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Abstract: Using supersymmetric localization, we compute the partition function and
some protected correlators of the polarized IKKT matrix model. Surprisingly, we find
that the original IKKT model is different from polarized IKKT in the limit of vanishing
mass deformation. We study different regimes of the localization results and recover the
electrostatic problem which defines the gravity dual.
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1 Introduction

Holographic duality [1–3] is one of the most – if not the most – profound ideas in modern
theoretical physics as it provides a framework to describe quantum gravity microscopically
using quantum field theories in lower dimensions. It builds on ’t Hooft’s observation [4] that
diagrammatic expansions of large N gauge theories share structural similarities with two-
dimensional Riemann surfaces, and formalizes this into a concrete correspondence between
distinct theories, offering insights both into gauge theories and gravity.

Despite its promise, a precise understanding of how classical Einstein gravity emerges
from gauge theories and how it is modified by quantum corrections still remains elusive.
The difficulty arises primarily because Einstein gravity is expected to emerge in a strong-
coupling regime of gauge theories, a regime for which we currently lack effective analytical
tools. A possible way to make progress is to study simpler cases of holography where the
gauge theory involved is more tractable. In this paper and its companion work [5], we study
one of the simplest examples of gauge theory, a 0+0 dimensional gauge theory, also known
as a matrix integral. The holographic duality between matrix integrals and string theories
has been a subject of active research in the past (see e.g. [6–9]). However, the “gravity-side”
of these matrix integrals is not conventional Einstein gravity but instead corresponds to
non-standard low-dimensional theories with some gravitational features. In contrast the
system we will study is, in our view, the simplest model with an emergent description of
Einstein gravity.

Matrix integral More precisely, we study the polarized IKKT matrix model [5, 10–12].
Since this model is in 0 + 0 dimension, the partition function is a matrix integral

Z =

∫
[dXI ][dψα]e

−S , (1.1)

and the physical observables are matrix expectation values, expressed as

⟨f(X,ψ)⟩ = 1

Z

∫
[dXI ][dψα]f(X,ψ)e

−S , (1.2)

where the action reads

S = Tr

[
−1

4
[XI , XJ ]

2 − i

2
ψ̄ΓI [XI , ψ]

+
3Ω2

43
XiXi +

Ω2

43
XpXp + i

Ω

3
ϵijkXiXjXk −

1

8
Ωψ̄Γ123ψ

]
.

(1.3)

The first line is the IKKT action, where indices are contracted with Euclidean signature.
This ensures that the partition function converges. The second line is a mass-deformation,
parameterized by the dimensionless parameter Ω. The matricesXI are dimensionless N×N
Hermitian matrices. The indices I, J ∈ {1, 2, . . . , 10} while i, j, k ∈ {1, 2, 3} and p ∈
{4, 5, . . . 10}. The Majorana-Weyl fermions ψα (with α ∈ {1, . . . , 32}) are also dimensionless
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Hermitian N × N matrices1. The gamma matrices are 32 × 32 and Γ123 = Γ1Γ2Γ3, while
the fermion conjugation is defined as ψ̄ = ψ⊤C where C is the charge conjugation matrix.

This model has 16 supercharges and global SO(3) × SO(7) as well as SU(N) gauge
symmetry.2 The matrix integral has classical saddles Xi =

3Ω
8 Li, given by representations

of SU(2) generators Li [5, 12]. A generic reducible representation of SU(2) is parameterized
by its q different spin js irreducible components s = 1, ..., q each of which has ns copies and
dimension Ns = 2js + 1, such that N =

∑q
s=1 nsNs. The number of different saddles is

thus given by the number of partitions of N .

Gravity dual In a recent paper [5] we constructed a family of solutions to Euclidean IIB
supergravity dual to the polarized IKKT matrix model. Those solutions are warped prod-
ucts of a 2-sphere and a 6-sphere fibered over the two dimensional (r, z) plane, determined
entirely by a single function V (r, z) solving the four dimensional axially symmetric Laplace
equation

∂2V

∂z2
+

2

r

∂V

∂r
+
∂2V

∂r2
= 0, (1.4)

where r is a radial variable in R3 and z is the orthogonal coordinate. We can think of
V (r, z) as the solution to an electrostatic problem, that is uniquely determined once we
specify proper boundary conditions. As explained in [5], to make the resulting geometry
non-singular, we need to consider a background potential

V∞(r, z) = Vb
(
zr2 − z3

)
, (1.5)

where Vb is a positive constant. In addition we consider a configuration of 3-dimensional
conducting balls, each centered on the z-axis, at positions zs and carrying charges Qs, with
their sizes Rs being determined by the condition that the charge density vanishes at the
edge. The electrostatic problem is then entirely specified by the parameters (zs, Qs) with
s = 1, ..., q. This configuration is dual to a saddle of the matrix integral parametrized the
degeneracies and irrep dimensions (ns, Ns), see figure 1.

Results In this paper, we use localization techniques to derive exact results for the par-
tition function and a family of protected correlation functions. As we show in the following
sections, we obtain the U(N) partition function3

Z =
∑
R
ZR ,

ZR = CRe
9Ω4

215

∑
s ns(N

3
s−Ns)

∫ (∏
s

ns∏
i=1

dmsi

)
Z1−loop exp

(
−3Ω4

27

∑
s

ns∑
i=1

Nsm
2
si

)
,

(1.6)

1Note that since they obey Majorana Weyl conditions, they each have 16 real independent components.
2We use the word “gauge” in analogy to higher-dimensional gauge theories. However, in 0+0 dimensions,

gauge and global symmetries can be treated on the same footing, with the distinction that only gauge-
invariant observables are considered.

3We use the normalization [dX] ≡
∏N2

A=1 dX
A for bosonic matrices and [dψ] ≡

∏N2

A=1 dψ
A for fermionic

matrices, where A is an index for the U(N) generators TA, e.g. X = XATA, with normalization TrTATB =

δAB . More details on this measure convention are given in appendix C.6.
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Xi =
3Ω

8

LiN1

. . .

LiN1

. . .

LiNq

. . .

LiNq





n
1

n
q

r

z

z1 = 3πµα′

8 N1 Q1 = π4µ6α′3gs
32 n1

zq = 3πµα′

8 Nq Qq = π4µ6α′3gs
32 nq

Figure 1: Correspondence between the fuzzy sphere vacua of the matrix model and the dual
geometries. For each spin-js SU(2) irreducible representation of dimension Ns = 2js+1 we
put a disk at position zs ∼ Ns. The number ns of copies of this representation appearing
determines the charge of that disk Qs ∼ ns.

where

Z1−loop =
∏

(si,tj)

fst(msi −mtj) ,

fst(x) ≡

Ns+Nt
2

−1∏
J=

|Ns−Nt|
2

[(2 + 3J)2 + (8x)2]3[(3J)2 + (8x)2]

[(1 + 3J)2 + (8x)2]3[(3 + 3J)2 + (8x)2]
,

(1.7)

CR =
(2π)5N

2+N/2∏N−1
k=1 k!

∏
s ns!

(
32

3π

)∑
s ns∏

s

(
1

Ns

Ns−1∏
J=1

(2 + 3J)3

(1 + 3J)3

)ns
. (1.8)

The sum
∑

R is taken over all the inequivalent N -dimensional representations R of SU(2).
The parameters s, t are labels for the different irreducible representations (irreps) appearing
in the representation R, and i = 1, ..., ns is an index going over the multiplicity of the
irrep s. The product

∏
(si,tj)

in Z1−loop runs over all pairs (si, tj), excluding the identical

terms (si, si). The constant CR is a normalization constant which depends on the saddle.
Similarly, correlators of gauge invariant functions of the protected matrix ϕ = X3−iX10 can
be computed as shown in (3.63). We provide analyses in various regimes of the localization
results (1.6) and (3.63), matching them with direct computations.

As surprising as it may sound, the partition function (1.6) diverges as Ω → 0, even
though the IKKT partition function has been proven to converge [13], namely

lim
Ω→0

Z(Ω) = ∞ ≠ ZIKKT . (1.9)

This behaviour is due to the fermion mass terms as we illustrate for N = 2 in appendix
B. We also obtain this divergence for any N from integrating out the off-diagonal matrices
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as shown in section 4.2. As we show there, the leading divergence can be interpreted as
arising from the trivial vacuum, where each particle is very separated from the others and
each contributes ZU(1) ∼ 1

Ω2 . Nevertheless, we conjecture that the IKKT partition function
can be obtained from the Ω → 0 limit of (1.6) by closing the contour of integration in the
complex plane.

Finally, we recover the electrostatic problem describing the backreacted geometries
from the density of eigenvalues associated to (1.6). This analysis is very similar to the one
relating the BMN model to Lin-Maldacena geometries [14, 15].

Structure of the paper In section 2 we review the basics of the IKKT model and its
mass deformation. Section 3 includes the setup and the details of applying supersymmetric
localization techniques to compute the polarized IKKT partition function and protected
correlation functions. It is intended to be pedagogical. Section 4 presents the analysis of
the localization result, including strong and weak coupling limits as well as a conjectured
prescription to connect the polarized and the original IKKT partition function. In section
5 we demonstrate the explicit agreement between the polarized IKKT matrix model and
the dual geometry constructed in [5]. This is done by showing that in the large N limit
the eigenvalue densities from the matrix integral satisfy the same equation as that of the
charge densities in the electrostatic system describing the dual geometry (upon an explicit
identification of parameters on both sides). We discuss various open problems in section 6.
Various technical details are collected in the appendices.

2 Review of the matrix models

2.1 IKKT

The (Euclidean) IKKT integral [10, 16] is

ZIKKT =

∫ N2−1∏
A=1

[
10∏
I=1

dXA
I

16∏
α=1

dψAα

]
e−SIKKT , (2.1)

where4

SIKKT = Tr

−1

4
[XI , XJ ]

2 − i

2

32∑
α,β=1

10∑
I=1

ψα(CΓI)αβ[XI , ψβ]

 . (2.2)

The bosonic matrices XI and the fermionic matrices ψα are traceless Hermitian matrices,
expressed in the basis of SU(N) generators TA, where we choose TrTATB = δAB as
normalization. The fermions ψAα are 10D Euclidean Majorana-Weyl spinors.5

4The action has the same convention as [17–19], which is natural from the perspective of dimensionally
reducing 10D N = 1 SYM to a point. This convention is related to that in [12] through a simple redefinition
of the charge conjugation matrix: iChere = Cthere. After Weyl projection to the suitable 16-component
spinors, the actions are the same.

5Note that after imposing Majorana-Weyl condition on a 32-dimensional complex spinor, it is reduced
to 16 real independent components. For an explicit construction, refer to appendix A.
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One might expect that the partition function (2.1) is divergent, because the action has
infinitely long valleys (flat directions), corresponding to diagonal (commuting) matrices,
along which SIKKT = 0. However, it has been shown in [13, 20] that the width of the
valleys are in fact highly suppressed so that their volume remains finite. To understand
this point, consider the following toy integral∫

dxdye−y
2−x4y2 =

√
π

∫
dx

1√
1 + x4

<∞ . (2.3)

Even though the left-hand-side has flat directions corresponding to y = 0, the valley at
large x has width ∼ 1

x2
so that the volume integral over this infinite valley remains finite.

A closed form of the partition function (2.1), first conjectured in [17] and later computed
using localization techniques [18] takes the form

ZIKKT =
(2π)(10N+11)(N−1)/2

√
N
∏N−1
k=1 (k!)

∑
m|N

1

m2
, (2.4)

where the sum runs over all divisors of N and the prefactor, determined in [21], has been
adapted to our conventions. It can also be expressed in terms of a divisor function σ2(N) =∑

m|N m
2 as

ZIKKT =
(2π)(10N+11)(N−1)/2

N5/2
∏N−1
k=1 (k!)

σ2(N) , (2.5)

whose asymptotic behavior and variance have been studied in the literature [22].

2.2 Polarized IKKT

The model we are interested in is a mass deformation of IKKT which preserves all sixteen
dynamical supersymmetries. Its action, written in (1.3), is invariant under

δϵX
I = ϵ̄ΓIψ ,

δϵψ =
i

2
ΓIJϵ[XI , XJ ] +

3Ω

8
Γ123ΓiϵXi +

Ω

8
Γ123ΓpϵXp ,

(2.6)

where ϵ is deemed as Grassmann-even and δϵ is Grassman-odd susy generator.
The saddle points of the polarized IKKT integral are minima of the bosonic potential

VB = Tr

[
−1

4
[XI , XJ ]

2 +
3Ω2

43
XiXi +

Ω2

43
XpXp + i

Ω

3
ϵijkXiXjXk

]
. (2.7)

The minima are given by [5, 12]

Xp = 0 , Xi =
3

8
ΩLi , [Li, Lj ] = iϵijkLk , (2.8)

with Li being the N × N matrix representations of SU(2) Lie algebra (not necessarily
irreducible). At the minima the potential takes values

VB = − 9

213
Ω4TrLiLi . (2.9)
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For a general reducible representation, Li is block diagonal with q different irreps, each
having multiplicity ns and size Ns ×Ns. Thus, we have

TrLiLi =

q∑
s=1

nsNsjs(js + 1) =

q∑
s=1

nsNs
N2
s − 1

4
, N =

q∑
s=1

nsNs . (2.10)

All these minima preserve supersymmetry [5].

3 Localization in polarized IKKT

We will now use supersymmetric localization to reduce the polarized IKKT partition func-
tion, as well as SUSY-protected correlators, to integrals over the moduli space. Given that
our model is very similar to the plane-wave matrix model, also called BMN model [23], we
will closely follow the formalism developed in [24].

Let us review the main idea [25, 26]. Given a supersymmetric theory, one can choose
one supersymmetry δs and define a deformed partition function,

Zt ≡
∫
[dXI ][dψα]exp(−(S + tδsV )) , (3.1)

where V is a Grassmann-odd polynomial of the matrices. If the purely bosonic part of δsV
is non-negative, this deformed quantity is converging for any t ≥ 0. Let us now assume
that δ2sV = 0. Then,

d

dt
Zt =

∫
[dXI ][dψα]δs

(
V exp(− (S + tδsV ))

)
= 0 , (3.2)

where in the last step we used that δs can be written as a sum of derivatives6. The
assumption that δ2sV = 0 typically restricts V to be invariant under some subgroup of
SU(N)×SO(3)×SO(7). The fact that Zt is independent of t has a very useful consequence:
The saddle point approximation corresponding to t → ∞ is exact, and is equal to the
partition function Z = Zt=0. This reduces the integral to the moduli space obeying δsV = 0.

Note that this argument can also be applied to correlators of protected operators O
such that δsO = 0, namely

⟨O⟩ = ⟨O⟩t ≡
1

Z

∫
[dXI ][dψα]O exp(− (S + tδsV )) , ∀t ≥ 0 . (3.3)

3.1 Closure of the SUSY algebra

The requirement that δ2s reduces to some combination of gauge and global symmetry gen-
erators, under which V should be invariant, requires the SUSY algebra to close on this
symmetry group. In the formulation (2.6), this is only true on-shell.

6This follows from the supersymmetries (3.5). We can schematically write

δs ∼ ψ
δ

δX
+ ([X,X] + ΩX +K)

δ

δψ
+ ([X,ψ] + Ωψ)

δ

δK

Note also that all derivatives commute with what’s in front of them, so they can be moved to the left.
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An off-shell formulation is obtained by including seven auxiliary fields Ka=1,...,7, fol-
lowing [24, 27]. Namely, we will now consider the action

S = Tr

[
−1

4
[XI , XJ ]

2 − 1

2
ψ⊤γ̄I [XI , ψ] +

1

2
KaKa

+
3Ω2

43
XiXi +

Ω2

43
XpXp + i

Ω

3
ϵijkXiXjXk +

i

8
Ωψ⊤γ̄123ψ

]
,

(3.4)

where we wrote the Majorana-Weyl fermions in 16-component notation, i.e. ψα=1,...,16 are
Hermitian matrices of left-handed spinors, and γ̄I are 16 × 16 Weyl matrices defined in
(A.2). Note that the effect of auxiliary fields to the partition function is trivial, which
is just a multiplication by

∫
[dKa]e

− 1
2
TrKaKa = (2π)7N

2/2. The supercharge, leaving the
action (3.4) invariant, is now acting as

δϵX
I = −iϵ⊤γ̄Iψ ,

δϵψ =
i

2
γ̄IJϵ[XI , XJ ] +

3Ω

8
γ̄123γ̄iϵXi +

Ω

8
γ̄123γ̄pϵXp + iνaKa ,

δϵKa = iν⊤a γ̄
I [XI , ψ] +

Ω

4
ν⊤a γ̄

123ψ ,

(3.5)

where ϵ is deemed as Grassmann-even and δϵ is Grassman-odd. The parameters νa=1,2,...,7

are 7 arbitrary Grassmann-even Majorana-Weyl spinors at this point. However, we require
the SUSY algebra to close, namely,

{δϵ1 , δϵ2}(fields) = δB(fields) , (3.6)

where δB is a bosonic symmetry generator (i.e. some combination of SU(N) and SO(3)×
SO(7)). This imposes constraints on νa, as we show in C.1, which read

ϵ⊤γ̄Iνa = 0 ,

1

2
(ϵ⊤1 γ̄

Iϵ2)γ
I
αβ = (ϵ1)α(ϵ2)β + (ν1a)α(ν

2
a)β ,

(ν1a)
⊤γ̄Iν2b = δabϵ

⊤
1 γ̄

Iϵ2 .

(3.7)

We solve these constraints for our choice of ϵ, as discussed in the next section and shown
explicitly in appendix C.2.

