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We present the preparation, deployment, and testing of an autoencoder trained for unbiased
detection of new physics signatures in the CMS experiment Global Trigger (GT) test crate FPGAs
during LHC Run 3. The GT makes the final decision whether to readout or discard the data from
each LHC collision, which occur at a rate of 40 MHz, within a 50 ns latency. The Neural Network
makes a prediction for each event within these constraints, which can be used to select anomalous
events for further analysis. The GT test crate is a copy of the main GT system, receiving the
same input data, but whose output is not used to trigger the readout of CMS, providing a platform
for thorough testing of new trigger algorithms on live data, but without interrupting data taking.
We describe the methodology to achieve ultra low latency anomaly detection, and present the
integration of the DNN into the GT test crate, as well as the monitoring, testing, and validation of
the algorithm during proton collisions.
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1. Introduction

The Large Hadron Collider (LHC), operating at the energy frontier, collides protons at an
unprecedented rate of 40 million times per second (40 MHz). The Compact Muon Solenoid (CMS)
experiment studies these collisions to uncover potential Beyond Standard Model (BSM) physics
and precisely measure rare Standard Model (SM) processes [2]. While the high collision rate at the
LHC increases the probability of producing and detecting rare processes, the nearly 100 million
channels of the CMS detector also generate an enormous amount of data [10, 14].

Only a small fraction of the 40 MHz proton-proton collision events—around 1,000 per sec-
ond—can be stored for detailed offline analysis. To meet this stringent data reduction, events are
selected using a two-tiered trigger system. The first level (L1), composed of custom hardware pro-
cessors built with field-programmable gate arrays (FPGAs), uses information from the calorimeters
and muon detectors to select events at a rate of around 100 kHz within a fixed latency of 4𝜇𝑠 [14].
The second level, the high-level trigger (HLT), consists of a processor farm running optimized
event reconstruction software, reducing the rate to around 1 kHz before storage [10]. The L1 trigger
discards the largest fraction of events, playing a crucial role in the two-tier trigger system. While
this approach has enabled the discovery of the Higgs boson and many SM measurements, it risks
missing unexpected new physics signatures not anticipated by predefined selection criteria.

This reliance on specific criteria introduces the risk of bias, potentially limiting the ability to
detect new physics in the absence of strong theoretical predictions. This highlights the need for
more general, unbiased triggering methods that maintain sensitivity to a wide range of new physics
signatures. Ideally, such methods should identify anomalous events that deviate from expected
SM patterns without relying heavily on specific BSM model predictions. For this reason, there
are ongoing efforts to explore unsupervised machine learning (ML) techniques, such as anomaly
detection (AD) methods, to select events with potential BSM signatures [7].

In this work, we present a novel approach: the implementation of ML-based real-time AD
algorithms at the CMS L1 Trigger level. This cutting-edge technique provides a model-independent
method for identifying potentially interesting events while maintaining high rejection rates for
background processes. We discuss the development, implementation, and preliminary results
of this approach, recently deployed at the CMS L1 Trigger [3]. By introducing advanced ML
capabilities at the earliest stage of event selection, CMS is entering a new era of data collection
strategy, enhancing the search for unknown phenomena and potentially revolutionizing the approach
to triggering in high-energy physics experiments.

2. Anomaly detection L1 triggers in CMS

The CMS collaboration has developed two complementary approaches to anomaly detection
at the L1 trigger: AXOL1TL (Anomaly eXtraction Online Level-1 Trigger aLgorithm) and CI-
CADA (Calorimeter Image Convolutional Anomaly Detection Algorithm). Both methods leverage
advanced machine learning techniques to identify atypical events in real-time, offering a model-
independent approach to capturing potential new physics signatures.

One of the well-known ML techniques for anomaly detection is the use of autoencoder (AE)
[7]. Autoencoders are neural networks designed to learn efficient encodings of the dominant SM
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Figure 1: Components of the L1 trigger, along with the input and output paths for the anomaly detection
algorithms.

process in the input data. The architecture of an autoencoder consists of two main components: an
encoder, which compresses the input data into a lower-dimensional representation (often called the
latent space), and a decoder, which attempts to reconstruct the original input from this compressed
representation.

These neural networks(NN) are trained to minimize the difference between the input and the
reconstructed output. When trained on the proton-proton collisions as detected by the CMS detector,
the network efficiently reconstructs the dominant background processes. When presented with an
event containing processes BSM physics or rare SM physics; an anomalous event, the autoencoder
struggles to reconstruct it accurately. This reconstruction error serves as our anomaly score; events
with high reconstruction errors are flagged as potentially interesting.

Both the anomaly detection algorithms are trained on the trigger less stream, (ZeroBias dataset)
collected by the CMS experiment in 2023 at a center-of-mass energy of

√
𝑠 = 13.6 TeV, where lumi-

leveling at pile-up 62 was used. 50% of this used for training and 50% was used for validation,
performance testing. The anomaly detection triggers are estimated to have better performance than
a traditional rule based trigger with similar event collection rate. In the case of AXOL1TL, it is to
have 46% efficiency gain when compared to rest of L1 trigger, when operating at a rate of 1𝑘𝐻𝑧 for
caputing exotic decay of higgs to four b quarks.

