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Abstract

In a nonrelativistic formalism we derive a charge symmetry breaking
(CSB) two-pion exchange interaction Vn(27) — Vpp(27), which includes both
CSB vertex corrections and the CSB effect of propagators arising from the
mass differences of the intermediate baryons in different charge states. While
the former are small, the latter gives a contribution of the sign and scale comn-
parable to the experimental difference in the effective range parameters and
the binding energy difference between 3H and 3He.
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1. INTRODUCTION

Traditional measures of nuclear charge asymmetry have been obtained from the positive
value for the difference Aa = |an.| — |apy| = O (1 fm) of the NN singlet scattering lengths
and the positive value for the *°H - *He binding energy difference AE ~ O (100 keV). Both
measures Aa and AE are quoted after correction of experiment for dgirect electromagnetic
effects and are quite consistent in sign and magnitude. A positive Aa reflects an interaction
between two neutrons which is more attractive than between two protons and more binding
energy is provided for °H as compared to SHe. The consistency in magnitude is more
interesting. It has long been known from separable potential models that the A = 3 binding
energies are much more sensitive to small differences in effective ranges (Arg =y, — Top)
than to small differences in scattering lengths Aa [1]. Recently it has been shown by
sophisticated Faddeev and quantum Monte Carlo calculations with modern NN potentials
that AF in the A = 3 system can be explained by a charge asymmetric NN force which
has been adjusted to match Aa and Ary in the A = 2 system [2-4]. These demonstrations
of full consistency between {Aa, Arg } and A coupled with the empirical values themselves
now allow us to evaluate the various expected theoretical contributions to charge symmetry
breaking (CSB). In particular, it has been claimed that pw mixing alone accounts for most
of these two measures of charge asymmetry [5], leaving little room for other mechanisms
such as simultaneous 7y exchange or baryon mass differences in 27 exchange. This claim
has been recently called into question by a variety of model calculations [6], and it is again
timely to re-examine these other mechanisms.

Early calculations of 27 exchange contributions to nuclear charge asymmetry in these
two- and three nucleon systems draw quite different conclusions. Riska and Chu [7] con-
structed a dispersion theoretic CSB 27 potential from (crossed) empirical 7N amplitudes
which included a particular nucleon pole ansatz motivated by the Adler soft-pion consistency
condition. With this ansatz their potential yields Aa = —2.7 fm and AFE = —180 keV {8].
If the additional pole term from their ansatz is neglected, the central part of their poten-
tial changes sign and increases so much that Aa = +6 fm [7]. On the other hand, Noble
attempted to reconstruct their potential with another technique and suggested a positive
AE, (seemingly in the more massive A=41 system) of several hundred keV. No details of
his calculation were given [9]. Both these estimates are rather far from experiment, even if
one acknowledges that the correction of experiment for direct electromagnetic effects is not
fully under control [10]. A much smaller estimate of Aa = +0.30 fm was obtained from the
27 exchange box plus crossed box field theoretical potentials of Partovi and Lomon [11} by
taking into account the nucleon mass difference in intermediate states (12]. This calculation
was repeated [13] a few years later to find Aa still small but negative; Aa = ~0.21 fm. Al-
though both calculations indicate a small (on the empirical scale of 1 fm) charge asymmetry
from 27 exchange, recent reviews of charge asymmetry {14,15] have noted this discrepancy
and have called for further calculation.

The purpose of this paper is to present an explicit 21 exchange {TPE) potential which
arises from a rather different theoretical approach than the Partovi-Lomon reduction of
covariant Feynman graphs to a non-relativistic potential. In the present case, the TPE
potential is instead based on non-relativistic tNN and #AN vertices and the baryon mass
differences are taken into account in the vertices and in the intermediate state energy de-
nominators. The derivation of the potential has been thoroughly described in a paper by
Niskanen {16] which was devoted to the class 1V charge symmetry breaking in elastic np
scattering. A class IV CSB force (in the terminology of Henley and Miller {17]) has an



effect only in the np system which is an eigenstate of the charge symmetry operator Feg
(a rotation by 7 about the 2-axis of isospin space [18]). In contrast, the charge asymmetry
effects of TPE we will calculate and display are in mirror systems which are not eigenstates
of Pcs. The differences {Aa, Arg} and AFE in the nn vs. pp interaction arise from a charge
asymmetric force termed class I which is proportional to the zeroth component of the total
isospin operator Ty + T2 (Where 1olp) = +{p}).