3.2 Localization setup

Throughout this and the following sections, it will prove convenient to use the following
notation for the indices

I, J, ... = 1, ..., 10 , i, j, ... = 1, ..., 3 , p, q, ... = 4, ..., 10 , a = 1, ..., 7 ,

I ′, J ′, ... = 1, ..., 9 , i′, j′, ... = 1, 2 , p′, q′, ... = 4, ..., 9 , a′ = 1, ..., 6 .
(3.8)
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We now choose a particular supersymmetry transformation δs by specifying ϵ. Following
[24], we find it natural7 to choose ϵ such that it preserves a specific linear combination of
XI ,

δsϕ = 0 , ϕ ≡ X3 − iX10 . (3.9)

Choosing a gamma matrix representation such that γ̄3 and γ̄10 are diagonal, taking the
same value in the first 8 components, as well as in the last 8 components, as given explicitly
in (A.1), (A.2), we obtain that

ϵ =

(
η

0

)
, (3.10)

where η is a 8-component spinor. We also choose the normalization ϵ⊤ϵ = η⊤η = 1. The
constraints on νa (3.7) are solved in appendix C.2, where we find that νa have to live on
the same 8-component space as ϵ, have to be orthogonal to ϵ and have to be orthogonal
to each other. This justifies why a has to run from 1 to 7. From now on, we will choose
η = (1, 0, ..., 0). Correspondingly, we will choose (νa)α = δα,a+1.8

Let us also package the matrices in a convenient way. As explained in appendix C.2, the
spinors {γ̄I′ϵ, νa} form an orthonormal basis of 16-component spinors. We thus decompose
the fermionic matrices as

ψ = vI
′
ψI′ + νaχa , vI

′ ≡ γ̄I
′
ϵ . (3.11)

This allows us to package matrices into

Y ≡

(
XI′

χa

)
, Y ′ ≡

(
−iψI′
iHa

)
, (3.12)

where
Ha ≡ Ka +

Ω

8
ν⊤a ϵ̃X10 − isa , (3.13)

with

ϵ̃ ≡ γ̄123ϵ , sa ≡
3Ω

8
ν⊤a γ

iϵ̃Xi −
Ω

8
ν⊤a γ

p′ ϵ̃Xp′ +
i

2
ν⊤a γ̄

I′J ′
ϵ[XI′ , XJ ′ ] . (3.14)

From now on, we will consider the matrices in Y and Y ′ as our physical variables. This
rewriting is very similar to [24, 26], and it has the advantage of simplifying the SUSY
transformations to

δsY = Y ′ , δsY
′ = −i(δϕ + δU(1))Y , (3.15)

7While the final result of the integral (1.1) is independent of the choice of the deformation δsV , the
partition function written as a reduced (moduli space) integral, e.g. (1.6), can be different. In fact, in [12]
a different deformation of the polarized IKKT action was used and it leads to different saddle points and
different moduli space integral.

In [15], it was observed that a similar choice of BPS sector (or equivalently ϕ) to ours leads to a direct
match with the gravity dual of the BMN model. In section 5, we will see that our choice of ϕ also leads to
the matching with the gravity dual to the polarized IKKT model [5].

8This is fixed up to SO(7) rotation.
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where δϕ is a gauge transformation with parameter ϕ,

δϕ = i[ϕ, ·] , (3.16)

and δU(1) is a U(1) subgroup of SO(3)× SO(7) which acts as

δU(1)(X1 ± iX2) = ∓i3
8
(X1 ± iX2) , δU(1)(χ1 ± iχ6) = ±i1

4
(χ1 ± iχ6) ,

δU(1)(X4 ± iX5) = ∓i1
8
(X4 ± iX5) , δU(1)(χ2 ± iχ5) = ∓i1

4
(χ2 ± iχ5) ,

δU(1)(X6 ± iX7) = ∓i1
8
(X6 ± iX7) , δU(1)(χ3 ± iχ4) = ±i1

4
(χ3 ± iχ4) ,

δU(1)(X8 ± iX9) = ∓i1
8
(X8 ± iX9) , δU(1)X3 = 0 , δU(1)χ7 = 0 .

This notation will prove very useful in the following sections.
Finally we need to choose a Grassmann-odd potential V0 to deform the action. We

take the conventional choice in supersymmetric localization [26, 28], namely

V0 = Tr ψα(δsψα)
† . (3.17)

This ensures that the purely bosonic part of δsV0 is non-negative, since

tδsV0 = t Tr
(
|δsψα|2 − ψαδs

[
(δsψα)

†
])

. (3.18)

The first term is purely bosonic and positive, whereas the second term is a fermionic bilinear.

3.3 Saddle points

To do the saddle point approximation at t → ∞, we first need to identify the loci of the
saddle points in (3.18). This is done by writing explicitly

Tr|δsψ|2 = Tr

{(
K7 +

Ω

8
X10

)2

+K2
a′ +

(
3Ω

8
Xi +

i

2
ϵijk[Xj , Xk]

)2

+

(
Ω

8
X4 −

i

2
[X5, X3]

)2

+

(
Ω

8
X5 −

i

2
[X3, X4]

)2

+

(
Ω

8
X6 −

i

2
[X7, X3]

)2

+

(
Ω

8
X7 −

i

2
[X3, X6]

)2

+

(
Ω

8
X8 −

i

2
[X9, X3]

)2

+

(
Ω

8
X9 −

i

2
[X3, X8]

)2

− 3

4
[X3, Xp′ ]

2 − [Xi′ , Xp′ ]
2 − 1

2
[Xp′ , Xq′ ]

2 − [XI , X10]
2

}
,

(3.19)

Tr
(
ψ⊤δs

[
(δsψ)

∗
])

= Tr

{
− 3iΩ

4
ψ⊤
1 ψ2 −

iΩ

4
ψ⊤
4 ψ5 −

iΩ

4
ψ⊤
6 ψ7 −

iΩ

4
ψ⊤
8 ψ9

− iΩ

2
χ⊤
1 χ6 +

iΩ

2
χ⊤
2 χ5 −

iΩ

2
χ⊤
3 χ4 +

3iΩ

4
χ⊤
7 ψ3 + . . .

}
,

(3.20)
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where . . . denote fermionic bilinears involving bosonic matrices and the notation for the
indices follows (3.8). Since the matrices are Hermitian, all terms in the purely bosonic part
are positive. Thus, the saddle point loci are determined by imposing that each term in
(3.19) vanishes, leading to9

Xi =
3Ω

8
Li , X10 =M , K7 = −Ω

8
M , Xp′ = 0 , Ka′ = 0 , ψI′ = 0 , χa = 0 ,

(3.22)
where

[Li, Lj ] = iϵijkLk , [M,Li] = 0 . (3.23)

The matrices Li are SU(2) generators, and the requirement [M,Li] = 0 implies, by Schur’s
lemma, that M is block-diagonal in the irrep types, and takes constant values in each irrep.
For concreteness, Li and M take the form (recall that Ns = 2js + 1)

Li =



1n1 ⊗ L
[j1]
i

. . .
1ns ⊗ L

[js]
i

. . .

1nq ⊗ L
[jq ]
i


, (3.24)

M =



M1 ⊗ 1N1

. . .
Ms ⊗ 1Ns

. . .
Mq ⊗ 1Nq


. (3.25)

As we will see later, using the SU(N) gauge invariance we can diagonalize M , meaning
that each block Ms will be written as

Ms = diag(msi)i=1,...,ns , (3.26)

which is convenient for localization.

3.4 Gauge fixing

The saddle points Xi ∝ Li, for non-trivial Li have some gauge redundancy Li → ULiU
†

(and correspondinglyM → UMU †). It is not easy to gauge fix Li since this is representation-
dependent. For example, the gauge redundancy of the N -dimensional SU(2) irrep is SU(N)

9The reason why fermions are set to zero can be seen through a simple example

lim
t→∞

∫
dnψ dnχ e−t χ

⊤Aψf(χ, ψ) = tn/n!

∫
dnψ dnχ (χ⊤Aψ)nf(0, 0) +O(tn−1) , (3.21)

where χ, ψ are n-component fermions and A is a matrix (operator). Also note that from (3.20) we see there
is no fermonic zero modes in δsV .
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whereas the SU(2) trivial representation Li = 0 has no gauge redundancy. More generally,
the non-trivial gauge redundancy of (3.24) is given by the action of the group10

GR =
SU(N)

(⊗q
s=1U(ns)) /U(1)

=
U(N)

⊗q
s=1U(ns)

, (3.27)

where R denotes a saddle point in (3.22) or equivalently an N -dimensional representation
of SU(2) generators.

The convenient way to gauge fix is to introduce Faddeev-Popov ghosts. This allows
us to gauge fix the non-trivial unitary rotations of Li, in a way that treats all the SU(2)

representations on the same footing. Before elaboration, let us first review the main idea.
The partition function will be written as a sum over the saddle points Z =

∑
R ZR, and

for each ZR we introduce

1 =

∫
[dα]det′

(
δF

δα

)
δ′(F [Φ]) , (3.28)

where F [Φ] is a gauge-fixing condition on the fields collectively denoted by Φ, α are co-
ordinates of a group element (3.27). Due the to slightly unusual gauge group (3.27), the
gauge fixing requires extra care for treating the zero modes of the ghosts. The end result
is captured by the primes (det′ and δ′) above, which indicate the exclusion of zero modes
such that the determinant and the Dirac delta function are well-defined (see section 3.4.1).
Using gauge invariance, the integral over α factors out, giving the gauge group volume,
whereas the determinant and the delta function are written in terms of a ghost action Sgh.
In our localization setup, this would give11

ZR =

∫
[dΦ]e−(S+tδsV0) = Vol(GR)

∫
[dΦ][dΦgh]e

−(S+tδsV0+tSgh) , (3.29)

where Φgh denotes ghost fields collectively.

Written in this form, the exponent in the integrand is no longer of the form S + tδV

with δ2V = 0, which was the form we wanted to localize the integral. However, we can
get back to this form by formulating the ghost action in the BRST formalism and combine
it with supersymmetry, as was done in [24, 26]. This will allow us to treat δsV0 and Sgh
on the same footing and write the exponent as S + tQV , where the operator Q = δs + δb
combines both the supersymmetry δs and the BRST δb transformations and Q2V = 0. Let
us describe this in more detail.

10The action of U(ns) treats each of the ns SU(2) irrep blocks in (3.24), i.e. L[js]
j , as a matrix element

of an ns × ns matrix. Concretely, elements of U(ns) have the same matrix form as M in (3.25) and they
commute with Lj .

11Note that the inclusion of the parameter t in front of the ghost action has no incidence on the analysis,
as one can rescale fields in a measure invariant way to make this factor appear.
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3.4.1 The ghost action

To begin with, we choose the following gauge fixing condition12

F [X] ≡ −i[Lj , Xj ]
!
= 0 . (3.30)

This is a zero-dimensional version of the background gauge, which was employed e.g. in the
analysis of scatterng amplitudes on the Coulomb branch of N = 4 super Yang-Mills [29].

To fix the gauge through the ghosts they should live in the space of the gauge transfor-
mation directions, and their fluctuations living in the same space as the physical degrees of
freedom should be removed. This will be implemented by introducing additional zero-mode
ghosts Φgh,0 satisfying [Lj ,Φgh,0] = 0, as will be explained in the remainder of this section.
Explicitly, we add the ghost fields

{Φgh} = {C,C0, C̃, C̃0, b, b0, a0, ã0} , (3.31)

{Φgh,0} = {C0, C̃0, b0, a0, ã0} , (3.32)

where the ghosts C,C0, C̃, C̃0 are fermionic whereas b, b0, a0, ã0 are bosonic. The ghosts
C, C̃ and b are Hermitian N by N matrices. Since Φgh,0 commute with Li, they all take
the same form as M , (3.25), parameterized by Hermitian ns × ns matrices. The full ghost
action reads

Sgh = Tr
(
ibF [X] + iC̃[Lj , [Xj , C]] + ibb0 + iC̃C0 + iCC̃0

+ i

(
a0 + i

3Ω

8
L3 − iϕ+ iC2

)
ã0 + C̃[Lj , ψj ]

)
.

(3.33)

The first two terms ibF and iC̃[..., C] are the conventional ones, giving respectively the
Dirac δ function for the gauge fixing and the Faddeev-Popov determinant. The terms ibb0,
iC̃C0 and iCC̃0 remove the components of C, C̃ and b which are zero-modes under F and
δF/δα. The second line, which wouldn’t be necessary if our purpose was only to gauge fix,
comes from the constraint of BRST symmetry as well as consistency with supersymmetry as
shown in section 3.4.2 and in appendix C.3. Let us describe in more details the construction
of the zero-modes and why the second line doesn’t affect the discussion.

The ghost b has zero modes under Tr(F [X] ·), i.e.,

0 ≡ Tr(F [X]b(zero)) = iTr(Xj [Lj , b
(zero)]) . (3.34)

In order for the Dirac delta function in (3.28) to be well-defined, we introduce b0 and impose

[Lj , b0] = 0 , (3.35)

12Schematically we can write Xj = Lj + δX
(phys)
j + δX

(gauge)
j , and the condition (3.30) indicates that

[Lj , δX
(phys)
j ] = 0. See [12, Sec.3.2] for an explanation on why fluctuations satisfying this constraint are

orthogonal to the gauge orbit. One can also check that (3.30) gives N2 −
∑
s n

2
s independent constraints

on Xj , which equals exactly the number of gauge transformation directions in the gauge group GR.
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such that it indeed lives in the same space as the zero modes of b. Then the integral of
exp (ibb0) gives a Dirac delta on the zero modes of b and eliminates them. Similarly, the
ghosts C and C̃ have zero modes under the operator [Lj , [Xj , ·] ≡ δF

δα , i.e.,13

0 ≡ [Lj , [Xj , C
(zero)]] = [Xj , [Lj , C

(zero)]] . (3.37)

In the last equality we have used the Jacobi identity as well as the gauge fixing condition
(3.30). This allows to identify the zero-mode ghosts as14

[Lj , C0] = [Lj , C̃0] = 0 . (3.38)

Then just as for b, the terms iC̃C0 and iCC̃0 will remove the zero modes of C, C̃ after
integrating out C̃0, C0.

Up to this point we have justified the first line of (3.33). The second line comes from
the constraint of BRST symmetry as well as consistency with supersymmetry as previously
mentioned. Note that the term i(a0 + ...)ã0 does not affect the gauge fixing since the
integral over a0, ã0 is a constant. Finally, note the last term TrC̃[Lj , ψj ] never contributes
to physical expectation values without extra ghost insertions.

3.4.2 The BRST+SUSY formalism

To implement the BRST formalism we have introduced a family of eight ghosts, denoted
by (C,C0, C̃, C̃0, b, b0, a0, ã0), in (3.33). As shown in appendix C.3, it is natural to define
the BRST anti-commuting operator as

δbY = [Y,C] ,

δbC = i

(
a0 + i

3Ω

8
L3

)
− C2 ,

δbC̃ = ib ,

δbã0 = −iC̃0 ,

δbb0 = −iC0 ,

δba0 = 0 ,

δbY
′ = [Y ′, C] ,

δbϕ = [ϕ,C] ,

δbb = [C̃, a0 + i
3Ω

8
L3] ,

δbC̃0 = −[ã0, a0 + i
3Ω

8
L3] ,

δbC0 = −[b0, a0 + i
3Ω

8
L3] ,

(3.39)

where by the notation [·, C] we mean the commutator for the bosonic components of Y, Y ′

and minus the anticommutator, −{·, C} for the fermionic components of Y, Y ′. It obeys
the property,

δ2b = i

[
·, a0 + i

3Ω

8
L3

]
, δbTr[physical fields] = 0 =⇒ δbV0 = 0 . (3.40)

13One can similarly analyze the zero modes of C̃ using the identity

Tr(C̃[Lj , [Xj , C]]) = −Tr(C[Xj , [Lj , C̃]]) . (3.36)

14Here we only show that (3.38) is sufficient. Using (3.35) and (3.39), one can also show [Lj , C0] = 0.
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Since both BRST symmetry and supersymmetry have a cohomology structure, it is
convenient to combine them for the supersymmetric localization [26]. Let us define the
combined operator

Q ≡ δs + δb . (3.41)

We also define the action of supersymmetry on the ghosts as

δsC = ϕ , δs(other ghosts) = 0 . (3.42)

Then it is straightforward to check that

QY = Y ′ + [Y,C] ,

QC =

(
ϕ− 3Ω

8
L3

)
+ ia0 − C2 ,

QC̃ = ib ,

Qã0 = −iC̃0 ,

Qb0 = −iC0 ,

Qa0 = 0 ,

QY ′ = −i(δϕ +ΩδU(1))Y + [Y ′, C] ,

Qϕ = [ϕ,C] ,

Qb = [C̃, a0 + i
3Ω

8
L3] ,

QC̃0 = −[ã0, a0 + i
3Ω

8
L3] ,

QC0 = −[b0, a0 + i
3Ω

8
L3] .

(3.43)

The transformation Q satisfies the property15

Q2 = R ≡ −iΩδU(1) + i

[
·, a0 + i

3Ω

8
L3

]
. (3.44)

The BRST+SUSY formalism can now be used to write Sgh as a Q-exact quantity,
namely

Sgh = QVgh , Vgh = Tr(C̃(F + b0) + Cã0) . (3.45)

Using δsV0 = QV0, we can define
V ≡ V0 + Vgh , (3.46)

and write the partition function (3.29) as a Q-exact quantity

ZR = Vol(GR)

∫
[dΦ][dΦgh]e

−(S+tQV ) . (3.47)

We will use this as our localizing partition function, in view of (3.1).16

3.5 The saddle point approximation

We now perform the saddle point approximation of (3.47) around each saddle in the t→ ∞
limit17, in order to compute the partition function. First note that at the saddle R, the
action localizes to

S0 = −9Ω4

213
TrL2

i +
3Ω2

27
TrM2 = −9Ω4

215

∑
s

ns(N
3
s −Ns) +

3Ω2

27

∑
s

ns∑
i=1

m2
si , (3.48)

15We also choose δU(1)Φgh = 0 for all ghost fields.
16One might worry that QV does not have the same saddle points as δsV0. As explained in e.g. [30,

Sec.3.1], the added ghost action does not modify the saddle point loci.
17Note that the ghost variables are all set to 0 at the saddle point, except for a0 →M .
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where msi are the eigenvalues of the block s, Ms part of M . The remaining quantity to
be computed is the 1-loop determinant. Before computing it, it is useful to do a change of
variables of (3.12),

−iψ̃I′ ≡ −iψI′ + [XI′ , C] ,

iH̃a ≡ iHa − {χa, C} ,

ϕ̃ ≡ a0 + i
3Ω

8
L3 − iϕ+ iC2 .

(3.49)

The first two are simply translations of ψI′ and Ha, whereas the last can be thought as a
translation both on a0, which commutes with Li and the components of X10 which do not
commute with Li. Note that at the saddle point,

H̃a = 0 , (all fermions) = 0 , ϕ̃ = 0 =⇒ a0 =M . (3.50)

These new variables are useful for the following reason. Defining,

Zb ≡ (XI′ , ã0, b0) , Zf ≡ (χa, C, C̃) ,

Z ′
f ≡ (ψ̃I′ , C̃0, C0) , Z ′

b ≡ (H̃a, ϕ̃, b) ,
(3.51)

they transform nicely under Q,

QZb = −iZ ′
f , QZf = iZ ′

b , QZ ′
f = iRZb , QZ ′

b = −iRZf , (3.52)

where
R ≡ −iΩδU(1) + i

[
·, a0 + i

3Ω

8
L3

]
. (3.53)

To compute the 1-loop determinant, we expand each Z around the saddle point as Z = Ẑ+Z̃

where Ẑ is the saddle and Z̃ is the fluctuation, obtaining schematically

V0 + Vgh =
(
Z̃ ′
f Z̃f

)(D00 D01

D10 D11

)(
Z̃b
Z̃ ′
b

)
+O

(
Z̃3
)
. (3.54)

Indeed, one can check that there is no linear piece in Z̃, as shown in appendix C.4. Then,
noting that QZ is always at least linear in the fluctuation,

Q(V0 + Vgh) =i
(
R0Z̃b Z̃ ′

b

)(D00 D01

D10 D11

)(
Z̃b
Z̃ ′
b

)

+ i
(
Z̃ ′
f Z̃f

)(D00 D01

D10 D11

)(
Z̃ ′
f

R0Z̃f

)
+O

(
Z̃3
)
,

(3.55)

where
R0 ≡ −iΩδU(1) − i

[
M + i

3Ω

8
L3, ·

]
. (3.56)

Indeed, it is straight-forward to check that RZ = R0Z̃+ . . . where the additional terms are
higher order in Z̃ as shown in (C.60). This is a nice structure because the determinants of
the Dij matrices cancel between the fermions and the bosons. We are thus left with

Z1−loop ∝

(
detZ̃f R0

detZ̃b R0

)1/2

. (3.57)
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We obtain these determinants by computing the eigenvalues of R0 on the relevant matrices.
To do it, we first define

B1 ≡ X1 − iX2 , B2 ≡ X4 − iX5 ,

B3 ≡ X6 − iX7 , B4 ≡ X8 − iX9 ,

ξ1 ≡ χ1 + iχ6 , ξ2 ≡ χ2 − iχ5 , ξ3 ≡ χ3 + iχ4 .

