣∣∣∣∣
N∑

n=1

ncn

∣∣∣∣∣+ 2

∣∣∣∣∣
∞∑

n=N+1

cn

∣∣∣∣∣ . (50)

For this proof, we consider that |w| ≤ π/2. The reason is that we can obtain Kπ ≈ w exactly with K gates, and from
this point on it is only needed to approximate the remainder |w| ≤ π/2 using Fejér’s theorem. We focus on each term
individually. The first term is a 1-norm of the vector defined by ncn. Thus,∣∣∣∣∣

N∑
n=1

ncn

∣∣∣∣∣ ≤
N∑

n=1

n |cn| ≤
2

π

(
N∑

n=1

n

n2 − 1
4

)
≤ 2

π

(
4

3
+

∫ N

1

dx
x

x2 − 1
4

)
=

2

π

(
4

3
+

1

2
log

(
4N2 − 1

3

))
. (51)

For the second term,∣∣∣∣∣
∞∑

n=N+1

cn

∣∣∣∣∣ ≤
∞∑

n=N+1

|cn| ≤
2

π

∫ ∞

N

1

n2 − 1/4
≤ 2

π

∫ ∞

N

1

(n− 1/4)2
=

2

π

1

N − 1/4
. (52)

We see that the first term dominates over the second term. Now, we only need to re-arrange terms from Equation (50)
to show

sup
x∈[0,1]

|PN (x)− eiwx| ∈ Õ
(
N−1

)
. (53)

We recover now the Frobenius norm from Theorem 5∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz
∥∥
F
=

√
2
√

|PN (x)− eiwx|2 + |QN (x)|2. (54)

By virtue of Fejér’s theorem, the absolute value can be made arbitrarily small. Hence, in particular |PN (x)−eiwx|2 ≤
|PN (x)− eiwx| ≤ 1. It is immediate to see that∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz

∥∥
F
≤
√
6|PN (x)− eiwx|, (55)

and subsequently

sup
x∈[0,1]

∥∥Rj,k(θj,k,ϕj,k, x)− eiwxσz
∥∥
F
∈ Õ

(
N−1/2

)
. (56)

Therefore, we can approximate the gate eiwxσz with two steps. First, we apply eiπxσz a number of times N ′ to
reach |ω−N ′π ≤ π/2. Second, we use Fejér’s theorem to approximate eiwxσz , for |w| ≤ π/2, with the errors specified
in this proof. Hence, in order to approximate eiwxσz , to ε precision in the Frobenius norm, we need to apply

N ∈ Ω̃(w + ε−2) (57)

gates. This concludes the proof.
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6. Proof of Lemma 1

Proof. We aim to bound the difference between the output functions of two unitaries built with and without tunable
weights, explicitly Uw

L (θ,ϕ,W, λ;x) and Umf
L′ (θ′,ϕ′, λ′;x). First, Hölder’s inequality allows us to write

min
θ,ϕ

sup
x

∣∣Tr ((Uw
L (θ,ϕ,W, λ;x)− Umf

L′ (θ′,ϕ′, λ′;x)
)
|0⟩ ⟨0|

)∣∣ ≤ min
θ,ϕ

sup
x

∥∥Uw
L (θ,ϕ,W, λ;x)− Umf

L′ (θ′,ϕ′, λ′;x)
∥∥
∞,

(58)
where the matrix norm is the ∞-Schatten norm. Both Uw

L (θ,ϕ,W, λ;x) and Umf
L′ (θ′,ϕ′, λ′;x) are constructed through

layers. Following the rational of Equation (10), we group the gates in Umf
L′ (θ′,ϕ′, λ′;x) to approximate eiwfσz in

Uw
L (θ,ϕ,W, λ;x). Then this is done, we can match the parameters in (θ′,θ), (ϕ′,ϕ) to apply the same operations

between encoding gates as in Uw
L (θ,ϕ,W, λ;x). This fixes the parameters θ′,ϕ′, thus giving an upper bound to the

previous equation.