Baryon mass differences in the vertices of two-pion exchange give rise to both class IV
and class 1II CSB forces, but baryon mass differences in intermediate states cause only a
class I1I CSB force. We obtain a range of Aa ~ +(0.08 — 0.15) {m from nucleon mass dif-
ferences in the vertices. The actual values of the present calculation depend upon both the
form factor of the meson-baryon-baryon vertices and the chosen charge symmetric potential
used in the evaluation of Aa. Very importantly, however, the contribution from NN inter-
mediate states is cancelled by Aa ~ —(0.17 — 0.27) fm from 27 exchange diagrams which
contain one nucleon and one A. Thus the final result is small and in the wrong direction
compared to the empirical values of {Aa, Arg} and AE. In addition, we find many interest-
ing cancellations among the totality of non-relativistic box and crossed box potentials with
neutral and charged pions, as did Cheung and Machleidt earlier in a study of pion mass
difference contributions to charge dependence [19]. Each individual contribution, however,
is small on the scale of the empirical Aa (~ 1 fm) so the cancellations are not as delicate as
in the case of charge dependence. On the other hand, the contribution to Aa from baryon
mass differences in the intermediate state energy denominators is about 1 fm, comparable
in size and magnitude to the empirical number. In this case the individual contributions do
not cancel and the contributions from terms with one nucleon and one A are small compared
those of the NN crossed box terms. The latter agree in sign but are larger than found in
Ref. [12] which calculated a numerical derivative (in the neutron-proton mass difference) in
the multidimensional integrals of the SU(2) symmetric Partovi-Lomon potential.

We derive the potentials in section 2, present our results in section 3, and conclude with
a short discussion in section 4.

II. THE TWO PION EXCHANGE CHARGE ASYMMETRIC POTENTIAL

The calculation of the two pion exchange potential (TPE) is performed following Ref.
(16], which was devoted to a study of this contribution in the case of isospin changing class IV
interactions. Comparison with a coupled channel calculation involving A isobar excitations
showed that especially in the low energy limit it is reasonable to use the TPE potential
derived at zero energy in the static model for the baryons and parameterized in a simple
form in Table 1V of Ref. [16].

The starting point of the model is the pion-nucleon coupling with the mass difference of
the neutron and proton m, — m, = 8 (m, + m,) taken into account. In the nonrelativistic
limit this vertex is of the form [17]

H.nnv= Ho+ Hy + Hy (1)
e et RA A A R A T R ST

where § and p are the initial and final nucleon momenta, and & and 7 are the spin and isospin
operators. Clearly, in H, only the neutral component of the pion field ¢ is involved, whereas

in H; only the charged pions participate. We use the pion-nucleon coupling f*/4r = 0.075
from recent analyses [20]. The x NA coupling is similar [21] except taat the spin (isospin)
operators become the corresponding N — A transition operators S (T). Due to the missing
isospin operator, the H, term drops out leaving

Hena= Hy+ H; (2)

=-i%[(ﬁ—ﬁ')»§f- F4i(p +7)-S (T x )] .