(3.58)

These definitions allow to make −iΩδU(1) diagonal,

−iΩδU(1)B1 =
3Ω

8
B1 , −iΩδU(1)Bi=2,3,4 =

Ω

8
Bi , −iΩδU(1)ξi =

2Ω

8
ξi ,

−iΩδU(1)(other matrices) = 0 .
(3.59)

We also diagonalize M using the remaining ⊗sU(ns) gauge symmetry. We denote the
diagonal values of M by msi, where s labels the irrep and i goes over its multiplicity. Thus,
the operator [M, ·] acts diagonally on the matrices. Regarding [L3, ·], the eigenvalues are
easily obtained using fuzzy spherical harmonics.

This procedure is detailed in appendix C.5. The eigenvalues ofR0 and the Vandermonde
determinant associated to the diagonalization of M combine to the 1-loop determinant18

Z1−loop =

q∏
s,t=1

ns,nt∏
i,j=1
i ̸=j

js+jt∏
J=|js−jt|

[(
1
8

)2
(2 + 3J)2 + (msi −mtj)

2
]3 [(

1
8

)2
(3J)2 + (msi −mtj)

2
]

[(
1
8

)2
(1 + 3J)2 + (msi −mtj)2

]3 [(
1
8

)2
(3 + 3J)2 + (msi −mtj)2

]

1/2

,

(3.60)

which can also be written in the form (1.7).

3.6 The partition function and protected observables

At the saddle point, S = S0 in (3.48), and the 1-loop determinant is (3.60). Since this
approximation is exact and independent of t, this is an exact result for the partition function,
reduced to a sum over the saddle points, i.e. SU(2)-representations, of an integral over the
moduli space parameterized by msi. Combining (3.60), (3.48) we obtain, with the rescaling
msi → Ωmsi,

Z =
∑
R
CRe

9Ω4

215

∑
s ns(N

3
s−Ns)

∫ ∏
s

ns∏
i=1

dmsiZ1−loop exp

(
−3Ω4

27

∑
s

ns∑
i=1

Nsm
2
si

)
, (3.61)

CR =
(2π)5N

2+N/2∏N−1
k=1 k!

∏
s ns!

(
32

3π

)∑
s ns∏

s

(
1

Ns

Ns−1∏
J=1

(2 + 3J)3

(1 + 3J)3

)ns
, (3.62)

18We also performed a rescaling M → ΩM to get rid of the Ω dependence in the 1-loop determinant.
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where the normalization factor CR is computed in appendix C.6.
This analysis also applies to correlators of gauge invariant combinations of the protected

operators ϕ = X3 − iX10, namely

⟨f(ϕ)⟩ = 1

Z

∑
R
CRe

9Ω4

215

∑
s ns(N

3
s−Ns)

∫ ∏
s

ns∏
i=1

dmsiZ1−loopf

(
3Ω

8
L3 − iΩM

)
exp

(
−3Ω4

27

∑
s

ns∑
i=1

Nsm
2
si

)
,

(3.63)

where f is a gauge invariant function of ϕ. Note that in this equation, L3 and M take the
form (3.24), (3.25), where we diagonalized each block Ms.

So far, we have discussed the partition function of the U(N) theory because we did
not impose the matrices to be traceless. The SU(N) partition function is obtained by
integrating out the traces of XI and ψα which are purely Gaussian. Writing the matrices
in generator componentsXI = XA

I T
A, ψα = ψAαT

A, we define the SU(N) partition function
as

ZSU(N) =

∫ N2−1∏
A=1

(
10∏
I=1

dXA
I

16∏
α=1

dψAα

)
e−S , (3.64)

where we also use the normalization

TrTATB = δAB . (3.65)

In this case we find that the partition function Z and ZSU(N) are simply related by

Z = ZU(1)ZSU(N) , ZU(1) =
214π5

3
√
3Ω2

. (3.66)

Similarly, we can relate U(N) and SU(N) correlators. Expanding ϕ in its traceless part
and its trace, we obtain

⟨Trϕ2n⟩ =
n∑
k=0

(
2n

2k

)
⟨Trϕ2k⟩SU(N)

〈
Tr

(
ϕ√
N

)2n−2k
〉
U(1)

=
n∑
k=0

(
2n

2k

)(
−27

3NΩ2

)n−k Γ(n− k + 1
2)√

π
⟨Trϕ2k⟩SU(N) .

(3.67)

4 Analysis of the localization result

In this section, we perform various analyses of the localization results (3.61) and (3.63).
Firstly, we write what our general results predict for N = 2. In this simple case, the

integrals can be simplified explicitly in terms of special functions, and we provide plots of
some quantities.
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Secondly, we discuss the limit of vanishing mass deformation Ω → 0. Naively, one
might expect that the limit Ω → 0 would allow to obtain the value of the IKKT partition
function based on solid grounds. However, (3.61) predicts that it diverges,

lim
Ω→0

Z(Ω) = ∞ ≠ ZIKKT . (4.1)

The reason for this is the presence of massive fermions in the polarized IKKT model. In
order to establish the convergence of the IKKT partition function, one crucial factor was
that the integral over fermions produces a power-law decay along the commuting modes
valley [20, 31]. When giving a tiny mass to the fermions, this power-law decay is modified
and the partition function with traceless matrices diverges as 1/Ω2(N−1), as predicted by
our localization result. This analysis is carefully carried in the section 4.2. In appendix
B, we present a direct argument following the original reasoning for the convergence of the
IKKT partition function.

Thirdly, we study the limit Ω → ∞. In this case, it is interesting to compare our result
to the one obtained in [12]. We find precise agreement as shown in section 4.3.

Finally, we show in section 4.4 that we can recover the IKKT partition function for
N = 2 and N = 3 by assuming a contour prescription to avoid the Ω → 0 singularity, which
we conjecture to be valid for arbitrary N .

4.1 Explicit results for N = 2

It is enlightening to consider the case N = 2 where we can explicitly write the integrals
in terms of special functions. There are only two saddles, namely the trivial and the
irreducible representations. The trivial saddle involves a double integral, but the integral
over the center of mass m1 + m2 decouples, leaving only one non-trivial integral. The
irreducible saddle can be evaluated exactly for any N , as shown in (4.36). Thus the case
N = 2 trivially follows. Altogether we obtain

ZSU(2) =
216π29/2

3

∫ ∞

−∞
dx

(
(4 + x2)3x2

(1 + x2)3(9 + x2)

)
e−

3Ω4

214
x2 + 2853π31/2e

27
214

Ω4

. (4.2)

This can be simplified in terms of the complementary error function erfc(x), namely

ZSU(2) =
223π15

3
√
3Ω2

− 5 · 32 · 23
√
3π15Ω2 +

33
√
3π15Ω6

29

+ π31/2e
3Ω4

214 erfc

(√
3Ω2

27

)(
195 · 27 + 34

24
Ω4 − 34

216
Ω8

)

+ 5328π31/2e
27Ω4

214

(
1− 1

2
erfc

(
3
√
3Ω2

27

))
.

(4.3)

An explicit plot is provided in figure 2. It is also interesting to consider SU(2) correlators.
The U(2) localization result precisely takes the form (3.67), namely,

⟨Trϕ2n⟩U(2) =

n∑
k=0

(
2n

2k

)(
−26

3Ω2

)n−k Γ(n− k + 1
2)√

π
⟨Trϕ2k⟩SU(2) , (4.4)
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Figure 2: The free energy logZ(Ω) of SU(2) polarized IKKT. It has a minimum at
Ω ≈ 4.2046(5)

Figure 3: The correlation function ⟨Trϕ2n⟩ = ⟨Tr(X3−iX10)
2n⟩ of SU(2) polarized IKKT.

In the zoomed figure on the right, we can see that ⟨Trϕ4⟩ is always positive while ⟨Trϕ2⟩
and ⟨Trϕ6⟩ change sign at different values of Ω.

where we identify

⟨Trϕ2k⟩SU(2) =
Ω2k

ZSU(2)

{
217π29/2

3

(
−1

28

)k ∫ ∞

−∞
dx

(
(4 + x2)3x2

(1 + x2)3(9 + x2)

)
x2ke−

3Ω4

214
x2

+ 5329π31/2
(

3

16

)2k

e
27
214

Ω4

}
.

(4.5)

This can be written in terms of error functions as well. The corresponding results are
plotted in figure 3. Notice that in the limit Ω → ∞, the irreducible saddle dominates and
we find

⟨Trϕ2k⟩SU(2) = 2

(
3Ω

16

)2k

+O
(
e−

27
214

Ω4
)
, (4.6)
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as expected from the leading irreducible saddle contribution (2.8), and discussed in more
generality in (4.37).

4.2 The strong coupling limit Ω → 0

We now study the limit of vanishing mass-deformation Ω → 0. Written in terms of dimen-
sionful quantities, the polarized IKKT action takes the form

S =
1

g2YM

Tr

[
−1

4
[X ′

I , X
′
J ]

2 − i

2
ψ̄′ΓI [X ′

I , ψ
′]

+
3µ2

43
X ′
iX

′
i +

µ2

43
X ′
pX

′
p + i

µ

3
ϵijkX ′

iX
′
jX

′
k −

1

8
µψ̄′Γ123ψ′

]
.

(4.7)

where gYM has dimension two in 0+0 dimensions and µ has dimension one. This is related
to (1.3) by rescaling X ′

I =
√
gYMXI , ψ′ = g

3/2
YMψ and Ω = µ/

√
gYM. We thus interpret

Ω → 0 as a strong coupling limit gYM → ∞.

From the localization result: To take the Ω → 0 limit of the localization result (3.61),
it is useful to rescale the moduli space integration by msi → msi/Ω

2. In the limit Ω → 0,
we obtain

Z =
∑
R
CR

(
1

Ω2

)∑
s ns
∫ q∏

s=1

ns∏
i=1

dmsiexp

(
− 3

27

q∑
s=1

ns∑
i=1

Nsm
2
si

)
︸ ︷︷ ︸

≡Z(Ω→0)
U(N),R

(1 +O(Ω)) .
(4.8)

Each saddle contribution in this limit can be written as

Z
(Ω→0)
U(N),R

AN
=
∏
s

1

ns!

Z(Ω→0)
U(Ns),irrep

ANs

ns

, (4.9)

where

AN =
(2π)5N

2+N/2∏N−1
k=1 k!

, (4.10)

and ZU(Ns),irrep is the irreducible vacuum contribution (4.35) when Ω → 0

Z
(Ω→0)
U(N),irrep =

(2π)5N
2+(N−1)/2∏N−1
k=1 k!

29

3
√
3N

√
NΩ2

N−1∏
J=1

(
3J + 2

3J + 1

)3

. (4.11)

The notation (4.9) suggests that each irreducible block inside the reducible representation
R decouples from the other blocks in the Ω → 0 limit. This is very similar to the picture
of free particles and their bound states in an harmonic trap that characterizes the strong
coupling limit of the BMN model [32]. As we explain in the second part of this section,
this can be understood by integrating out the off-diagonal matrix elements that couple the
blocks to each other, without using localization.
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The result (4.9) predicts that each saddle in the U(N) case diverges as 1/Ω2
∑
s ns . In

particular, the leading divergence is governed by the trivial vacuum ns = N , Ns = 1

Z
(Ω→0)
U(N) =

(2π)5N
2∏N

k=1 k!

(
29

3
√
3Ω2

)N
. (4.12)

Also note that in the SU(N) case, the trivial saddle ns = N has the leading divergence
1/Ω2(N−1) whereas the irreducible saddle ns = 1 has a convergent contribution. This
convergent behavior of the irreducible saddle was also captured in [12], but the above
analysis shows that this is a special feature. All other saddles diverge.

Let us now consider the protected correlators ⟨Trϕ2n⟩. With the rescaling M → 1
Ω2M ,

the dominant contribution also comes from the trivial vacuum and we obtain

⟨Trϕ2n⟩U(N),Ω→0 =

∫ ∏N
i=1 dmi

∑
j

(
−imj
Ω

)2n
e−

3
27

∑
im

2
i∫ ∏N

i=1 dmie
− 3

27

∑
im

2
i

= N

(
−27

3Ω2

)n Γ(n+ 1
2)√

π
.

(4.13)

Note that this can be expressed as

⟨Trϕ2n⟩U(N),Ω→0 =
n∑
k=0

(
2n

2k

)(
−27

3NΩ2

)n−k Γ(n− k + 1
2)√

π

(
−27(N − 1)

3NΩ2

)k Γ(k + 1
2)√

π
.

(4.14)

We thus identify thanks to (3.67),

⟨Trϕ2n⟩SU(N),Ω→0 =

(
−27(N − 1)

3NΩ2

)n Γ(n+ 1
2)√

π
. (4.15)

From integrating out off-diagonal modes: First note that we can rescale coordinates
such that

Z(Ω) =

(
1

Ω2

)N2

Z̃(Ω) , (4.16)

where Z̃ =
∫
[dXI ][dψα]e

−S̃ with

S̃ = Tr

[
− 1

4Ω4
[XI , XJ ]

2 − i

2Ω2
ψ̄ΓI [XI , ψ] + i

1

3Ω2
ϵijkXiXjXk

+
3

43
XiXi +

1

43
XpXp −

1

8
ψ̄Γ123ψ

]
.

(4.17)

This is better suited for the strong coupling limit g = 1
Ω2 ≫ 1.19 Then, we separate the

matrices as
XI = rI + qI , ψα = θα +Θα , (4.18)

19Remember that this definition of g is related to the introduction of the dimension-full quantities Ω =

µ/
√
gYM. Then, the dimensionless gauge coupling is g = gYM/µ

2 = 1/Ω2.
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where rI , θα are diagonal and qI , Θα are off-diagonal. We will use the notation

rIab ≡ rIa − rIb , r̂Iab ≡ rIab/|rab| , |rab| ≡
√∑

I

rIabr
I
ab . (4.19)

We then use a SO(10) ⊃ SO(3)× SO(7) preserving gauge fixing

Z(Ω) = cN

(
1

Ω2

)N2 ∫
[drI ][dθα][dq

I ][dΘα]δ(r̂ab · qab)(∆(r) +O(Ω))e−S̃ , (4.20)

where ∆(r) =
∏
a̸=b |rab| is the Vandermonde determinant, which is the leading term in the

change of variables, and cN = 1
N !

Vol U(N)
Vol U(1)N

= (2π)(N
2−N)/2/

∏N
k=1(k!) is a volume factor.

Details on this gauge fixing method are given in [32, 33]. Then, we rescale

qI = Ω2yI , Θα = Ωχα . (4.21)

This reduces the partition function to

Z(Ω) = cN

(
1

Ω2

)N ∫
[drI ][dθα][dy

I ][dχα]δ(r̂ab · yab)∆(r)e−S0−Sy,χ + subleading , (4.22)

where
Sy,χ =

1

2
|rab|2yIabyIba −

1

2
rIabχ

⊤
baγ̄

Iχab +O(Ω) , (4.23)

S0 =
3

43
riar

i
a +

1

43
rpar

p
a +

i

8
θaγ

123θa . (4.24)

In the limit Ω → 0, these are Gaussian integrals,∫
[dyI ]δ(r̂ab · yab)e−

1
2
|rab|2yIaby

I
ba = (2π)9/2

∏
a̸=b

|rab|−9 , (4.25)

∫
[dχα]e

1
2
rIabχbaγ̄

Iχab =
∏
a̸=b

|rab|8 . (4.26)

Combined with ∆(r), all these products cancel. We thus obtain

Z(Ω) = cN (2π)
9(N2−N)

2

(
1

Ω2

)N ∫
[drI ][dθα]e

−S0(1 +O(Ω))

=
(2π)5N

2∏N
k=1 k!