2.1 Inputs to L1 anomaly detection

AXOL1TL and CICADA use different L1 reconstructions as inputs. AXOL1TL takes in 10
jets, 4 electron/photon objects, 4 muons, and transverse missing energy (MET) as reconstructed in
the L1 trigger from calorimeter and muon triggers. The 3-momenta (𝑝𝑇 , 𝜂, 𝜙) of these objects,
in raw hardware integer values, are used. CICADA, by contrast, uses calorimeter region energies,
which form an 18x14 image-like input. The input streams for both algorithms are shown in Fig. 1.

2.2 Network Architecture and FPGA implementations

AXOL1TL uses a variation of autoencoders called Variational Autoencoders (VAEs), which
impose additional constraints on the latent space [11]. The encoder computes a latent space vector
of Gaussian distributions 𝑁 (𝜇 = 0, 𝜎 = 1), with a latent vector size of 8. VAEs minimize both the
reconstruction error and the deviation from a standard normal distribution by penalizing the KL
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Figure 2: Anomaly score distributions from AXOL1TL (left) and CICADA (right) as output by both HLS
emulation and qkeras. Higher-scoring events are flagged as anomalous for further analysis.

divergence (D𝐾𝐿). The encoder and decoder are dense feed-forward networks. Only the encoder is
used for real-time inference, and the anomaly score is approximated by the sum of squared means
of the latent vector (

∑8
𝑖=1 𝜇

2
𝑖
).

CICADA uses convolutional layers in its autoencoder [12], as it processes image-like inputs of
252 (18x14) transverse energy deposits in two channels. The reconstruction quality is measured by
Mean Squared Error (MSE) loss. To enable ultra-low latency inference, the autoencoder is shrunk
using knowledge distillation to mimic the MSE loss with the given input [9, 13].

Both algorithms are trained using quantization-aware training frameworks like qkeras [4]. The
networks are then translated to high-level synthesis (HLS) code using hls4ml [1, 5, 6], and deployed
on Xilinx Virtex-7 FPGAs for ultra-fast inference. These FPGA implementations are carefully tuned
for bit-exactness, as shown in Fig. 2.

3. Performance of AXOL1TL

Out of both anomaly detection triggers, AXOL1TL was commissioned for real-time testing and
data-taking with the CMS trigger framework. The AXOL1TL trigger was tested at five different
thresholds for triggering anomalous events in the data: very tight, tight, nominal, loose, and very
loose. Events triggered through the nominal seed are sent for further reconstruction with HLT
scouting and stored with minimal information [8]. Events triggered by the very tight seeds are
further processed for offline full event reconstruction. The AXOL1TL triggers performed stably
during data-taking, as seen in Fig. 3.

The dataset triggered by AXOL1TL tends to be orthogonal to events triggered by the regular
L1 Trigger menu, as seen in Fig. 4. This orthogonality highlights the novelty of the events
collected by the L1 anomaly detection triggers. On closer examination of events triggered by both
AXOL1TL and CICADA, we observe a preference for marking events with higher multiplicity as
more anomalous. This reinforces the key role of these triggers in selecting events with multĳet final
states and BSM signatures, such as SUEPs, often overlooked by traditional rule-based algorithms.

The events collected by AXOL1TL are further examined for the viability of BSM physics
searches using this data. As a preliminary check, the invariant mass distributions of pairs of jets,
electrons, and photons are studied for potential biases or sculpting in the mass distributions. As
observed in Fig. 5, these datasets seem to be free of any potential sculpting from trigger selections.
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Figure 3: Global trigger rate monitoring time series over the course of data-taking in June 2024, showing
the rates of AXOL1TL seeds.

Figure 4: Left: Scores for all live AXOL1TL seeds and all events triggered by non-AXOL1TL HLT Scouting
seeds, showing where the AXOL1TL contribution lies. Right: The distribution of AXOL1TL scores as a
function of L1 object multiplicity.

Figure 5: Invariant mass distributions of pairs of jets (left), muons (center), and photons (right) from objects
reconstructed from data scouting as triggered by the AXOL1TL nominal trigger path.

4. Summary

This paper introduces two machine learning-based anomaly detection algorithms, AXOL1TL
and CICADA, for real-time event selection in the CMS Level-1 (L1) Trigger at the Large Hadron
Collider. These methods are designed to identify anomalous events without predefined selection
criteria, improving sensitivity to potential new physics beyond the Standard Model. AXOL1TL uses
a variational autoencoder to analyze L1 trigger objects, while CICADA employs a convolutional
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autoencoder to process calorimeter energy deposits. Tested during CMS data-taking, AXOL1TL
demonstrated stable performance and orthogonal event selection to traditional triggers, making it a
promising tool for exploring novel physics signatures.
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