The 7 NA coupling constant is taken f*?/4r = 0.35 from the free A width. The value of the
neutron-proton mass difference will be used also for the A mass splittirigs between successive
charge states. This can be justified by the nonrelativistic constituent quark model [21] and
is well consistent with the available experimental constraints [22]. The pion-baryon vertices
have each also a monopole form factor

A? - 2
Fg) = ———.
0) = s Q)
The values 1000 MeV and 790 MeV are used for the parameter A.
We calculate the direct box and crossed box diagrams with two nucleons and one nu-
cleon and one nucleon and one A in the intermediate state pictured in Fig. 1. Using the

above vertices to first order in § we get for the NA intermediate state contributions in the
momentum space

o 2 2
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‘The overall momentum transfer is ¢, and Pisthe average relative morrentum of the nucleons
P = %(ﬁl +p) = —%(172 + py) in the center of mass system. The momentum E is an
intermediate momentum variable and is integrated over. Dpg is the sum of all direct box
diagram propagators in different time orderings and D¢ the same for crossed diagrams. Only
the spin-orbit terms and the second spin-independent term in the crossed box diagram arise
from the vertex Hj, the others originate from H; and have the same spin-space structure as
the charge independent force.
The corresponding result for nucleonic intermediate states is
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In this case Dy has only the propagators of those “stretched” diagrams which have at least
one pion in flight all the time. Other TPE box diagrams are two-body reducible and are
taken into account in iterations of the OPEP. Otherwise the results are similar. Even in the
NA case a large part of the interaction could be treated by coupled channels and would be
reducible in a more general two baryon state space.

After integration over k the potential will be only a function of ¢ (and Pin the spin-orbit
term), if the baryon energies are omitted in the propagators (static model). As shown in
Ref. [16] these local potentials calculated at zero energy can be very well fitted with simple
Yukawa type potentials with form factor modifications, and we shall use this parameter-
ization for the CSB two pion exchange. The coupled channels method for including the
isobars generates also the energy dependence of the intermediate states. In particular, the
NA threshold effects arise in a natural way. As interesting as a study of the energy depen-
dence of class III forces would be in the A threshold region, in a calculation of low energy
scattering parameters, the use of a more exact coupled channels treatment is unnecessary.
In Ref. [16] it was shown that at low energies the two approaches are reasonably close to
each other, so that the potential parameterization can be justifiably used at least for elastic
two-nucleon scattering, which has no external probe on the intermediate states.

The above contributions arise from the CSB spin-isospin structure of the pion-baryon
vertices. In the difference of the nn and pp interactions there arises also an effect of different
intermediate state energy denominators. Shortly, this means that, relatively speaking, in
pp-scattering an intermediate nn state (with mesons) has a higher excitation energy than the
pp intermediate state in nn-scattering. This difference arises only in the exchange of charged
mesons 7. For the nucleonic intermediate state this contribution is possible only in the
crossed diagram 1d, since the direct box is basically an iteration of neutral pion exchange.
In the NA case it is also easy to see that in the box diagrams the excitation energies are the
same in both nn and pp scattering, if the quark model is used as a guide to relate the mass
splitting of the A quadruplet and the nucleon doublet. Therefore, it is sufficient to study
only the crossed meson contributions 1b and 1d.

From Ref. [16] we get the CSB difference between the nn and pp TPE potentials arising
from the propagators to be

Vna(nn —pp) = Iry's [(k2 - tf/‘*)2 - Lok a, g, - b'ﬂ)}
]9 18
x (DN& - DAY (6)
and
Ay TR TALTEEI T .
Vun (nn—pp) = ; 4 [(k —q /4) + 39 k% (26, 67 — 5,2)]
x (DY ~ DY) (7)
These equations are basically the same as Egs. (11) and (13) in Ref. {16}, except that the

neutral pion contribution has been subtracted from the isospin factor and a factor 2 has
been included to account for the possibility of either of the nucleons being excited to a A.
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The quantity DE¥' is the sum of the nonrelativistic propagators of the crossed diagrams
involving intermediate baryons BB’ and two charged pions with different time orderings in
nn scattering (resp. in pp scattering).

The CSB contribution due to the baryon mass splittings in the propagators appears
surprisingly large as compared with that coming from the CSB vertex effects. However, this
can be directly understood since the vertex corrections must be of the order of 6 = H’:,
whereas in the propagators the neutron-proton mass difference (actually taken twice) is to
be compared with the exchanged meson energies and the A excitation energy, which are
significantly smaller than the nucleon mass. The nucleonic intermediate state is further
favored over the NA, because it does not have the additional A-nucleon mass difference,
which is of the order of two pion masses. In addition, it can be seen in Egs. (6-7) that the
only spin-dependent term surviving in the ! Sy state interferes destructively with the positive
spin-independent part in the NA case but constructively in the NN case (note that the ¢
gives a negative contribution in coordinate space).