(
29

3
√
3Ω2

)N
+ subleading .

(4.27)

This method can also be applied to compute correlators at small Ω. The original correlator
is related to the rescaled coordinates (4.17) by

⟨Trϕ2n⟩ = 1

Ω2n
⟨Trϕ2n⟩S̃ , ⟨O⟩S̃ ≡ 1

Z̃

∫
[dXI ][dψα]Oe−S̃ . (4.28)
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To compute ⟨Trϕ2n⟩S̃ at small Ω’s, we insert ϕ = r3−ir10+O(Ω) in the previous derivation,
thus obtaining

⟨Trϕ2n⟩Ω→0 =

(
1

Ω

)2n ∫ [dr3][dr10](r3 − ir10)2ne−
3
43
r3ar

3
a− 1

43
r10a r

10
a∫

[dr3][dr10]e−
3
43
r3ar

3
a− 1

43
r10a r

10
a

= N

(
−27

3Ω2

)n Γ(n+ 1
2)√

π
.

(4.29)

Both (4.27) and (4.29) agree exactly with the localization results when Ω → 0 (4.12),
(4.13). Note that the same reasoning for Z can be applied to the pure IKKT partition
function deep in the commuting modes valley once removing the Gaussian deformation
(S0 → 0), setting Ω → 1, and replacing the expansion in Ω by an expansion in |rab| ≫ 1.
The equation (4.27) would then reduce to an undetermined expression

∫
[drI ][dθα]1 = ∞·0.

In fact, a careful treatment of obtaining an effective action for large commuting modes
separation |rab| ≫ 1 has been carried in [31], and the integral over the fermions θα in
this case would reduce to a power-law 1/r# suppressed enough to ensure the convergence
of the IKKT partition function. We see explicitly in (4.27) that this power-law decay is
subleading, with the leading piece being due to the fermion mass term present in polarized
IKKT. This leading piece is the cause of the divergence in the Ω → 0 limit of polarized
IKKT.20 This discussion is consistent with appendix B where we see the divergence coming
from the Pfaffian mass terms, the original IKKT Pfaffian being subleading.

4.3 The free limit Ω → ∞

From the localization result: Rescaling msi → msi/Ω
2 and taking Ω → ∞ in the

localization result (3.61), we obtain

Z
(Ω→∞)
R = NR

(
1

Ω2

)∑
s n

2
s

e
9Ω4

215

∑
s ns(N

3
s−Ns)

∫ ∏
s

ns∏
i=1

∆(m) exp

(
− 3

27

∑
s

ns∑
i=1

Nsm
2
si

)
,

(4.30)
where

∆(m) =

∏
s

∏
i ̸=j

(msi −msj)
2

1/2

, (4.31)

NR =
(2π)5N

2+N/2−
∑
s ns/2∏N−1

k=1 k!
∏
s ns!

(
64

3

)∑
s n

2
s∏
s,t

js+jt∏
J=|js−jt|
J ̸=0

[ [
(2 + 3J)2

]3 [
(3J)2

]
[(1 + 3J)2]3 [(3 + 3J)2]

]nsnt
.

(4.32)

20A similar analysis can be found in another attempt to deform IKKT in 4d [34, Sec.4.1].
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This can be computed for any saddle R, since we can write it as a matrix integral. We
obtain

Z
(Ω→∞)
R =

(2π)5N
2+N/2∏N−1

k=1 k!

∏
s

[
ns−1∏
k=1

(k!)

(
1√
2π

)∑
s ns
(

29

3
√
3
√
NΩ2

)∑
s n

2
s
]

·
∏
s,t

(Ns+Nt−2)/2∏
J=|Ns−Nt|/2

[ [
(2 + 3J)2

]3 [
(3J)2

]
[(1 + 3J)2]3 [(3 + 3J)2]

]nsnt
e

9Ω4

215

∑
s ns(N

3
s−Ns) .

(4.33)

In particular we obtain that

Z
(Ω→∞)
U(N),trivial =

(
214π5

3
√
3Ω2

)N2

, (4.34)

ZU(N),irrep =
(2π)5N

2+(N−1)/2∏N−1
k=1 k!

29

3
√
3N

√
NΩ2

N−1∏
J=1

(
3J + 2

3J + 1

)3

e
9Ω4

215
(N3−N) , (4.35)

ZSU(N),irrep =
(2π)(10N+11)(N−1)/2

N
√
N
∏N−1
k=1 (k!)

N−1∏
J=1

(
3J + 2

3J + 1

)3

e
9Ω4

215
(N3−N) . (4.36)

Note that we wrote the irreducible result for the SU(N) partition function using (3.66). We
also dropped the (Ω → ∞) superscript from ZU(N),irrep because this is the exact formula
for any Ω (in this case Z1−loop = 1).

The correlators ⟨Trϕ2n⟩ can also be easily computed since, after rescaling M → 1
Ω2M ,

the dominant term in (3.63) comes from the irreducible fuzzy sphere 3Ω
8 Li. We thus obtain

⟨Trϕ2n⟩Ω→∞ = ⟨Trϕ2n⟩SU(N),Ω→∞ =

(
3Ω

8

)2n

TrL2n
3 =

(
3Ω

8

)2n
N−1

2∑
m=−N−1

2

m2n , (4.37)

where the equality between SU(N) and U(N) correlators follows from using (3.67) at large
Ω.

From direct methods: The limit Ω → ∞ around the trivial vacuum can be directly
obtained from looking at the mass-deformation of the polarized IKKT action. In view of
(4.16), we obtain

Z
(Ω→∞)
trivial =

(
1

Ω2

)N2 ∫
[dXI ][dψα]e

−Tr
(

3
43
XiXi+

1
43
XpXp− 1

8
ψ̄Γ123ψ

)
=

(
214π5

3
√
3Ω2

)N2

, (4.38)

which agrees with (4.34).
The limit Ω → ∞ around the irreducible vacuum was carefully treated in [12]. Their

result is the same as (4.36) once changing the measure convention from ours (TrTATB =

δAB) to theirs (TrTATB = 2δAB).
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4.4 Recovering IKKT

In this section, we give evidence for the conjecture that the IKKT partition function can be
recovered from (1.6) by not only taking Ω → 0, but also closing the contour of the moduli
integrals on the upper complex plane, thus picking poles and making the result finite as
Ω → 0. Let us first recall that

lim
Ω→0

ZSU(N) =
∑
R

lim
Ω→0

ZR
ZU(1)

, (4.39)

lim
Ω→0

ZR = lim
Ω→0

CR

∫ ∏
s,i

dmsiZ1−loope
− 3Ω4

27

∑
siNsm

2
si . (4.40)

We will give a prescription to make the ratio ZR/ZU(1) finite, such that

ZIKKT
R ≡ lim

Ω→0

(
ZR
ZU(1)

)
regulated

<∞ . (4.41)

The recipe we provide to define ZIKKT
R is the following.

1. Parameterize the (
∑

s ns)-dimensional integral ZR in terms of its trace mcom ≡∑
s,imsi and in terms of (

∑
s ns−1) relative variables ∆ij ≡ msi−mtj (for some s, t)

such that all the variables {∆ij} fully determine all differences msi −mtj .

2. Integrate out the trace mcom =
∑

simsi which does not appear in Z1−loop. This trace
will simplify with ZU(1) up to a constant.

3. The remaining (
∑

s ns − 1)-dimensional integral over {∆ij} is divergent when Ω → 0

if integrated on the real axis. Here is the prescription: Close the contour on the
upper-half plane as shown in figure 4. The integral over ∆ij will pick contributions
from poles at constant positions, but also from poles due to the other variables.

4. Iterate the pole-picking procedure up to having exhausted all integrations.

We conjecture that
ZIKKT =

∑
R
ZIKKT
R . (4.42)

In the following, we prove it for N = 2 and N = 3.

4.4.1 IKKT for N = 2

Let us consider the toy example N = 2. After removing the center of mass moduli integral,
we’re left with (4.2) which we repeat here for convenience

ZSU(2) =
216π29/2

3

∫ ∞

−∞
dx

(
(4 + x2)3x2

(1 + x2)3(9 + x2)

)
e−

3Ω4

214
x2 + 2853π31/2e

27
214

Ω4

. (4.43)

Setting Ω → 0 and closing the x integral on the upper complex plane, we pick the residues
at x1 = i and x2 = 3i, giving

ZIKKT
trivial =

216π29/2

3
2πi

2∑
m=1

Res

(
(4 + x2)3x2

(1 + x2)3(9 + x2)
, x = xm

)
= 2835π31/2 , (4.44)
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Re(∆13)

Im(∆13)

i

3i

i+∆12

3i+∆12

C

Figure 4: Contour integral displayed for the variable ∆13 in the trivial saddle of N = 3.
The original polarized IKKT integral was taken on the real axis, and we propose to close
it with a semi-circular arc in the upper half plane to regulate the divergence as Ω → 0.

ZIKKT
irrep = 2853π31/2 . (4.45)

They indeed sum to the N = 2 IKKT partition function (2.4)

ZIKKT
trivial + ZIKKT

irrep = 2135π31/2 = ZIKKT . (4.46)

4.4.2 IKKT for N = 3

The number 3 has three partitions, 3 = 1 + 1 + 1, the trivial saddle, which we will denote
by R = (1, 1, 1), 3 = 3, the irreducible saddle which we denote by R = (3) and 3 = 1 + 2,
corresponding to ns = 1, Ns = 1, nt = 1, Nt = 2, which we will denote by R = (1, 2). Let
us start by computing the trivial saddle contribution ZIKKT

(1,1,1). The first step is performed
by changing the m1,m2,m3 variables to mcom ≡ m1 + m2 + m3 and ∆12 ≡ m1 − m2,
∆13 ≡ m1 −m3. Note that m2 −m3 = ∆13 −∆12 is expressed in terms of them.

Z(1,1,1) = C(1,1,1)
1

3

∫
d∆12d∆13dmcomZ1−loop

exp

(
−3Ω4

27
2

3
(∆2

12 +∆2
13 −∆12∆13)−

Ω4

27
m2

com

)
.

(4.47)

Integrating out mcom, dividing by ZU(1) and rescaling ∆ij → ∆ij/8, we obtain

ZIKKT
(1,1,1) = C(1,1,1)

1

216π9/2

√
3

2

∮
C
d∆12d∆13A(∆12,∆13) , (4.48)

where

A(x, y) =
(4 + x2)3x2

(1 + x2)3(9 + x2)

(4 + y2)3y2

(1 + y2)3(9 + y2)

(4 + (x− y)2)3(x− y)2

(1 + (x− y)2)3(9 + (x− y)2)
. (4.49)
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Let us consider the integral over ∆13 first. Our contour prescription, illustrated in figure 4,
is such that it encircle the poles at ∆(1)

13 = i,∆
(2)
13 = 3i,∆

(3)
13 = ∆12+ i and ∆

(4)
13 = ∆12+3i,

yielding

B(∆12) ≡
∮
C
d∆13A(∆12,∆13) =

4∑
m=1

2πiRes(A(∆12,∆13),∆13 = ∆
(m)
13 )

=
π

128

P (∆12)

(∆2
12 + 1)3(∆2

12 + 4)2(∆2
12 + 9)(∆2

12 + 16)3(∆2
12 + 36)

,

(4.50)

P (x) ≡ 105x20 + 10920x18 + 457170x16 + 10423560x14 + 142736685x12 + 1175466936x10

+ 5477149824x8 + 12450112896x6 + 11571604224x4 + 22451613696x2 .

(4.51)

We now iterate by integrating B(∆12) over ∆12 whose contour encircles the poles at ∆(1)
12 =

i,∆(2)
12 = 2i,∆(3)

12 = 3i,∆(4)
12 = 4i and ∆

(5)
12 = 6i. We thus obtain

ZIKKT
(1,1,1) = C(1,1,1)

1

216π9/2

√
3

2
2πi

5∑
m=1

Res(B(∆12),∆12 = ∆
(m)
12 ) =

239 · 83 · 241π41

325273
√
3

. (4.52)

The only other vacuum which is non-trivial to compute is (1, 2). Integrating out the
center of mass and rescaling variables we obtain

ZIKKT
(1,2) = C(1,2)

23553π40

3
√
3

∮
C
dx

(493 + x2)3(94 + x2)

(254 + x2)3(814 + x2)
. (4.53)

The contour integral picks the poles at x = 5
2 i and x = 9

4 i thus giving

ZIKKT
(1,2) =

239499π41

3 · 5273
√
3
. (4.54)

Finally, ZIKKT
(3) trivially follows from (4.36),

ZIKKT
(3) =

24353π41

3 · 73
√
3
. (4.55)

The sum precisely agrees with the N = 3 IKKT partition function (2.4)

ZIKKT
(1,1,1) + ZIKKT

(1,2) + ZIKKT
(3) =

2415π41

9
√
3

= ZIKKT . (4.56)

5 Gravity from the matrix model

In this section we will show that, in the large N limit, the localization equations are equiv-
alent to the electrostatic equations defining the gravity dual described in [5]. A similar
analysis was carried out in [14, 15] for the case of the BMN model, whose vacua are dual
to Lin-Maldacena geometries [35].
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5.1 The electrostatic problem

The dual geometry is determined by the 4-dimensional electrostatic potential of a configu-
ration of conducting 3d balls and a background potential [5], see the right of figure 1. We
will write an equation for the charge density of those conductors.

Consider a 3d ball of radius R with a spherically symmetric charge density σ(r), with
0 < r < R. Let us slice this ball21 in thin disks, and compute the linear charge density
f(u) of such a slice, at a distance u from the center of the ball, measured on the equatorial
plane, see figure 5. We obtain

u

y
R

Figure 5: Slicing of a 3d ball into 2d disks (blue). The center of the disk is at a distance
u from the center of the ball, and y is a radial coordinate on the disk. The linear charge
density f(u) measures the charge on the blue slice.

f(u) = 2π

∫ √
R2−u2

0
dy y σ

(
r =

√
u2 + y2

)
= π

∫ R2

u2
dzσ(

√
z), (5.1)

where y is a coordinate perpendicular to the equatorial plane, and the second equality
comes from changing y to the variable z = u2 + y2. Taking a derivative with respect to u
we get

f ′(u) = −2πuσ(u). (5.2)

Since this is the charge of a slice, we can simply compute the total charge of the ball by
integrating over slices22

Q =

∫ R

−R
duf(u), (5.4)

21At this point it might be surprising to consider the charge density of the slices instead of the one of the
ball itself. In [14, 15], it was the charge density of such slices that reproduced the density of eigenvalues of
the matrix side.

22Alternatively one can compute

Q = 4π

∫ R

0

duu2σ(u) = −2

∫ R

0

duuf ′(u) = −
∫ R

−R
duuf ′(u) =

∫ R

−R
duf(u). (5.3)
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where we used f(−u) = f(u).
The 4d electrostatic potential due to a ball of radius Rs, placed at position zs and with

charge density σs(r), reads23

Vball,s(r, z) =
1

4πr

∫ Rs

0
duuσs(u) log

(
1 +

4ru

(r − u)2 + (z − zs)2

)
. (5.5)

Writing it in terms of f(u) and integrating by parts we obtain

Vball,s(r, z) =
1

8π2r

∫ Rs

−Rs
dufs(u)

(
r + u

(r + u)2 + (z − zs)2
+

r − u

(r − u)2 + (z − zs)2

)
. (5.6)

Using f(u) = f(−u), we can write

Vball,s(r, z) =
1

4π2r

∫ Rs

−Rs
dufs(u)

r − u

(r − u)2 + (z − zs)2
. (5.7)

One may worry about evaluating this function at z = zs when r < Rs. In this case, we
should take the limit24

Vball,s(r, zs) =
1

4π2r
lim
ϵ→0

∫ Rs

−Rs
dufs(u)

r − u

(r − u)2 + ϵ2
. (5.8)

The total potential V (r, z) is constant on the conducting ball s and takes the value V (r, zs) =

Vs when r < Rs. Thus

Vs = Vb
(
r2zs − z3s

)
+

∑
t+images

Vball,t(r, zs), (5.9)

where the sum runs over all the balls, including images25, and the first term is the back-
ground potential. Multiplying by r and taking a derivative with respect to r, we obtain

−Vs + Vb(3r
2zs − z3s ) +

∑
t+images

1

(2π)2
R
∫ Rt

−Rt
dr′

(zs − zt)
2 − (r − r′)2

((zs − zt)2 + (r − r′)2)2
ft(r

′) = 0 (5.10)

where we changed integration variable u→ r′ for later convenience and defined

R
∫
dy

1

y2
f(y) ≡ lim

ϵ→0

∫
dy

y2 − ϵ2

(y2 + ϵ2)2
f(y) = lim

ϵ→0

[∫
|y|>ϵ

dy

y2
f(y)− 2

ϵ
f(0)

]
, (5.11)

which regulates the integral over the ball s. The linear charge densities fs(r), the size of
the balls Rs and the potentials Vs are determined by (5.10) and by the conditions

Qs =

∫ Rs

−Rs
drfs(r) , fs(Rs) = f ′s(Rs) = 0 . (5.12)

The integral equations (5.10) and (5.12) are equivalent to the Laplace equation with
boundary conditions set by the conducting balls. Hence those equations determine the 10
dimensional Euclidean geometry of the gravity dual [5]. In the next subsection we will show
that the large N limit of the localization result gives exactly the same equations.

23This can be obtained simply by integrating the 4d electrostatic potential V (x) of a single charge at
position y (V (x) = 1

4π2
1

|x−y|2 ) over a ball with charge density σs.
24This is equivalent to taking the Cauchy principal value of the integral with ϵ = 0.
25By inclusion of images, we mean that for each t, we also sum over t̃ where ft̃ = −ft and zt̃ = −zt. This

is the method of image charges in electrostatics, which ensures that V = 0 at z = 0.
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5.2 The particle density

We now study the localization result (1.6) in the large ns limit in which the particles form
a continuum which can be described by continuous densities.