We can now use the triangular inequality. Consider two unitaries given by uU, vV , where u, v, U and V are unitaries
as well. Then

∥uU − vV ∥ = ∥uU − vU + vU − vV ∥ ≤ ∥u− v∥+ ∥U − V ∥. (59)

This procedure is repeated telescopically to the matrix Uw
L (θ,ϕ,W, λ;x)−Umf

L′ (θ′,ϕ′, λ′;x). We tune the parameters in
Umf
L′ (θ′,ϕ′, λ′;x) to exactly match those of Uw

L (θ,ϕ,W, λ;x) in the gates between encoding gates, thus not contributing
to the difference. For the steps involving eiwj,kxkσz , we approximate it with gates of the form Rj,k(θj,k,ϕj,k, x). Thus,

∥∥Uw
L (θ,ϕ,W, λ;x)− Umf

L′ (θ′,ϕ′, λ′;x)
∥∥
∞ ≤

L′∑
j=1

m∑
k=1

sup
xk∈[0,1]

∥∥Rj,k(θj,k,ϕj,k, x)− eiwj,kxkσz
∥∥
∞. (60)

By virtue of Theorem 5, the Frobenius norm ∥Rj,k(θj,k,ϕj,k, x) − eiwj,kxkσz∥F can be made arbitrarily small. The
Frobenius norm upper bounds the ∞-norm, thus each of the components in the sum can be made arbitrarily small.

7. Proof of Corollary 2

Proof. To prove Corollary 2, we follow the same as for the quantum re-uploading circuits. We will approximate eiwx

with its Cesàro mean and merge all the functions together. The distance between a function gN (x) from Theorem 2
and its discrete-weights approximation is given by

sup
x∈[0,1]m

∣∣∣∣∣∣
L∑

j=1

γj

m∏
k=1

eiwj,kxk −
L∑

j=1

γj

m∏
k=1

PN,ωj,k
(xk)

∣∣∣∣∣∣ ≤
L∑

j=1

|γj | sup
x∈[0,1]m

∣∣∣∣∣
m∏

k=1

eiwj,kxk −
m∏

k=1

PN,ωj,k
(xk)

∣∣∣∣∣ , (61)

with PN,ωj,k
being the Cesàro means. Since

sup
x∈[0,1]m

|f(x)| = sup
x∈[0,1]m

∣∣eiα·xf(x)
∣∣ , (62)

we can perform an equivalent trick to the one in Equation (59) and find

sup
x∈[0,1]m

∣∣∣∣∣∣
L∑

j=1

γj

m∏
k=1

eiwj,kxk −
L∑

j=1

γj

m∏
k=1

ωj,k(xk)

∣∣∣∣∣∣ ≤
L∑

j=1

|γj |
m∑

k=1

sup
xk∈[0,1]

∣∣eiwj,kxk − PN,ωj,k
(xk)

∣∣ . (63)

Since PN,ωj,k
(xk) is the Cesàro mean of eiwj,kxk , up to degree N , we can recall Fejér’s theorem to approximate the

desired function with arbitrary precision. Hence, this construction provides universal functions in the assumptions of
Fejér’s theorem.
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8. Euler angles for SU(N)

We follow the construction in [21] for Euler rotations of arbitrary dimensions. We define first the generators of the
corresponding algebra su(N) as generalized Gell-Mann matrices

λ3 =


1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0

...
. . .

...
0 0 0 · · · 0

 (64)

λ(k−1)2+1 =



0 · · · −i
...

. . .
...

i · · · 0

k

· · · 0
...

· · · 0

...
...

. . .
...

0 · · · 0 · · · 0


(65)

λN2−1 =

√
2

N2 −N



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
. . .

...
0 0 0 · · · 1 0
0 0 0 · · · 0 −1

 (66)

One can find an Euler decomposition of arbitrary dimension by employing a recursive construction in which matrices
in SU(N) are defined as matrices in SU(N − 1) plus extra parameters.

U =
∏

2≤k≤N

A(k)[SU(N − 1)]eiλN2−1θN2−1 (67)

A(k) = eiλ3θ2k−3eiλ(k2−1)+1θ2k−2 . (68)

Notice that this construction allocates all rotations constructed as exponentiations of diagonal matrices at the rightest
part of the operations. Hence, we can justify our choice Vm(x) from Equation (72).

9. Proof of Theorem 7

Proof. We begin by considering the data-encoding gate

Vm(x) =



eix1/2 0 · · · 0 · · ·
0 e−ix1/2 · · · 0 · · ·

0 0 eix2/2 0
...

0 0 0 e−ix2/2
...