II1. RESULTS

Before presenting our results we briefly discuss the experimental evidence for the charge
asymmetry scales cited in the Introduction. The proton-proton 'Sy low energy scattering
parameters are very accurately known, but the direct electromagnetic (em) interaction must
be subtracted and this subtraction is model-dependent {10]. The corrected values we will
use are [18]

a4y, = —17+02 fm rop = 2.83 £ 0.02 fm;
similar suggested values will be found in the recent review literature 14,15,23|(see also [4]).

The experimental values of a,n found from 7#~d — 4nn in which only the photon was
detected [24] are

Qnn = —18.51+ 0.4 fm Top = 2.80 £ 0.11 fm

in excellent agreement with the kinematically complete determination of an, = —18.7 £ 0.6
fin from the same reaction [25]. The measured *H-*He binding energy difference is 764 keV.
The direct electromagnetic contributions to this number (the static Coulomb force between
the proton pair in *He plus smaller em effects) have been estimated in a “model independent”
manner discussed later [26], by direct Faddeev calculation with many potential models (3],
and by a combination of the two [2]. These estimates are in basic agreement; the corrections
are 671 + 29 keV, 671 £ 6 keV, and 683 keV respectively [27}. Finally we must correct these
results further for the difference in the kinetic energy of the nn and pp systems due to the
neutron-proton mass difference. The latter correction is estimated to be —0.2 fm for a,, and
+0.2 fm for a,, [18] and calculated to be +(11-12) keV in the A = 3 vound state [3,26]. All
charge asymmetric effects other than these are then ascribed to charge asymmetry of the
NN system. The characteristic measures of this aspect of charge asymmetry then become

Adexp = (Jnn]| — lapp]) =& +1.1 £ 0.6 fm
DTG exp = (Tan — Tpp) & —0.02 £ 0.11 fm
AE.,=(*H -% He) = 76 + 24 keV



against which the effects of theoretical models can be compared [27].

Now we turn to a presentation of these effects from the two pion exchange potentials
of section 2. Table I summarizes the total effect of baryon mass differences in the vertices
and Table 11 demonstrates the dominance of mass differences in the NN intermediate state
denominators over the NA intermediate states. The shifts in a and r are obtained by adding
a model for AV =V,,, — V,, to a model for the charge symmetric reaction. We chose the
Reid soft-core potential [28] which despite its name has a large repulsion at small r, and
the de Tourreil-Rouben-Sprung (dTRS) potential [29] which has a “super-soft core” and a
meson-theoretic outer region. The values of Aa and Ary were obtained with the variable
phase method. Our codes give a = —17.10 (-17.37) fm and ry = +2.79 (+2.84) fm for
the Reid (dTRS) potential alone. Since both potentials were fitted to the experimental pp
scattering parameters, the variation in the “pure nuclear” quantities is a specific example of
the model dependence of the Coulomb subtraction.

The columns on the right of Table I display estimates of AE made in two different ways.
The first, labeled AEgsg, relies upon the known relationship between a, ry and the triton
binding energy. This relationship, in the context of charge dependence, was numerically
explored with central separable potentials in the early days of exact Faddeev calculations
(1,30]. Then it was learned (and perhaps forgotten since) that the triton energy is more
sensitive to ro than to a. The underlying physical explanation was demonstrated by Thomas
[31] and reviewed by Bethe and Bacher {32] some time ago. Gibson and Stephenson [33]
applied this idea to a dedicated study of the dependence of AE upon Aa and Arg. For their
central separable potentials producing the correct *He binding the results can be very well
fitted by

AEgs = (40Aa — 1600Ar,) keV /fm. (8)