The localization result (1.6) can be written as

ZR = CR

∫ ∏
s,i

dmsie
−Seff , (5.13)

where

Seff = −9Ω4

215

∑
s

ns(N
3
s −Ns) +

3Ω4

128

∑
s

Ns

∑
i

m2
si +

∑
(si,tj)

gst(msi −mtj) , (5.14)

with

gst(x) =

(Ns+Nt−2)/2∑
J=|Ns−Nt|/2

hJ(x) , (5.15)

and

hJ(x) = − log

[
(2 + 3J)2 + (8x)2

]3 [
(3J)2 + (8x)2

]
[(1 + 3J)2 + (8x)2]3 [(3 + 3J)2 + (8x)2]

. (5.16)

It is useful to think of this as a statistical mechanics system with ns particles of charge
Ns in a 1D harmonic background potential and with two-body interactions described by
gst(msi −mtj). The two-body term depends on the charges Ns and Nt of the two particles
and on the distance between them.

In order to connect with the electrostatic problem described in the previous subsection,
it is convenient to write

gst(x) = kst(x) + kst̃(x) , (5.17)

with

kst(x) =
∞∑

J=|Ns−Nt|/2

hJ(x) , kst̃(x) = −
∞∑

J=|Ns+Nt|/2

hJ(x) . (5.18)

As we shall see, the term kst̃ is similar to the interaction between the ball s and the image
ball t̃ in the electrostatic problem. We can then write

Seff = −9Ω4

215

∑
s

ns(N
3
s −Ns) +

3Ω4

128

∑
s

Ns

∑
i

m2
si +

∑
(si,tj)

+images

kst(msi −mtj) , (5.19)

where for each pair (si, tj) we also sum over its image (si, t̃j). The potential between
particles can be written in closed form,

kst(x) = 3 log
Γ
(
2+3J+8ix

3

)
Γ
(
2+3J−8ix

3

)
Γ
(
1+3J+8ix

3

)
Γ
(
1+3J−8ix

3

) − log

(
J2 +

(8x)2

32

)
(5.20)

=
1

3

(
1

(3J + 8ix)2
+

1

(3J − 8ix)2

)
+O

(
1

(3J ± 8ix)4

)
, (5.21)
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Figure 6: The two-body interaction potential kst(x) for J = 0, 12 , 1,
3
2 given in (5.20). The

dashed lines are the approximation in (5.21).

with J = |Ns − Nt|/2. In this formulation, each particle (si) interacts with every other
particle (tj) and its image (t̃j). From the plots of figure 6, we observe that the interaction is
repulsive at short distances and attractive at large distances. This is not surprising because
the basic building block hJ(x) shows a similar behavior (in fact, it obeys

∫∞
−∞ dxhJ(x) = 0

for any J ≥ 0). Particles with the same charge have a short distance repulsion of infinite
strength. At long distances, the two-body potentials decay to zero as the inverse of the
fourth power of distance.

Let us now introduce the eigenvalue densities

ρ(s)(x) =

ns∑
i=1

δ(x−msi) . (5.22)

In the limit of large ns, we expect that we can replace this exact eigenvalue density by a
smooth function. We shall comment in more detail later on the validity of this approxima-
tion. This allows us to write

Seff =− 9Ω4

215

∑
s

ns(N
3
s −Ns) +

3Ω4

27

∑
s

Ns

∫
dxx2ρ(s)(x) (5.23)

+
1

2

∑
(s,t)

+images

∫
dxdyρ(s)(x)ρ(t)(y)kst(x− y)−

∑
s

µs

(∫
dxρ(s)(x)− ns

)
,

where we introduce µs as a Lagrange multiplier to enforce the constraint
∫
dxρ(s)(x) = ns.
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The saddle point equation for ρ(s)(x) is then

3Ω4

27
Nsx

2 +
∑

t+images

∫
dykst(x− y)ρ(t)(y)− µs = 0 . (5.24)

Finally, we approximate the exact two-body potential kst(x) by its large J ∼ x behavior
given in (5.21),

3Ω4

27
Nsx

2 − µs +
2

3

∑
t+images

R
∫ x(t)

−x(t)
dy

(
3
2 |Ns −Nt|

)2 − (8(x− y))2((
3
2 |Ns −Nt|

)2
+ (8(x− y))2

)2 ρ(t)(y) = 0 , (5.25)

where we defined images t̃ for each t as

ρ(t̃)(x) = −ρ(t)(x) , Nt̃ = −Nt . (5.26)

In addition, the term t = s is defined by the limit Nt → Ns outside the integral. This
is the meaning of the regulated integral symbol. Notice that this preserves the property∫
dxkss(x) = 0 of the exact two-body potential. We also assumed that the densities ρ(s)(x)

have support in an interval [−x(s), x(s)]. Therefore, we have

ns =

∫ x(s)

−x(s)
dx ρ(s)(x) , ρ(s)(x(s)) = 0 . (5.27)

Notice that the kernel in (5.25) can be written as a derivative of a simpler function that
also decays at large distance,(

3
2 |Ns −Nt|

)2 − (8(x− y))2((
3
2 |Ns −Nt|

)2
+ (8(x− y))2

)2 = − d

dy

(x− y)(
3
2 |Ns −Nt|

)2
+ (8(x− y))2

. (5.28)

Using this property and integrating by parts in (5.25) we find

3Ω4

27
Nsx

2 − µs +
2

3

∑
t+images

R
∫ x(t)

−x(t)
dy

(x− y)(
3
2 |Ns −Nt|

)2
+ (8(x− y))2

dρ(t)

dy
(y) = 0 . (5.29)

The new kernel for t = s is proportional to the principal value of 1
x−y which is the usual

kernel in Gaussian matrix models. Therefore, we expect the behavior close to x(s) to be of
square root type,

dρ(t)

dy
(y) ∼

√
x(s) − y ⇒ ρ(t)(y) ∼

(
x(s) − y

) 3
2
. (5.30)

Thus, we conclude that

ns =

∫ x(s)

−x(s)
dx ρ(s)(x) , ρ(s)(±x(s)) = dρ(t)

dx
(±x(s)) = 0 . (5.31)
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Validity of the approximations We made two approximations to arrive at (5.25).
Firstly, we replaced discrete sums by integrals of continuous functions. Secondly, we re-
placed the two-particle potential kst(x) by its large J ∼ x behavior. In order to estimate
the error in the first approximation, it is convenient to write

ρ(s)(x) =
ns

x(s)
b
( x

x(s)

)
(5.32)

with b(w) an order one function with support in the interval [−1, 1] and normalized by∫ 1
−1 dwb(w) = 1. In appendix D, we study the electrostatic problem with just one ball (and

its image). There we show that

b(w) =

{
15
16(1− w2)2 if x(s) ≫ Ns

8
3π2 (1− w2)

3
2 if x(s) ≪ Ns

. (5.33)

In addition, we found that

x(s)

Ns
∼

{
ξ

1
5 if ξ ≫ 1

ξ
1
4 if ξ ≪ 1

, ξ ≡ ns
Ω4N5

s

. (5.34)

We can then estimate the order of magnitude of the first 3 terms in the effective action
(5.23), namely Ω4nsN

3
s , Ω4nsNs(x

(s))2 and n2s/(x
(s))2. Notice that these 3 terms are of

order n2s/N2
s if we keep ξ fixed.

Doing a Taylor expansion of ρ(t)(y) around x and referring to figure 6, the error intro-
duced by approximating kst(x) can be estimated by∫

dxdyρ(s)(x)ρ(t)(y) [kst(x− y)− kapprox
st (x− y)] ∼

∫
dxρ(s)(x)

d2

dx2
ρ(t)(x) ∼ n2s

(x(s))3
.

This is suppressed by a factor of x(s) relative to the third term in (5.23). Therefore, our
approximation is valid as long as x(s) ≫ 1. The error introduced by the approximation of
a continuous density of particles goes to zero as long as the density ρ(s) ∼ ns/x

(s) goes to
infinity. Finally, in order to neglect the entropy term26

∑
s

∫
dxρ(s)(x) log

ρ(s)(x)

ns
∼ ns log x

(s) , (5.35)

relative to the other terms in (5.23), we need ns/(x(s))2 ≫ log x(s) ≫ 1. Putting everything
together, we need

ns ≫ (x(s))2 log(x(s)) ≫ 1 . (5.36)

This can be achieved in many ways. For example, we can keep ξ fixed (and therefore x(s)/Ns

is also fixed) and take ns ≫ N2
s logNs. Alternatively, we can keep Ns and Ω fixed and send

ns → ∞.
26The entropy term comes from converting the measure

∫ ∏
i dmsi →

∫
[dρ(s)(x)]. For a review, refer to

e.g. [36, App.C].
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5.3 Matching with gravity

The localization equations (5.25) and (5.31) are exactly the same as the electrostatic equa-
tions (5.10) and (5.12) up to an identification of parameters. To find the correct identifica-
tion we start by writing

x, y = ar, ar′ , x(t) = aRt , ρ(t)(x = ar) = bft(r) , (5.37)

where we denote by x, y the variables of the densities of eigenvalues and r, r′ the variables
of the linear charge densities. Then, matching the kernels in (5.25) and (5.10), we find

3

16a
Ns = zs. (5.38)

We can now rescale one of the equations so that the terms with the integral are identical.
Then we match the r independent terms and the terms proportional to r2, which gives

Vs + z3sVb =
24a

bπ2
µs, 3Vbzs =

9a3NsΩ
4

16bπ2
. (5.39)

Finally we match the equations for the total charge (5.31) and (5.12) to get

abQs = ns. (5.40)

As explained in [5], quantizing the different fluxes in the gravity side leads to quantization
of the heights of the disks zs and their charges Qs as

zs =
3πµα′

8
Ns, Qs =

π4µ6α′3gs
32

ns, (5.41)

where the constant µ is related to Vb as Vb = µ5/27. We can then solve the equations (5.38),
(5.40) and the first one in (5.39) for the parameters a, b, µs and we find

a =
1

2πµα′ , b =
64

π3µ5α′2gs
, µs =

16

3gsα′µ4
Vs +

9

212gs
N3
s π

3α′2µ4 . (5.42)

In addition, we still have the second equation in (5.39) that we did not use. We can solve
it for µ and we find

µ =
√
gYMΩ, (5.43)

which exactly agrees with the matching derived in [5]. To summarize, the identification of
localization parameters with gravity parameters is

x =
1

2πµα′ r , ρ(s)(x) =
64

π3µ5α′2gs
fs(r), µs =

16

3gsα′µ4
Vs +

9

212gs
N3
s π

3α′2µ4 .

(5.44)
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5.4 The on-shell action

The action (5.23) evaluated on-shell reduces to

Son−shell = −9Ω4

215

∑
s

nsN
3
s +

1

2

3Ω4

27

∑
s

Ns

∫
dxx2ρ(s)(x) +

1

2

∑
s

µsns. (5.45)

Note that for a single ball, writing it in terms of the fixed quantity ξ = nsΩ
−4N−5

s , we get

Son−shell = − N2

λ2/3
H(ξ), H(ξ) ≈

{
− 5

7 27
(15π/8)2/5ξ1/15 if ξ ≫ 1

9
215
ξ−1/3 if ξ ≪ 1

, (5.46)

where N = nsNs and λ ≡ N/Ω4 = Ng2YM/µ
4 is the dimensionless ’t Hooft coupling. This

aligns with the scaling similarity arguments in [37–39] and our scaling analysis from the
supergravity perspective [5].

Using matching of parameters (5.44), (5.45) becomes

Son−shell =
∑
s

(
−9π3α′2µ4

213
nsN

3
s +

28

3π4g2sα
′4µ10

QsVs +
3

4g2sπ
3α′3µ4

Ns

∫
drr2fs(r)

)
.

(5.47)
Remarkably, the first and the last term combine exactly to give the octopole27 of the
electrostatic configuration expressed as

q3,s = 2z3sQs − 6zs

∫ Rs

−Rs
drr2fs(r) =

27gsα
′6µ9π7

213
nsN

3
s − 9

4
πµα′Ns

∫
drr2fs(r). (5.48)

We can then rewrite (5.47) as

Son−shell =
∑
s

(
28

3π4g2sα
′4µ10

QsVs −
1

3g2sπ
4α′4µ5

q3,s

)
. (5.49)

In the limit zs ≫ Rs, where we can compute Vs ≈ −µ5

27
z3s and q3 ≈ 2z3sQs and we obtain

28

3π4g2sα
′4µ10

QsVs ≃
Ni→∞

− 9

216
nsN

3
sΩ

4, − 1

3g2sπ
4α′4µ5

q3,s ≃
Ni→∞

− 9

216
nsN

3
sΩ

4, (5.50)

which correctly reproduces the value of the potential at the minima.
It is interesting to compare equation (5.49) with the on-shell action found in the gravity

dual [5]. There, we found a term proportional to
∑

sQsVs which matches the first term in
(5.49) up to a factor of 2. We also found that boundary terms generically give something
proportional to

∑
s q3,s. It would be nice to carefully finish the gravitational computation

and match the result (5.49).

27For more details on the octopole, refer to [5].
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6 Discussion

Summary and main results In this paper, we studied the polarized IKKT matrix
model and reduced the partition function, as well as a family of protected observables,
to a sum over saddles where each term is parameterized by one block-diagonal matrix
integral. Surprisingly, we found that the limit of vanishing mass-deformation did not reduce
to the IKKT model, but instead led to a divergence. We made sense of the divergence
by interpreting this limit as a strong coupling limit where the off-diagonal entries of the
matrices can be integrated out perturbatively. In fact, we obtained that the structure
exhibited by each saddle contribution is very similar to the picture in BMN, where each
irreducible block forms a bound state which decouples from the others in the strong coupling
limit. We also considered the limit where the mass-deformation dominates and obtained
results consistent with [12]. Given that the limit of vanishing mass-deformation of the
partition function diverges, one can ask whether there exists some natural regularization
which would give rise to IKKT. We proposed an answer to this question by conjecturing a
contour prescription of the moduli integrals and we verified that it works for N = 2, 3.

Then, we gave evidence that each saddle of the localization result was in one to one
correspondence with the geometries we constructed in [5]. This was derived by analyzing
the dynamics of the eigenvalues of the localization result in the limit where they form
a continuum. In this limit, the partition function is dominated by some configurations
of eigenvalues densities which obey a saddle point integral equation. In the gravity side,
the metric is characterized by a potential which is obtained after solving an electrostatic
problem. This problem can be reduced to an integral equation on the charge densities.
We found exact agreement between the two sides once parameters were identified. We also
obtained that the on-shell action of the eigenvalues densities is consistent with the bosonic
potential evaluated at its minima, and that the structure agrees with the gravitational
on-shell action we derived in [5].

Future directions

• It would be instructive to pursue the small Ω expansion of the effective action to
subleading orders. The leading term derived in section 4.2 corresponds to free particles
in an harmonic potential. The next terms will give rise to interactions between these
particles. Can we understand how the distribution of particles changes when there
are many interacting particles ? The dual gravitational description should emerge
from this density field of interacting particles.

• It should be possible to obtain the S6 partition function of k NS5-branes from a
careful scaling limit of our result.

• Our conjectured prescription to obtain IKKT from polarized IKKT predicts that
the sum over SU(2) representations of the residues of the 1-loop determinant should
somehow reduce to a sum over divisors of N ,

∑
m|N

1
m2 . Proving this conjecture might

involve some non-trivial number theoretic relations.
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• The (undeformed) IKKT partition function, which is given in terms of the divisor
function σ2(N), does not have a uniform large N limit and instead behaves “errat-
ically" as a function of N . The asymptotic behavior of σ2 has been studied in the
literature and it would be interesting to see if and how they can be reproduced from
the gravity side. See [40] for discussions on the gravitational path integral and quan-
tities that depend erratically on N .
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A Convention for the gamma matrices

To define the Euclidean SO(10) gamma matrices, we first define SO(9) Gamma matrices,
inspired from [41, App.3.A.5],

γ1 ≡ σ2 ⊗ σ2 ⊗ σ1 ⊗ 1 ,

γ2 ≡ σ2 ⊗ σ3 ⊗ 1 ⊗ σ2 ,

γ3 ≡ −σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

γ4 ≡ −σ2 ⊗ σ1 ⊗ 1 ⊗ σ2 ,

γ5 ≡ σ2 ⊗ 1 ⊗ σ2 ⊗ σ3 ,

γ6 ≡ σ1 ⊗ 1 ⊗ 1 ⊗ 1 ,

γ7 ≡ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ,

γ8 ≡ −σ2 ⊗ 1 ⊗ σ2 ⊗ σ1 ,

γ9 ≡ σ2 ⊗ σ2 ⊗ σ3 ⊗ 1 ,

(A.1)

where σi are Pauli matrices, 1 = 12 and we have reshuffled the indices and signs for
convenience in our localization computations. The features of this representation are that

• The complex valued matrix σ2 always appears an even number of times, so that γI′

are real and symmetric.

• We chose γ3 diagonal.

• The matrices γI′=1,...,2 and γI
′=4,...,9 take a block off-diagonal form, where the off-

diagonal blocks are 8 by 8.

We then define the SO(10) “Weyl” matrices, as

γI = (γI
′
,−i116) , γ̄I = (γI

′
, i116) , (I = 1, 2, . . . 10, I ′ = 1, 2, . . . , 9) . (A.2)
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This allows to define the SO(10) gamma matrices as

ΓI =

(
0 γI

γ̄I 0

)
,

{
ΓI ,ΓJ

}
=

(
2γ(I γ̄J) 0

0 2γ̄(IγJ)

)
= 2δIJ132 ,

ΓIJ ≡ Γ[IΓJ ] =

(
γ[I γ̄J ] 0

0 γ̄[IγJ ]

)
≡

(
γ̄IJ 0

0 γIJ

)
,

ΓIJK ≡ Γ[IΓJΓK] =

(
0 γ[I γ̄JγK]

γ̄[IγJ γ̄K] 0

)
≡

(
0 γIJK

γ̄IJK 0

)
,

ΓIJKL =

(
γ[I γ̄JγK γ̄L] 0

0 γ̄[IγJ γ̄KγL]

)
≡

(
γ̄IJKL 0

0 γIJKL

)
,

Γ∗ ≡ (−i)10/2Γ1Γ2 . . .Γ10 =

(
116 0

0 −116

)
,

(A.3)

and higher rank gamma matrices also follow the same pattern as above. Our choice for the
conjugation matrix C is

C = Γ10 =

(
0 −i116

i116 0

)
. (A.4)

In this convention, the Majorana-Weyl condition is trivially satisfied by real left-handed
spinors of the form ψ = (ψα=1,...,16, 0, ..., 0) where ψα are real Grassmann numbers. For
such spinors,

CΓIψ = −iγ̄Iψ , ΓIJψ = γ̄IJψ , CΓ123ψ = −iγ̄123ψ ,
Γ123ΓIψ = γ̄123γ̄Iψ , . . .