...
...

...
...

. . .


(69)

We design now a permutation Πk that exchanges the positions 2j and 2j + 1, except for j = k. An example of this
permutation is given by

Π1Vm(x) =



eix1/2 0 · · · 0 · · ·
0 e−ix1/2 · · · 0 · · ·

0 0 e−ix2/2 0
...

0 0 0 eix2/2
...

...
...

...
...

. . .


. (70)
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These permutations are implementable with gates R(θ,ϕ), since R specifies any unitary gate, except for the relative
phases among columns [21], and no phases are needed for the permutations. It is immediate to see

R1(x) = Vm(x)ΠVm(x) =



eix1 0 · · · 0 · · ·
0 e−ix1 · · · 0 · · ·

0 0 1 0
...

0 0 0 1
...

...
...

...
...

. . .


=

[eix1 0
0 e−ix1

]
0

0 I

 =

(
eiπx1σz 0

0 I

)
. (71)

The construction of R1(x) requires an overhead of O(1) encoding gates of the form Vm(x) to achieve it. The same
condition holds for any other Rk(x). These blocks, up to permutations that can be reabsorbed in the parameterized
gates, allow us to conduct the algorithms in Theorem 3 on the 2 × 2 upper-left corner. This can be extended to all
coordinates. Notice that the relative phases cancel each other due to the matrix being applied the same number of
times. Since universality is guaranteed in Theorem 3, this construction allows for universality as well in the multi-qubit
case.

10. An extension to Theorem 7

The proof above allows us to formulate an alternative theorem considering a different encoding gate, defined as

V ′
m(x) =

m∑
k=1

eiπxk/m |k⟩⟨k|+ e−i
∑m

i=1 πxk/m |m+ 1⟩⟨m+ 1| =


eix1/m 0 0 · · · 0

0 eix2/m 0 · · · 0
0 0 eix3/m · · · 0
...

...
...

. . .
...

0 0 0 · · · e−i 1
m

∑m
k=1 xk

 (72)

We define the auxiliary permutations Πk,j , for j < k, k ≤ m, being circular permutations on all elements except for
k, of distance j. Again, these permutations are implementable with gates R(θ,ϕ), since R specifies any unitary gate,
except for the relative phases among columns [21], and no phases are needed for the permutations. An example of
this permutation is

Π1,1V
′
m(x) =


eix1/m 0 0 · · · 0

0 e−i 1
m

∑m
k=1 xk 0 · · · 0

0 0 eix2/m · · · 0
...

...
...

. . .
...

0 0 0 · · · eixm−1/m

 . (73)

We apply subsequent permutations until finding

V ′
Π1

(x) =

m−1∏
j=1

Π1,j(V
′
m(x)) =


eix1

m−1
m 0 0 · · · 0

0 e−ix1/m 0 · · · 0
0 0 e−ix1/m · · · 0
...

...
...

. . .
...

0 0 0 · · · e−ix1/m

 = e−ix1/m


eix1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (74)

The next step is to apply the same permutation cycle over this permuted matrix to find

V ′
Π1

(−x) =

m∏
j=1

Π2,j(V
′
Π1

(x)) = eix1/m


1 0 0 · · · 0
0 e−ix1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (75)
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We can identify

R1(x) = V ′
Π1

(−x)V ′
Π1

(x) =

[eix1 0
0 e−ix1

]
0

0 I

 =

(
eiπx1σz 0

0 I

)
. (76)

The construction of R1(x), or equivalent Rk(x) requires an overhead of O(m2) encoding gates V ′
m(x).

From this point, we can repeat the steps in Appendix 9 and formulate the following theorem.

Theorem 12. Let U(Θ,Φ,λ;x) be the gate defined in Definition 3, with encoding gate V ′
m(x). The family of output

functions H = {hL}, with

hL(x) = ⟨0|U(Θ,Φ,λ;x) |0⟩ (77)

is universal with respect to the norm ∥·∥∞ for all continuous complex functions f(x), ∥f(x)∥∞ ≤ 1, for x ∈ [0, 1]m.
This model has overhead O(m2) in depth as compared to the single-qubit case.

The main difference of this theorem with respect to Theorem 7 is that this case requires one qubit less. However,
the overhead in depth as compared to the single-qubit case is beneficial to Theorem 7.
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