Far more sophisticated potentials and their concomitant few body calculations support
this simple prescription, but indicate that it furnishes a modest overestimate of AE. For
example, a modification of the static Bonn OBEPQ potential [34] to produce Aa = +1.31
fm and Arg = —0.02 fm (and the experimental a,, to ensure proper charge dependence)
yields a calculated AE = 59 keV [2]. This is a little less than the estimate from Eq. (8),
AFEgs ~ 84 keV, and presumably reflects the replacement of the central separable potentials
used to establish the relation by local potentials with the tensor force. In another modern
calculation (3], a component of the theoretical charge asymmetric force from pw mixing [5]
was artificially altered so that Ae = + 1.5 fm. Ref. {3] did not indicate the value of Arg
which resulted from their alteration but instead stated that “the value of Aa is crucial for
CSB.” In the absence of information on that Arg, we have made a similar alteration to the
pw force and found (see also Table I of [5]) that Aa = +1.5 fm implies Arg =~ —0.03 fm for
both the Reid and dTRS charge symmetric potentials. Thus the prediction of AEgg =~ 102
keV is again larger than the value of 75+ 7 keV found in Ref. {3]. Finally, the new Argonne
vis NN potential, with Aa = +1.65 fm and Arg = —0.031 fm, has an expectation value of
AE = 66 keV [4], again smaller than the prediction of 116 keV from Eq. 8. We will use the
estimate from (8) because it summarizes a more detailed study, but realize that the values
AFEgg are an overestimate.

The “model-independent” estimate labeled A Epr is a direct perturbation theory estimate
based upon the “hyperspherical formula” derived by Friar [35] and Fabre de la Ripelle [36].
They observed that the Coulomb contributions to the °H - *He binding energy difference
can be calculated using the experimental charge form factors. The hyperspherical formula
works very well (to about 1% ) when compared to exact Faddeev calculations [37] but is a
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good deal more problematic for shorter ranged potentials. The caveats to be applied to this
method of estimating AE from a given two-body AV are discussed in Refs. [5,26] and the
details of the experimental charge form factor input are given in [5]. The estimate in Table I
labeled A Epr reflects even larger cancellations between positive NN and negative NA two
pion exchange contributions, than obtained in the preceding three columns.

The contributions to Aa, Arg, and AE listed in Table I are relatively small on the scale
of the empirical quantities. This is partly due to the cancellations between between the NN
and NA contributions and partly due to the smallness of the parameter § which sets the
scale for the CSB vertices. This factor is not present in Eqs. (6-7) based on the difference of
the intermediate state propagators. Table II shows both the NN and NA contributions from
this source. As anticipated, the NN intermediate state contributes much more than does
the NA, which is in turn of the order of the total vertex correction. There is no cancellation
and consequently the sum of the two terms is much larger than the tctals of Table I.

IV. DISCUSSION

'The two pion exchange CSB potentials displayed here are weak enough that their effect
on Aa can simply be added to a good approximation (see Table II). One finds by combining
the results in Tables I and II that the total CSB effect from Eqs. (4-7) with a monopole
form factor with A = 1000 MeV is:

Adaze = (|ann| — japp|) = +1.37 £ 0.04 fm
Argar = (Tnn — Tpp) = —0.024 fm
AEy;, = (*H —*He) = 93 + 2 keV

where we have taken the average of the two results and the unceitainty is due to the
short range nature of the selected charge symmetric potential (Reid o1 de Tourreil-Rouben-
Sprung). The corresponding result for a choice of A = 790 MeV, long advocated by one of us
[38] and now incorporated into new Bonn-Juelich NN potentials [39], and found necessary
to explain the decay width of the A {40}, is:

Aayy = (|@nn] — agp|) = +0.97 £ 0.04 fm
Argor = (Thn — Tpp) & —0.017 fm
AE,, = (*H-He) = 65+ 1 keV .