(A.5)

where it is clear that we use the notation ψ = (ψ, 0) implicitly both for the 32-component
and 16-component spinor ψ.

B The IKKT convergence argument, broken by fermion masses

In this appendix, we discuss convergence of the pure SU(2) IKKT partition function, and
show that the presence of massive fermions affects the convergence argument, leading to
a divergence when Ω → 0. Let us start by looking at the bosonic part of the pure IKKT
model

SIKKT
bos = −1

4
Tr[XI , XJ ]

2 . (B.1)

We define XI = RxI where
∑

I Trx
IxI = 1. The divergent behaviour may arise from the

region R ≫ 1. However, it has been shown in [13, 20, 34] that correlators behave at large
R as ∫

[dXI ]TrXpe−S
IKKT
bos ∼

∫
R≫1

dR

R
Rp−6 . (B.2)
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In particular the partition function of SU(2) bosonic IKKT converges, as well as correlators
with degree p < 6. Adding a bosonic mass deformation only gives an e−Ω2R2 factor. Namely,
with

Sbos = Tr

[
−1

4
[XI , XJ ]

2 +
3Ω2

43
XiXi +

Ω2

43
XpXp + i

Ω

3
ϵijkXiXjXk

]
, (B.3)

correlators far in the commuting modes valley behave as∫
[dXI ]TrXpe−Sbos ∼

∫
R≫1

dR

R6
Rpe−Ω2R2 ∼ Ω6−p . (B.4)

There are no surprises yet. Bosonic polarized IKKT has the same divergences when Ω → 0

as bosonic IKKT. The surprise comes when adding fermions.
When we add fermions to bosonic pure IKKT, we basically add∫

[dψα]e
1
2
ψ⊤γ̄I [XI ,ψ] = Pf(XI) (B.5)

in the bosonic integral. One can integrate out the ψ’s, giving a Pfaffian Pf(XI) which is a
polynomial in the X matrices. For the case N = 2 that we consider here, it has been shown
in [21] that

Pf(XI) ∝ (Tr[XI , XJ ][XJ , XK ][XK , XI ])
4 . (B.6)

To discuss the convergence behaviour of the SU(2) IKKT partition function with fermions,
we thus simply insert the Pfaffian in the left-hand-side of (B.2). Since Pf(XI) only involves
commutators, it can only help the convergence of the partition function since it vanishes in
the commuting modes valleys. In fact, the careful analysis of [13, 34] shows that correlators
now converge up to p < 14. Let us now discuss what happens when we perform the mass
deformation. In this case, we obtain the Pfaffian∫

[dψα]e
1
2
ψ̄⊤γ̄I [XI ,ψ]− i

8
Ωψ⊤γ̄123ψ = Pf(XI ,Ω) (B.7)

which reduces to the previous one when Ω = 0. One can check numerically that when
XI ∼ R σ3 where σ3 = diag(1,−1), i.e. when XI are commuting matrices, with magnitude
∼ R, the mass terms of the fermions create new contributions such that the Pfaffian goes
as

Pf(XI ,Ω) ∼ Ω24 +Ω22R2 +Ω20R4 + · · ·+Ω8R16 . (B.8)

Inserting this Pfaffian in (B.4), one obtains∫
[dXI ][dψα]e

−S =

∫
[dXI ]Pf(XI ,Ω)e−Sbos

∼
∫
R≫1

dR

R
R−6(Ω8R16 + . . . )e−Ω2R2 ∼ 1

Ω2
+ . . .

(B.9)

Therefore, we see a 1/Ω2 divergence appearing, due to the massive terms of the Pfaffian.
Formally, we see in this last integral why limΩ→0 and

∫
[dXI ][dψα] don’t commute, i.e.

0 =

∫
R≫1

dR

R
lim
Ω→0

Ω8R10e−Ω2R2 ̸= lim
Ω→0

∫
R≫1

dR

R
Ω8R10e−Ω2R2

= ∞ . (B.10)
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C Technical details for localization

C.1 Constraints from SUSY closure

To impose the SUSY closure on gauge and global symmetry generators, we will need to use
gamma matrices identities which are easier to express in 32-component notation. We thus
begin by expressing the supersymmetries (3.5) as

δϵX
I = ϵ̄ΓIψ ,

δϵψ =
i

2
ΓIJϵ[XI , XJ ] +

3Ω

8
Γ123ΓiϵXi +

Ω

8
Γ123ΓpϵXp + iνaKa ,

δϵKa = −ν̄aΓI [XI , ψ] + i
Ω

4
ν̄aΓ

123ψ .

(C.1)

We then impose {δϵ1 , δϵ2}(fields) = δB(fields) on XI , ψα and Ka where δB is some combi-
nation of SU(N)× SO(3)× SO(7) generators.

Before diving in, let us introduce some useful identities. We will use Majorana flip
relations, see e.g. [41, Sec. 3.2.1],

(CΓA)⊤ = −trA(CΓ
A) , (C.2)

where ΓA = Γµ1,...,µrA is a rank-rA gamma matrix, and in our convention t0 = t3 = 1 and
t1 = t2 = −1. Recalling that we consider ϵi to be Grassmann-even (for Grassmann-odd
fermions, invert the signs), this implies

ϵ̄1Γ
Aϵ2 = −ϵ̄2ΓAϵ1 , rA = 0, 3, 4, 7, 8 (C.3)

ϵ̄1Γ
Aϵ2 = ϵ̄2Γ

Aϵ1 . rA = 1, 2, 5, 6, 9, 10 (C.4)

Note also that for left-handed Weyl spinors ϵ1, ϵ2,

ϵ̄1Γ
Aϵ2 = 0 , rA even (C.5)

which follows from ϵ̄1Γ
Aϵ2 = ϵ̄1Γ

AΓ∗ϵ2 = (−1)rA ϵ̄1Γ
∗ΓAϵ2 = (−1)rA+1ϵ̄1Γ

Aϵ2. When con-
sidering anticommutators {δϵ1 , δϵ2}, we will symmetrize δϵ1δϵ2 in (ϵ1, ν

1
a) ↔ (ϵ2, ν

2
a), where

νia is the “auxiliary” spinor that will be constrained in terms of ϵi. Thus, it is useful to note
that the only non-vanishing symmetrized expressions are of the form

ϵ̄1Γ
Aϵ2 + (1 ↔ 2) ̸= 0 ⇐⇒ rA = 1, 5, 9 . (C.6)

All other gamma matrices vanish when symmetrized over ϵ1, ϵ2.

On XI : We obtain

{δϵ1 , δϵ2}XI =
i

2
ϵ̄2Γ

IΓJKϵ1[XJ , XK ] + ϵ̄2Γ
Iν1aKa

+
3Ω

8
ϵ̄2Γ

IΓ123Γjϵ1Xj +
Ω

8
ϵ̄2Γ

IΓ123Γqϵ1Xq + {ϵ1, ν1a} ↔ {ϵ2, ν2a} .
(C.7)
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It is easy to notice that the auxiliary matrices Ka cannot appear in order to have algebra
closure. Thus, we obtain the first constraint

ϵ̄2Γ
Iν1a = ϵ̄1Γ

Iν2a = 0 . (C.8)

Let us now consider I = i = 1, 2, 3 and I = p = 4, 5, ..., 10 separately. Using that
ΓIΓJK = ΓIJK+δIJΓK−δIKΓJ , where ΓIJK do not contribute according to (C.6) because
they are rank-3 gamma matrices, and that ΓiΓ123Γq, ΓpΓ123Γj are rank-3 gamma matrices
which do not contribute as well, we have

{δϵ1 , δϵ2}Xi = −2iϵ̄1Γ
Jϵ2[X

J , Xi] +
3Ω

4
ϵ̄1Γ

123Γijϵ2X
j , (C.9)

{δϵ1 , δϵ2}Xp = −2iϵ̄1Γ
Jϵ2[X

J , Xp]− Ω

4
ϵ̄1Γ

123Γpqϵ2X
q , (C.10)

where we recognize a sum of gauge generator and SO(3)× SO(7) rotations acting on XI .

On ψα: Using (C.1), we have

{δϵ1 , δϵ2}ψ = −iΓJIϵ2[ϵ̄1ΓIψ,XJ ]− iν2a ν̄
1
aΓ

I [XI , ψ]

+
3Ω

8
Γ123Γiϵ2(ϵ̄1Γ

iψ) +
Ω

8
Γ123Γpϵ2(ϵ̄1Γ

pψ)− Ω

4
ν2a ν̄

1
aΓ

123ψ + {ϵ1, ν1a} ↔ {ϵ2, ν2a} .

(C.11)

Let us start by looking at the term independent of Ω. First, we separate ΓJI = ΓJΓI − δIJ .
Then, we use on the term containing ΓJΓI the Fierz identity [41]

ΓIαβΓ
I
γδ =

1

25

∑
A

vrAΓ
A
αδ(ΓA)γβ

≡ 1

25

(
v0δαδδγβ + v1Γ

I
αδΓ

I
γβ +

v2
2!
ΓIJαδΓ

JI
γβ + · · ·+ v10

10!
ΓI1...I10αδ ΓI10...I1γβ

)
,

(C.12)

where
vrA ≡ (−1)rA(10− 2rA) . (C.13)

Nicely, this vanishes for rA = 5. Note that from condition (C.6), we only have contribu-
tions from rA = 1 and its hodge dual rA = 9. For Weyl spinors, the two give the same
contribution. Altogether, we obtain

−iΓJΓIϵ2[ϵ̄1ΓIψ,XJ ] + (1 ↔ 2) =
i

2
ϵ̄1Γ

Iϵ2[Γ
JΓIψ,XJ ] + (1 ↔ 2) . (C.14)

This identity allows to write the Ω = 0 part of (C.11) as

{δϵ1 , δϵ2}ψα|Ω=0 = −iϵ̄1ΓIϵ2[XI , ψα]−
i

2
(ϵ̄1Γ

Iϵ2)Γ
I
αβ[(Γ

Jψ)β, X
J ]

+ i(ϵ2)α(ϵ̄1)β[(Γ
Iψ)β, X

I ] + i(ν2a)α(ν̄
1
a)β[(Γ

Iψ)β, X
I ] + {ϵ1, ν1a} ↔ {ϵ2, ν2a} .

(C.15)
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Only the first term is compatible with the algebra closure. This gives the constraint

1

2
(ϵ̄1Γ

Iϵ2)Γ
I
αβ = (ϵ2)α(ϵ̄1)β + (ν2a)α(ν̄

1
a)β . (C.16)

Treating the Ω term in (C.11) is now straightforward by solving the ν dependence using
the above constraint. We obtain

{δϵ1 , δϵ2}ψ = −2iϵ̄1Γ
Iϵ2[X

I , ψ] +
3Ω

16
ϵ̄1Γ

123Γijϵ2Γ
ijψ − Ω

16
ϵ̄1Γ

123Γpqϵ2Γ
pqψ . (C.17)

On Ka: The anticommutator {δϵ1 , δϵ2}Ka has three pieces, one of order 1, one of order
Ω, and one of order Ω2. Let us separate

{δϵ1 , δϵ2}Ka = {δϵ1 , δϵ2}Ka|Ω=0 + {δϵ1 , δϵ2}Ka|Ω + {δϵ1 , δϵ2}Ka|Ω2 . (C.18)

We start with the Ω-independent piece,

{δϵ1 , δϵ2}Ka|Ω=0 = −iν̄2aΓIν1b [XI ,Kb] + i(ν̄2aΓ
Iψ)(ϵ̄1Γ

Iψ) + i(ϵ̄1Γ
Iψ)(ν̄2aΓ

Iψ)

− i

2
ν̄2aΓ

IΓJKϵ1[X
I , [XJ , XK ]] + {ϵ1, ν1a} ↔ {ϵ2, ν2a} .

(C.19)

The first term (+ ν1a ↔ ν2a) is exactly the gauge generator −2i(ϵ̄1Γ
Iϵ2)[X

I , ·] that we
obtained in (C.9), (C.10), (C.17) provided that we impose

ν̄1aΓ
Iν2b = δabϵ̄1Γ

Iϵ2 , (C.20)

whereas the rest of the first line is 0 because ψ are Grassmann-odd, and the second line
vanishes thanks to the decomposition ΓIΓJK = ΓIJK + δIJΓK − δIKΓJ , and the use of
Jacobi identity on ΓIJK , and the condition ν̄aΓIϵ = 0 on ΓK , ΓJ .

Let us now look at the Ω-dependent piece of {δϵ1 , δϵ2}Ka. We obtain

{δϵ1 , δϵ2}Ka|Ω = −3Ω

8
ν̄2aΓ

I [XI ,Γ123Γiϵ1Xi]−
Ω

8
ν̄2aΓ

I [XI ,Γ123Γpϵ1Xp]

− Ω

8
ν̄2aΓ

123ΓIJϵ1[XI , XJ ] + (ϵ1, ν
1
a ↔ ϵ2, ν

2
a) = 0 .

(C.21)

where in order to obtain the last equality, we separated the contributions from I = i, I = p

and J = j, J = q, anticommuted the matrices around and we used the constraint ν̄ΓIϵ = 0.
Finally,

{δϵ1 , δϵ2}Ka|Ω2 = −i3Ω
2

32
ν̄2aΓ

iϵ1Xi − i
Ω2

32
ν̄2aΓ

iϵ1Xi + (ϵ1, ν
1
a ↔ ϵ2, ν

2
a) = 0 , (C.22)

where we used (Γ123)2 = −132 and the constraint ν̄ΓIϵ = 0. Thus, we only obtain the
gauge generator without SO(3)× SO(7) transformation, i.e.

{δϵ1 , δϵ2}Ka = −2iϵ̄1Γ
Iϵ2[X

I ,Ka] . (C.23)
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Identifying the symmetries: Let us define SO(10) rotations by an antisymmetrized
parameter ωIJ (from which SO(3) and SO(7) are a subgroup) as

δSO(10),ωX
I = iωKL(MKL)IJX

J , δSO(10),ωψ =
i

2
ωKLΓ

KLψ , (C.24)

where
(MKL)IJ = i(δIKδJL − δKJδIL) . (C.25)

The SO(3) and SO(7) generators are a simple subgroup of the above with parameters ωij
and ωpq respectively. We also define the SU(N) generator with parameter α (Hermitian
matrix) as

δSU(N),α = i[α, ·] . (C.26)

Then, from (C.9), (C.10), (C.17), (C.23), we derived28

{δϵ1 , δϵ2} = δSU(N),−2ϵ̄1ΓJ ϵ2XJ +
3Ω

8
δSO(3),−iϵ̄1Γ123Γijϵ2 −

Ω

8
δSO(7),−iϵ̄1Γ123Γpqϵ2 . (C.27)

Summary: We derived the constraints (C.8), (C.16) and (C.20), which are equivalent to
(3.7) once written in 16-component notation. We also obtained along the way the action of
the SUSY anticommutator on all fields (C.9), (C.10), (C.17), (C.23) which can be written
as

{δϵ1 , δϵ2} = δSU(N) + δSO(3)×SO(7) , (C.28)

as shown with explicit parameters in (C.27).

C.2 Solving the auxiliary constraints

We now solve the constraints on νa such that δ2s closes off-shell. Here we will use the
notation

M = 1, 2, 4, 5, 6, ..., 9 (C.29)

Note that we have a gamma matrix representation where γ̄3 and γ̄10 are proportional to the
identity on both 8-component subspaces, but also the other γ̄I ̸=3,10 = γ̄M matrices have
8× 8 off-diagonal blocks (A.1), (A.2). In particular,

−γ̄3ϵ = −iγ̄10ϵ = ϵ =

(
η

0

)
, γ̄M ϵ =

(
0

η̃M

)
, (C.30)

where we recall thatM ̸= 3, 10. Note also that the eight η̃M form a basis of the 8-component
spinor subspace since they are orthogonal to each other. Thus, it is easy to notice that the
first constraint in (3.7) is satisfied by a set of spinors

νa=1,...,7 =

(
ν̃a
0

)
, ν̃⊤a η = 0 . (C.31)

28We also see that δSO(3)Ka = δSO(7)Ka = 0
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Let us now look at the third constraint. Since γ̄M are off-diagonal, this constraint is trivial
for I = M ̸= 3, 10. For I = 3, 10, γ̄I is proportional to the identity on η̃a and ϵ, and it
takes the same value on the left and right-hand-side. The constraint thus reduces to

ν⊤a νb = δab . (C.32)

This implies that νa have to be orthogonal to each other on the 8-component subspace,
as well as being orthogonal to ϵ. In particular, this can only be satisfied with a = 1, ..., 7.
Finally, the second constraint in (3.7) can be derived from the first and third constraints.
This has been proven in [26]. Thus, it is unnecessary to discuss it, but it is not hard to see
that it is satisfied by the above solution.

C.3 Constructing the BRST cohomology

In this section, we construct naturally the BRST cohomology described in the main text,
justifying along the way why we need all the ghosts appearing in (3.33). This section only
serves as some motivation for the construction (3.43).

Let us start by the naive gauge fixing action, with ghosts (C̃, C, b), which has zero
modes in general

Sgh = Tr(ibF + iC̃[Lj , [Xj , C]]) . (C.33)

It is known from the BRST formalism that this can be written as

Sgh = δbVgh , Vgh = TrC̃F , (C.34)

where

δbboson = [boson, C] , δbfermion = −{fermion, C} , (C.35)

δbC̃ = ib , δbC = −C2 , δbb = 0 , (C.36)

where “boson” and “fermion” are bosonic and fermionic physical fields. These transforma-
tions are constrained from requiring δbVgh = Sgh, δ2b = 0 and δbTr(physical fields) = 0.

However, we also want to get rid of the zero modes as discussed in section 3.4.1. Thus,
we want the action with three new ghost zero-modes (C0, C̃0, b0) which commute with Li,

Sgh → Sgh = Tr(ib(F + b0) + iC̃[Lj , [Xj , C]]) + iC̃C0 + iCC̃0) . (C.37)

This action is a valid gauge fixing action. We could stop here. However, we want to have a
BRST formalism to treat this action on the same footing as the localization deformation.
Let us try to write it as QVgh = (δs + δb)Vgh.

Step 1: Add a ghost First, the new term Tribb0 is obtained from shifting F → F + b0
in Vgh. By defining δbb0 = −iC0, this also creates the term C̃C0 along the way, namely

Tr(ib(F + b0) + iC̃[Lj , [Xj , C]] + iC̃C0) = δbTrC̃(F + b0) , (C.38)

with

δbboson = [boson, C] , δbfermion = −{fermion, C} , (C.39)

δbC̃ = ib , δbC = −C2 , δbb = 0 , δbb0 = −iC0 . (C.40)
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To create the third term iCC̃0, we need a zero-mode bosonic field such that δb(...) = C̃0,
but we already used b0. This forces us to introduce a new ghost, which we denote by ã0
such that

δbã0 = −iC̃0 . (C.41)

Then, iCC̃0 ⊂ δb(Cã0). We thus need to deform Vgh to

Vgh → Vgh = Tr(C̃(F + b0) + Cã0) , (C.42)

which is now such that

δbVgh = Tr(ib(F + b0) + iC̃[Lj , [Xj , C]] + iC̃C0 + iCC̃0 − C2ã0) . (C.43)

Step 2: Add another ghost The above is not sufficient since ã0 doesn’t appear quadrat-
ically multiplied to other bosons. The integral over e−Sgh would be divergent. This is why
we need to introduce yet another bosonic ghost a′0 whose job in life is to multiply ã0.29

Looking at Vgh, a minimal way is to modify the BRST transformations by adding ia′0 ⊂ δbC

so that it comes multiplied to ã0. Thus, with the deformed BRST transformations,

δbboson = [boson, C] , δbfermion = −{fermion, C} ,
δbC̃ = ib , δbC = ia′0 − C2 , δbb = 0 , δbb0 = −iC0 , δbã0 = −iC̃0 , (C.44)

we obtain

δbVgh = Tr(ib(F + b0) + iC̃[Lj , [Xj , C]] + iC̃C0 + iCC̃0

+ i(a′0 + iC2)ã0) .
(C.45)

This is exactly the δbVgh part of (3.33). It is now, again, a valid gauge fixing action, because
the integral over ã0 and a′0 would reduce to a number. However, we also want to incorporate
supersymmetry which is the next step. Before doing that, let us complete the algebra of
δb. We did not yet write δbC̃0, δbC0 and δba′0. Note that, from (C.44),

δ2b (physical field) = i[(physical field), a′0] . (C.46)

Thus, we require δ2b = i[·, a′0]. This constrains δbC̃0, δbC0 to involve commutators with a′0
and also modifies δbb, yielding

δbboson = [boson, C] , δbfermion = −{fermion, C} ,
δbC = ia′0 − C2 ,

δbC̃ = ib , δbb = [C̃, a′0] ,

δbã0 = −iC̃0 , δbC̃0 = −[ã0, a
′
0] ,

δbb0 = −iC0 , δbC0 = −[b0, a
′
0] ,

δba
′
0 = 0 .

(C.47)

This gives precisely (3.39).
29a′0 is not yet a0, because we will perform a shift as described in the last step.
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Step 3: Include SUSY We now include δs by promoting

δbVgh → QVgh ≡ (δs + δb)Vgh , (C.48)

to treat Vgh on the same footing as V0. The operation of δs on the ghosts must be such
that Q2 acts on the same way on all matrices, reducing to some global + gauge symme-
try generator. Assuming that δs(all ghosts) = 0 is inconsistent, because this would give
Q2ghosts = i[ghosts, a′0] whereas, for example Q2XI′ = i[XI′ , a

′
0] − iΩ(δϕ + δU(1))XI′ . A

solution is to impose that

δsC = ϕ , δs(other ghosts) = 0 . (C.49)

The resulting cohomology is consistent, as described in the main text, and is such that

QVgh = Tr
(
ib(F [X] + b0) + iC̃[Lj , [Xj , C]] + iC̃C0 + iCC̃0

+ i
(
a′0 − iϕ+ iC2

)
ã0 + C̃[Lj , ψj ]

)
,

(C.50)

Q2 = −iΩδU(1) + i[·, a′0] . (C.51)

Step 4: Shift a′0 Finally, we choose to define a′0 ≡ a0 + i3Ω8 L3 where [a0, Li] = 0.30 To
understand why we do this shift, note that a′0 and the fluctuations of X10 (the components
of X10 which are orthogonal to M) appear in our localization computation through the
variable

ϕ̃ = a′0 − iϕ+ iC2 . (C.52)

At the saddle point, ϕ = 3Ω
8 L3 − iM and the integral of ã0 sets ϕ̃ = 0. It is thus important

that a′0 =M+ 3Ω
8 L3 at the saddle point. This is only consistent with the shift we mentioned

above.31

C.4 Explicit formulae for the localization deformation

Here, we write explicit formulae for V0 and V , which are useful in order to understand the
arguments underlying the claimed form of the deformation (3.55).

In the spinor basis (3.11) the supersymmetry acts as (3.15), implying

(δsψI′)
† = i[ϕ̄,XI′ ] + ΩδU(1)XI′ , (δsχa)

† = −iH†
a , (C.53)

where ϕ̄ = X3 + iX10. Thus,

V0 = Tr(ψI′(δsψI′)
† + χa(δsχa)

†) = Tr
(
ψI′(i[ϕ̄,XI′ ] + ΩδU(1)XI′)− iH†

aχa

)
. (C.54)

In fact,
H†
a = Ha + 2isa . (C.55)

30Using (C.47), [Li, b0] = 0 and the Jacobi identity, one can show [b0, [a
′
0, Li]] = 0. Therefore, this choice

is consistent with the BRST transformation (C.47).
31Also note that this choice is important for the property (C.60) to hold. If, at the saddle point, a′0 =M ,

this property would be spoiled and (3.55) would not be quadratic in the fluctuations.
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Performing the change of variables (3.49) and introducing the ghost potential Vgh, we find
that

V = V0 + Vgh = Tr

(
(ψ̃I′ − i[XI′ , C])(i[ϕ̄,XI′ ] + ΩδU(1)XI′)

− iH̃aχa − {χa, C}χa + 2saχa − iC̃[Li, Xi] + c̃b0 + cã0

)
.

(C.56)

When expanding around the saddle, we need to make sure that there are no constant or
linear piece in the fluctuation as claimed in arguing for (3.55). There are of course no
constant terms because of the presence of fermions (which are all set to 0 at the saddle
point). To make sure that there is no linear term we need to make sure that every term
multiplying fermions does vanish at the saddle point. It is straight-forward to verify this.
We indeed obtain that at the saddle, Xi =

3Ω
8 Li, H̃a = ã0 = b0 = 0, ϕ̄ = 3Ω

8 L3 + iM ,

i[ϕ̄,Xi] + ΩδU(1)Xi|saddle = 0 , (C.57)

sa|saddle = 0 . (C.58)

Finally, let us verify the claim RZ = R0Z̃ + subleading, where Z̃ is a notation for all
the fluctuations and we remind the reader that

R = −iΩδU(1) + i

[
·, a0 + i

3Ω

8
L3

]
, R0 = −iΩδU(1) + i

[
·,M + i

3Ω

8
L3

]
. (C.59)

This claim is not obvious for matrices which are expanded around a non-trivial constant.
This is only the case for Xi which are expanded around 3Ω

8 Li, that could generate a constant
term. However, we have that

RXi = −i
(
3Ω

8

)2

ϵ3ijLj + i

[
3Ω

8
Li,M + i

3Ω

8
L3

]
+R0X̃i + subleading

= −i
(
3Ω

8

)2

ϵ3ijLj −
(
3Ω

8

)2

[Li, L3] +R0X̃i + subleading = R0X̃i + subleading .

(C.60)

C.5 Eigenvalues and the 1-loop determinant

In this section, we compute the 1-loop determinant32

Z̃1−loop = ∆

(
detZ̃f R0

detZ̃b R0

)1/2

, (C.61)

where ∆ is the Vandermonde determinant (C.84) appearing from the diagonalization of M .
As discussed in the main section, computing these determinants amounts to compute the
eigenvalues of R0 on the vector spaces spanned by the matrices Z̃b and Z̃f , where we remind
the reader that

Zb ≡ (XI′ , ã0, b0) , Zf ≡ (χa, C, C̃) . (C.62)
32We reserve the notation Z1−loop for a nicely rescaled expression.
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To do it, we first define

B1 ≡ X1 − iX2 , B2 ≡ X4 − iX5 ,

B3 ≡ X6 − iX7 , B4 ≡ X8 − iX9 , (C.63)

ξ1 ≡ χ1 + iχ6 , ξ2 ≡ χ2 − iχ5 , ξ3 ≡ χ3 + iχ4 .

We group the matrices in the following way,

(1) : (B2, B3, B4, B
†
2, B

†
3, B

†
4), (ξ1, ξ2, ξ3, ξ

†
1, ξ

†
2, ξ

†
3) ,

(2) : (B1, B
†
1), (C, C̃) ,

(3) : (X3), (χ7) ,

(4) : (ã0, b0) .

(C.64)

These are just a rewriting of the 9 + 2 bosonic fields in Zb and the 7 + 2 fermions of Zf .
With this rewriting,

−iΩδU(1)B1 =
3Ω

8
B1 , −iΩδU(1)Bi=2,3,4 =

Ω

8
Bi , −iΩδU(1)ξi =

Ω

4
ξi , (C.65)

−iΩδU(1)(other matrices) = 0 . (C.66)

We recall that
R0 ≡ −iΩδU(1) − i

[
M + i

3Ω

8
L3, ·

]
. (C.67)

To diagonalize [L3, ·], we use the fuzzy sphere harmonics expansion (see e.g. [42, Sec.4.3]) for
all our (non-zero mode) matrices. More precisely, we split the matrices Φ into rectangular
blocks Φ(s,t), and expand each block as

Φ(s,t) =

js+jt∑
J=|js−jt|

J∑
m=−J

Φ
(s,t)
Jm ⊗ YJm(js,jt) . (C.68)

In terms of matrix dimension we have (Ns/t = 2js/t + 1, no sum in s, t)

Φ(s,t) : nsNs × ntNt , Φ
(s,t)
Jm : ns × nt , YJm(js,jt) : Ns ×Nt . (C.69)

The fuzzy sphere harmonics YJm(js,jt) satisfy

L̂±YJm(js,jt) =
√
(J ∓m)(J ±m+ 1)YJm(js,jt) ,

L̂3YJm(js,jt) = mYJm(js,jt) ,
(C.70)

where L̂’s denote operators rather than matrices (see [42] for more details). It follows that
under the action of [L3, ·], Φ(s,t)

Jm → mΦ
(s,t)
Jm . Also note that for diagonal M = diag(msi, s =

1, ..., q, i = 1, ..., ns),
([M,Φ]

(s,t)
Jm )ij = (msi −mtj)(Φ

(s,t)
Jm )ij . (C.71)

Finally, we wrote matrices in a diagonal form with respect to −iΩδU(1). Let us write

−iΩδU(1)Φ ≡ Ωr
(Φ)
U(1)Φ . (C.72)
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Thus, R0 acts diagonally on Φ
(s,t)
Jm , and we obtain

(R0Φ)
(s,t) =

js+jt∑
J=|js−jt|

J∑
m=−J

[
Ω

(
r
(Φ)
U(1) +

3

8
m

)
Φ
(s,t)
Jm − i[M,Φ]

(s,t)
Jm

]
⊗ YJm(js,jt) . (C.73)

Thus, all the components
(
Φ
(s,t)
Jm

)
ij

are eigenvectors with eigenvalue

Ω

(
r
(Φ)
U(1) +

3

8
m

)
− i(msi −mtj) .

Let us now consider Bi=2,...,4, B
†
i=2,...,4. They have rU(1) =

Ω
8 and rU(1) = −Ω

8 respectively.
Thus, they contribute

det
Bi=2,3,4,B

†
i=2,3,4

R0

=
∏
s,t

∏
J

∏
m

∏
i,j

(
Ω

(
1

8
+

3

8
m

)
− i(msi −mtj)

)3(
Ω

(
−1

8
+

3

8
m

)
− i(msi −mtj)

)3

.

(C.74)

For the 6 fermions ξi=1,2,3, ξ
†
i=1,2,3, since rU(1) = ±Ω

4 , we obtain

det
ξi=1,2,3,ξ

†
i=1,2,3

R0

=

(
Ω

(
−1

4
+

3

8
m

)
− i(msi −mtj)

)3(
Ω

(
1

4
+

3

8
m

)
− i(msi −mtj)

)3

.
(C.75)

Some nice cancellations of the m product happens when dividing the fermionic part by the
bosonic, namely

J∏
m=−J

(
Ω
(
−1

4 + 3
8m
)
− i(msi −mtj)

)3 (
Ω
(
1
4 + 3

8m
)
− i(msi −mtj)

)3(
Ω
(
1
8 + 3

8m
)
− i(msi −mtj)

)3 (
Ω
(
−1

8 + 3
8m
)
− i(msi −mtj)

)3
=

J∏
m=−J

(
Ω
(
1
8 + 3

8(m− 1)
)
− i(msi −mtj)

)3 (
Ω
(
−1

8 + 3
8(m+ 1)

)
− i(msi −mtj)

)3(
Ω
(
1
8 + 3

8m
)
− i(msi −mtj)

)3 (
Ω
(
−1

8 + 3
8m
)
− i(msi −mtj)

)3 .

(C.76)

Note that the numerator is just a shift of the denominator, thus leading to many cancel-
lations. The first numerator term and the first denominator term contribute respectively
when m = −J and m = J , other terms cancelling each other. Similarily, the second nu-
merator term and the second denominator term contribute respectively when m = J and
m = −J . Thus, the first group contributes

det(1) ≡
det

ξi=1,2,3,ξ
†
i=1,2,3

R0

det
Bi=2,3,4,B

†
i=2,3,4

R0
=
∏
s,t

js+jt∏
J=|js−jt|

∏
i,j

((
Ω
8

)2
(2 + 3J)2 + (msi −mtj)

2(
Ω
8

)2
(1 + 3J)2 + (msi −mtj)2

)3

.

(C.77)
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For the second group,

det
B1,B

†
1
R0

=
∏
s,t

∏
J

∏
m

∏
i,j

(
Ω

(
3

8
+

3

8
m

)
− i(msi −mtj)

)(
Ω

(
−3

8
+

3

8
m

)
− i(msi −mtj)

)
,

(C.78)

detC,C̃R0 =
∏
s,t

∏
J

∏
m

∏
i,j

(
3Ω

8
m− i(msi −mtj)

)(
3Ω

8
m− i(msi −mtj)

)
. (C.79)

Again, we see that they only differ by m→ m± 1, leading to cancellations. We obtain

det(2) ≡
detC,C̃R0

det
B1,B

†
1
R0

=
∏
s,t

js+jt∏
J=|js−jt|

∏
i,j

( (
Ω
8

)2
(3J)2 + (msi −mtj)

2(
Ω
8

)2
(3 + 3J)2 + (msi −mtj)2

)
. (C.80)

For the last two groups the story is even simpler. Since X3 and χ7 do not transform under
the U(1), they have the same R0 eigenvalues, thus the determinants cancel each other.

det(3) ≡ detχ7R0

detX3R0
= 1 . (C.81)

Finally, the group (4) is a group of bosonic ghost zero modes. They need to commute
with Li, thus they have the same form as M and have components (ã0)s;ij , (b0)s;ij in the
diagonal block (s, s), and their R0 value is

(R0ã0)s;ij = −i(msi −msj)(ã0)s;ij , (R0b0)s;ij = −i(msi −msj)(b0)s;ij . (C.82)

Thus,

det(4) ≡ 1

detã0,b0R0
= (−1)

∑
s n

2
s

∏
s

∏
i,j

1

(msi −msj)2
. (C.83)

This precisely cancels the zero-mode J = 0 (s = t) term in the numerator of det(2).33 We
also need the Vandermonde determinant from the diagonalization of M . It reads

∆ =

∏
s

∏
i ̸=j

(msi −msj)
2

1/2

. (C.84)

This allows again J = 0 in the numerator of det(2), provided i ̸= j. Putting everything
together,

Z̃1−loop = ∆ det(1)det(2)det(3)det(4)

= (−1)
∑
s n

2
s

(
64

3Ω

)∑
s ns

q∏
s,t=1

js+jt∏
J=|js−jt|

ns,nt∏
i,j=1

J=0:i ̸=j
[(

Ω
8

)2
(2 + 3J)2 + (msi −mtj)

2
]3 [(

Ω
8

)2
(3J)2 + (msi −mtj)

2
]

[(
Ω
8

)2
(1 + 3J)2 + (msi −mtj)2

]3 [(
Ω
8

)2
(3 + 3J)2 + (msi −mtj)2

]

1/2

.

(C.85)
33One could avoid these 0/0’s, by not integrating over the J = 0 i = j components of C, C̃, ã0 and b.
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where the product is not taken over i = j when J = 0. Separating i = j and i ̸= j

contributions,

Z̃1−loop = (−1)
∑
s n

2
s

(
64

3Ω

)∑
s ns

q∏
s=1

(
1

Ns

Ns−1∏
J=1

(2 + 3J)3

(1 + 3J)3

)ns q∏
s,t=1

ns,nt∏
i,j=1
i ̸=j

js+jt∏
J=|js−jt|

[(
Ω
8

)2
(2 + 3J)2 + (msi −mtj)

2
]3 [(

Ω
8

)2
(3J)2 + (msi −mtj)

2
]

[(
Ω
8

)2
(1 + 3J)2 + (msi −mtj)2

]3 [(
Ω
8

)2
(3 + 3J)2 + (msi −mtj)2

]

1/2

.