These results are consistent in sign with those of the first calculation [41] of nucleon
mass differences in the energy denominators of the two-pion exchange SU(2) symmetric
Partovi-Lomon potential. The latter was obtained from a nonrelativistic reduction of co-
variant Feynman graphs, in contrast to the present CSB two-pion exchange potential based
on non-relativistic TN N and #AN vertices. However, the effects of the present potential
on Aa are a factor of three to five larger than the earlier estimate. This cannot be con-
sidered a satisfactory theoretical situation. We note that neither the covariant calculation
nor the non-relativistic calculation of two-pion-exchange NN potential have a clear chi-
ral symmetric character. Recently, Weinberg and van Kolck have emphasized the utility
of an explicit consideration of chiral symmetry in the analysis of isospin violating interac-
tions {42]. Leading-order chiral two-pion-exchange NN potentials were first calculated by
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Ordéiez, Ray, and van Kolck {43] and subsequently verified by Iriar and Coou {44]. We
expect that these potentials should provide an alternative foundation for studies like the
present one and hope to report on progress in a future work.

If two-pion exchange has such a large effect, what is the role of the other mechanisms
suggested to account for nuclear charge asymmetry? Fortunately, it has been recently shown
that, to leading order, the simultaneous exchange of a pion and photon does not produce
nuclear charge asymmetry (but does give a charge dependent force) [45]. The addition to
our results of effects of pw mixing, according to the traditional treatment [5], or to the
latest studies of charge asymmetry from vector meson exchange [46], would lead to an
overfulfillment of the experimental quota. On the other hand, if pw mixing has a minimal
CSB effect as claimed [6], then two-pion exchange is left as the dominant mechanism of
nuclear charge asymmetry. Adjudicating the role of vector meson exchange in nuclear charge
asymmetry lies beyond this study. For the present, results with the NV potentials of section
2 indicate that the two-pion exchange contributions to class IIl nuclear charge asymmetry
are of the same scale as the empirical measures and indeed can account for the low energy
data.
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TABLES

TABLE L. The two-pion exchange (TPE) contributions to Aa, Aro, and AE, the binding energy
difference between *He and °H; baryon mass differences in the vertices. The charge asymmetric
TPE potentials are distinguished by the monopole form factor parameter A. The Reid soft-core
(Reid) and de Tourreil-Rouben-Sprung (dTRS) potentials are the charge symmetric potentials
V(CS) used in the calculation of Aa, Arg, and the estimate of AEgs based on these effective range
parameters. Another estimate, AEpy is obtained from the “model independent” hyperspherical
formula described in the text.

V(CS), A Aa (fm) Arp (fm) AEgs (keV) AEpr (keV)|
Reid, 1000 MeV ~0.27 +0.0052 -19 -9
dTRS, 1000 MeV -0.23 +0.0045 -16 -9
Reid, 790 MeV ~0.10 +0.0017 -12 -1
dTRS, 790 MeV ~0.08 +0.0012 -5 -1
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TABLE II. Two-pion exchange (TPE) contributions to Aa, Arg, and AFE; baryon mass dif-
ferences in intermediate energy state denominators; The intermediate states are labled as NN
{nucleon-nucleon) and NA (nucleon-Delta); other notations as in Table I.

V(CS), A Aa (fm) Arp (fm) AEgs (keV) AEgp (keV)]|
NN Reid, 1000 MeV +1.53 -0.027 104 55
NN dTRS, 1000 MeV +1.28 -0.023 88 55
NN Reid, 790MeV +1.01 -0.017 68 36
NN dTRS, 790 MeV +0.83 -0.014 56 36
NA Reid, 1000 MeV +0.12 -0.002 8 10
NA dTRS, 1000 MeV +0.24 -0.005 18 10
NA Reid, 790 MeV +0.10 -0.002 7 7
NA dTRS, 790 MeV +0.16 -0.003 11 7
Sum Reid, 1000 MeV +1.67 -0.029 113 65
Sum dTRS, 1000 MeV +1.56 -0.028 107 65
Sum Reid, 790 MeV +1.11 -0.019 75 43
Sum dTRS, 790 MeV +1.01 -0.018 69 43
FIGURES

FIG. 1. Two-pion exchange diagrams of the two-pion exchange NN potential. The solid lines
are nucleons, heavy solid line are As, and the dotted lines are neutral and charged pions.
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