(C.86)

The partition function around the saddle R is thus given by

ZR ∝ e
Ω4

g2
YM

9
8192

TrL2
i

∫ q∏
s=1

ns∏
i=1

dmsiZ̃1−loop exp

(
−3Ω2

27

q∑
s=1

ns∑
i=1

(2js + 1)m2
si

)
. (C.87)

Note that we can get rid of the Ω-dependence in Z̃1−loop by the transformation msi → Ωmsi.
The full partition function is thus given by

Z =
∑
R
CRe

9Ω4

213
TrL2

i

∫ ∏
s

ns∏
i=1

dmsiZ1−loop exp

(
−3Ω4

27

∑
s

ns∑
i=1

Nsm
2
si

)
, (C.88)

where

Z1−loop =

q∏
s,t=1

ns,nt∏
i,j=1
i ̸=j

js+jt∏
J=|js−jt|

[(
1
8

)2
(2 + 3J)2 + (msi −mtj)

2
]3 [(

1
8

)2
(3J)2 + (msi −mtj)

2
]

[(
1
8

)2
(1 + 3J)2 + (msi −mtj)2

]3 [(
1
8

)2
(3 + 3J)2 + (msi −mtj)2

]

1/2

.

(C.89)

The proportionality constant CR is determined in the following appendix C.6, where we
have absorbed the factor (−1)

∑
s n

2
s
(
64
3Ω

)∑
s ns
∏q
s=1

(
1
Ns

∏Ns−1
J=1

(2+3J)3

(1+3J)3

)ns
.

C.6 Normalization factors

For bosonic X and fermionic ψ matrices we use the measures

[dX] ≡
∏
i,j

dX̃ij = 2
N2−N

2

∏
i≤j

dReXij

∏
i<j

dImXij ,

[dψ] ≡
∏
i,j

dψ̃ij = 2−
N2−N

2

∏
i≤j

dReψij
∏
i<j

dImψij ,
(C.90)
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where X̃ and ψ̃ are matrices with N2 real entries which contain all the information about
the Hermitian matrices.

X̃ij = ReXij + ImXij ,

ψ̃ij = Reψij + Imψij .
(C.91)

Indeed, since ReXij is symmetric and ImXij is antisymmetric, they can be obtained from
X̃ij by taking its symmetric and antisymmetric parts. This measure satisfies the nice
property that ∫

[dX]e−λTrX
2
=

∫ ∏
i,j

dX̃ije
−λ

∑
i,j X̃

2
ij =

(π
λ

)N2/2
, (C.92)

∫
[dη][dψ]e−Trηψ = 1 . (C.93)

Note that it is the same as the U(N) measure, namely, if we expand the matrices X and
ψ in U(N) generator components X = XATA, ψ = ψATA such that TrTATB = δAB, the
measure is

[dX] =

N2∏
A=1

dXA , [dψ] =

N2∏
A=1

dψA . (C.94)

Indeed, this measure has the same Gaussian integrals (C.92), (C.93). Let us consider a
more complicated example of Grassmann integrals, where we have an interpolating matrix
M ij
ab which is antisymmetric in the exchange (a, i) ↔ (b, j). One obtains∫ nf∏

i=1

[dψi]e−
∑
a,b,i,j ψ

i
abM

ij
abψ

j
ba =

∏
a,b

Pf(2Mab) = 2
nf
2
N2
∏
a,b

(detMab)
1/2 . (C.95)

where the Pfaffian and determinant of M ij
ab is taken over the i, j indices with a, b fixed.

Note that we also had zero-mode ghosts a0, b0, .... They are all expressed in terms of ns by
ns Hermitian matrices. We thus define the measure similarily for each s. The result is the
same by replacing N2 →

∑
s n

2
s. Now we get the following factors.

First, we find that∫
[dC][dC̃][db][dC0][dC̃0][db0][da0][dã0] exp

{
Tr
(
ib(F + b0) + iC̃[Li, [Xi, C]]

+ iC̃C0 + iCC̃0 + i

(
a0 + i

3µ

8
L3 − iϕ+ iC2

)
ã0

)}

= (−1)
∑
s n

2
s(2π)N

2
(2π)

∑
s n

2
sdet′

(
δF

δα

) ∣∣∣∣∣
α=0

δ′(F ) .

(C.96)

The factor (−1)
∑
s n

2
s comes from integration over C0, C̃0. The factor (2π)N

2 comes from
the integral over b and b0, whereas the last factor comes from

∫
[da0][dã0]e

iTr(a0+...)ã0 . Thus,
when using the Fadeev-Popov trick (3.47), one should divide by these factors

det′
(
δF

δα

)
δ′(F ) =

(−1)
∑
s n

2
s

(2π)N2(2π)
∑
s n

2
s

∫
[dghosts]e−tSgh . (C.97)
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Secondly, we find using (C.92), (C.95) that∫
[dZb][dZ

′
b][dZf ][dZ

′
f ]e

−tQ(V0+Vgh) = π9N
2
π
∑
s n

2
s29N

2
2
∑
s n

2
s

(
detZf R0

detZb R0

)1/2

. (C.98)

Thirdly, we have two factors from “gauge fixing”. First, since GR = U(N)/ ⊗s U(ns), we
get the volume factor appearing in the gauge fixing procedure

Vol GR =
Vol U(N)∏
sVol U(ns)

, (C.99)

where

Vol(U(N)) =
(2π)(N

2+N)/2∏N−1
k=1 k!

. (C.100)

We are also diagonalizing M . Thus, we are basically gauge fixing each of its blocks s =

1, ..., q using SU(ns), up to U(1)ns−1 remaining gauge redundancy. However, we don’t
gauge fix the permutation symmetry. This would correspond to gauge fixing, for example,
msi < msj ∀i < j. This means we need to divide by ns!. Thus, the diagonalization of M
reads ∫

[dM ] =
∏
s

(
1

ns!

Vol U(ns)

Vol U(1)ns

)∫ ∏
s,i

dmsi∆(m) . (C.101)

Combining these two volume factors we obtain

(2π)(N
2+N)/2−

∑
s ns∏N−1

k=1 k!
∏
s ns!

. (C.102)

Now note that this is the path integral including the auxiliary fields Ka. The auxiliary
fields contribute (2π)7N

2/2 to the path integral. Thus,∫
[dXa][dψα]e

−S = (2π)−7N2/2

∫
[dXa][dψα][dKa]e

−S|with auxiliaries . (C.103)

Combining all these factors (C.97), (C.98), (C.102), (C.103), as well as absorbing the factor
(−1)

∑
s n

2
s(64/3)

∑
s ns
∏q
s=1

(
1
Ns

∏Ns−1
J=1

(2+3J)3

(1+3J)3

)ns
in (C.85) we obtain

CR =
(2π)9N

2/2+(N2+N)/2−
∑
s ns∏N−1

k=1 k!
∏
s ns!

(
64

3

)∑
s ns

q∏
s=1

(
1

Ns

Ns−1∏
J=1

(2 + 3J)3

(1 + 3J)3

)ns

=
(2π)5N

2+N/2∏N−1
k=1 k!

∏
s ns!

(
32

3π

)∑
s ns

q∏
s=1

(
1

Ns

Ns−1∏
J=1

(2 + 3J)3

(1 + 3J)3

)ns
,

(C.104)

as claimed in the introduction (1.8).

D Approximate solutions to the electrostatic problem

In this appendix we solve the electrostatic problem (5.25) and (5.31) (or equivalently (5.10)
and (5.12)) with a single disk in the limits zs/Rs ≫ 1 and zs/Rs ≪ 1. We also solve the
general problem with one disk numerically.
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D.1 Analytics

As usual in matrix models, it is convenient to introduce resolvents

Gs(z) ≡
∫ Rs

−Rs
dr
fs(r)

z − r
=
Qs
z

+O

(
1

z3

)
. (D.1)

Notice that Gs(−z) = −Gs(z) because fs(r) = fs(−r). Equation (5.10) can be written as

Ṽs = Vb3r
2zs −

∑
t+images

1

8π2
R
∫ Rt

−Rt
dr′ft(r

′)

[
1

(r′ − r − i(zs − zt))2
+

1

(r′ − r + i(zs − zt))2

]

= Vb3r
2zs −

∑
t+images

1

8π2

∮
dr′

2πi
Gt(r

′)

[
1

(r′ − r − i(zs − zt))2
+

1

(r′ − r + i(zs − zt))2

]
= Vb3r

2zs +
∑

t+images

1

8π2
[
G′
t(r + i(zs − zt)) +G′

t(r − i(zs − zt))
]
, (D.2)

where Ṽs = Vs + Vbz
3
s ,
∮

denotes the contour around the cut of Gt and in the last line we
opened the contour and picked up the poles of the integrand.

The last equation tell us that G′
s(z+ iϵ)+G′

s(z− iϵ) is analytic in a region around the
branch point of Gs(z) at z = Rs. Therefore, we must have an expansion in half integers
powers, i.e. Gs(z) =

∑∞
n=0 cn(z − Rs)

n
2 with cn ∈ R. It is then convenient to change

variable to remove the branch points at z = ±Rs. More precisely, let us map the z complex
plane minus the cut [−Rs, Rs] to the interior of the unit disk using the Zhukovsky map34

2z

Rs
= w +

1

w
, Hs(w) ≡ G′

s(z) . (D.3)

By construction, Hs(w) is analytic for |w| < 1. In addition, it is an even function, obeying
Hs(w) = Hs(−w) = −4Qs/R

2
sw

2 +O(w4) Equation (D.2), can then be written as

Ṽs = Vb
3

4
R2
szs

(
w +

1

w

)2

+
∑

t+images

1

8π2
[
Ht(w

+
t ) +Ht(w

−
t )
]
, (D.4)

where

2
z

Rs
= w +

1

w
, 2

z ± i(zs − zt)

Rt
= w±

t +
1

w±
t

. (D.5)

For |w| = 1 we choose the solutions obeying |w±
t | < 1. For the special case t = s, we choose

w+
s = w and w−

s = 1/w. Equation (D.4) is valid for |w| = 1 but since it is analytic in w we
can analytically continue it. Moving w slightly outside the unit disk, we can express Hs(w)

in terms of analytic functions and a linear combination of Ht(w
±
t ) evaluated at |w±

t | < 1.
This allows us to expand the region of analyticity of Hs(w) from the unit disk to a strictly
bigger region. Therefore, the series expansion of Hs(w) around w = 0 has a radius of
convergence larger than 1.

34We choose the solution w = z/Rs −
√

(z/Rs)2 − 1 so that w is inside the unit disk.
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Let us consider the special case of only one ball. Then

Ṽs = Vb
3

4
R2
szs

(
w +

1

w

)2

+
1

8π2
[
Hs(w) +Hs(1/w)−Hs(w

+
s̃ )−Hs(w

−
s̃ )
]
, (D.6)

with

w±
s̃ +

1

w±
s̃

= w +
1

w
± i

4zs
Rs

. (D.7)

We don’t know how to solve this equation analytically in full generality but the limits of
zs/Rs ≫ 1 and zs/Rs ≪ 1 are tractable. Let us start with the simpler case zs/Rs ≫ 1.
Then, w±

s̃ = ∓i Rs4zs
+ O(Rs/zs)

2 ≪ 1 and we can neglect the effect of the image ball. In
this limit, we find

Ṽs = Vb
3

4
R2
szs

(
w +

1

w

)2

+
1

8π2
[Hs(w) +Hs(1/w)] , (D.8)

whose solution is simply

H(w) = −6π2VbR
2
szsw

2 , Ṽs = Vb
3

2
R2
szs Qs =

3

2
π2VbR

4
szs . (D.9)

In this approximation we can also compute the octopole

q3,s = 2z3sQs − 6zs

∫ Rs

−Rs
drr2fs(r) ≈ 2Qsz

3
s . (D.10)

Let us now consider the limit zs/Rs ≪ 1. In this limit, we expect Gs to vary slowly on
the length scale zs. Therefore, we can approximate the exact equation

Ṽs = Vb3r
2zs +

1

8π2
[
G′
s(r + iϵ) +G′

s(r − iϵ)−G′
s(r + 2izs)−G′

s(r − 2izs)
]
,

with

Ṽs = Vb3r
2zs −

2izs
8π2

[
G′′
s(r + iϵ)−G′′

s(r − iϵ) +O(zs)
]
, (D.11)

which gives us the discontinuity of G′′
s . From the definition, we find that

G′′
s(z) =

∫ Rs

−Rs
drfs(r)

d2

dz2
1

z − r
=

∫ Rs

−Rs
drfs(r)

d2

dr2
1

z − r
=

∫ Rs

−Rs
drf ′′s (r)

1

z − r
, (D.12)

where we used that fs(±Rs) = f ′s(±Rs) = 0. Therefore, equation (D.11) gives

f ′′s (r) ≈ 2π

(
Vb3r

2 − Ṽs
zs

)
, (D.13)

which leads to

fs(r) ≈ −π Ṽs
zs
r2 +

π

2
Vbr

4 + const. (D.14)

=
π

2
Vb
(
R2
s − r2

)2
, (D.15)
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where we imposed fs(±Rs) = f ′s(±Rs) = 0 to determine the integration constant and
Ṽs = VbzsR

2
s. Notice that this approximation fails for r close to Rs because it does not give

the expected behavior fs(r) ∼ (Rs − r)
3
2 . However, this is a small effect at the tip that

does not affect the leading behavior of the macroscopic quantities. The total charge is then

Qs =

∫ Rs

−Rs
drfs(r) =

8π

15
VbR

5
s . (D.16)

The octopole is given by

q3,s = 2z3sQs − 6zs

∫ Rs

−Rs
drr2fs(r) ≈ −16π

35
VbzsR

7
s . (D.17)

The on-shell action is then

Son−shell =
1

3π4g2sα
′4µ5

∑
s

(
2

Vb
QsVs − q3,s

)
=

5

7 27

(
15π

8Ns

)2/5

Ω12/5N7/5 , (D.18)

where we used Vb = µ5/27, N = Nsns, µ = Ω
√
gYM, gs = (2π)3α′2g2YM and the relations

(5.41).

D.2 Numerics

We want to solve the equation

Vball,s(r, zs) + Vimage,s(r, zs) + Vbg(r, zs) = Vs, 0 ≤ r ≤ Rs. (D.19)

The potential due to the ball reads

Vball,s(r, z) =
1

4πr

∫ Rs

0
duuσs(u) log

(
1 +

4ru

(r − u)2 + (z − zs)2

)
. (D.20)

We can combine the contributions from the ball and its image, giving

Vball,s(r, zs) + Vimage,s(r, zs) =
1

4πr
p. v.

∫ Rs

0
duuσs(u) log

 (r + u)2

(r − u)2
(
1 + 4ru

(r−u)2+4z2s

)
 .

(D.21)
To solve the equation numerically we can write σ(r) as an expansion into a complete basis
of functions fn(r) on [0, Rs]. A convenient choice are the shifted Legendre polynomials. We
can then expand

σs(r) =

Nmax∑
n=0

cnPn

(
2
r

Rs
− 1

)
. (D.22)

From the discussion of the previous section (see also the near-tip expansion in [35]) we expect
the charge density to behave as

√
R2
s − r2 close to the tip. This is hard to reproduce with

a finite number of polynomials, so to improve the convergence we consider

σs(r) =

Nmax∑
n=0

cnPn

(
2
r

Rs
− 1

)
+ c̃
√
R2
s − r2, (D.23)
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where c̃ is a new free parameter. To impose the equations of motion (D.19) we take a
uniform grid with Ngrid points on the segment [0, Rs]. We call ri the points of that grid.
We construct the constraint function

constr(EOM) =

Ngrid∑
i=1

(EOM(ri))
2 , (D.24)

which is always positive and vanishes on the physical solution. Our strategy is to do this
minimization numerically. In addition we want to impose that σ vanishes at r = Rs and
has zero derivative at r = 0. We can easily implement this by modifying the constraint
function. The numerical problem we solve is then35

Minimize
{ci,c̃,Vs}

Ngrid∑
i=1

(EOM(ri))
2 + σs(Rs)

2 + σ′s(0)
2

 (D.25)

For the value of Ngrid we choose 2Nmax so that we always have more constraints than free
parameters. We also set Vb = 1.

On figure 7 we study the convergence of the result with Nmax. We see that the con-
vergence is really fast.

Figure 7: Convergence study of the numerical problem (D.25) with Nmax. We solved for
the charge density with zs = 1 and Rs = 10.

On figure 8 we study the shape of the charge density in different regimes of the dimen-
sionless ratio zs/Rs. The analytic solutions in both limits zs/Rs → 0 and zs/Rs → ∞ are
derived in (D.15) and the appendix of [5] respectively. We see that the numerical solution
nicely interpolates between those results.

We also study the total charge, the potential and to octopole, shown on figures 9 and
10. We also observe a clean transition from the asymptotics zs/Rs → 0,∞ where the
numerics agree with the analytical results.

Finally we can measure numerically the function H(ξ) defined in (5.46) by plotting the
on-shell action as function of the parameter ξ ≡ nsΩ

−4N−5
s . In terms of the electrostatic

35One could worry that the result can be unphysical if the minimum is not zero. However in all our
results we find that the minimum is zero (up to numerical accuracy).
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Figure 8: Numerical results for the (normalized) charge density for different heights zs
when Rs = 1. We used Nmax = 4. The black and red dashed lines are the analytic
approximations when zs ≪ Rs, zs ≫ Rs given by (D.15) and (D.9).
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Figure 9: Numerical results (blue dots) for the total charge Qs and the potential Vs. We
used Nmax = 4. The black and red dashed lines are the analytic approximations when
zs ≪ Rs, zs ≫ Rs given by (D.16) and (D.9).

variables we have

ξ =
35

220π2
Qs
z5sµ

5
, (D.26)

which can be computed with our numerics. The result for H(ξ) = −Son−shellλ
2/3/N2 is

shown on figure 11.
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Figure 10: Numerical results (blue dots) for the octopole q3,s. We used Nmax = 4. The
black and red dashed lines are the analytic approximations when zs ≪ Rs, zs ≫ Rs given
by (D.17) and (D.10).
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Figure 11: Numerical results (blue dots) for the on shell action (5.46). We used Nmax = 4.
The black and red dashed lines are the analytic approximations when ξ ≪ 1 and ξ ≫ 1

respectively.
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