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Abstract

~We show that the superdeformed nuclear states can be described in the frame-
work of the interacting boson model with the g-bosons being taken into account in
this letter. The superdeformed rotational bands with Al = 4 bifurcation can be re-
produced in the SU(5) limits of the sdg IBM. The perturbation causing the A = 4
bifurcation to emerge in the &Af = 2 superdeformed rotational band is shown to

possess the SU(3) symmetry.

PACS Numbers: 21.10.Re, 21.60.Fw, 23.20.Lv

o the spectroscopy of superdeformed nuclei. rotational level sequences have been
obsecved in which the A =2 rotativnal band is pecturbed and split into two branchest 2
Because in each of the branches the energy levels differ in angular uwomentum by four, this
phenomenon is called A =1 bifurcation, ov A = 2 staggering, since the states diifering
by two in angular momentum are staggered in energy. The occurruence of such a staggering
in the rotational energy sugzests that the stroagly prolate spheroidal deformation has
been perturbed by hexadecupole deformation?! (for example, the leformation parameter
3y of "Gd may be up to 0.08H). In other word, a perturbation holding symmetry Yia
with respect to the symmetry axis of the nucleus emerges 1n the superdeformed nuclear
statesB3). Thus, the experiments are regarded as evidences that superdeformed nuclei have
Caw symmeu‘yls"_l or intrinsic vortical motion®. In the framework of interacting boson
model (IBR’[)[OI, the nucleus with qnadrupole and hexadecupole deformations consists of
s-, d- and g-bosons. The approach to describe the nucleus including s-, d- and g-bosons
is usually referred as sdg interacting boson model (sdg [BANIO With the sdg 1BM we
will show in this letter that the perturbation may probably poessess much higher symmetry
SU(5) in the sdg [BM.

in sdg interacting boson model, the collective nuclear stater (with quadrupole and
hexadecupole deformations) are generated as states of a system with vV s-, d-, g-bosons.
Since the total single boson space is 15 dimensional, the svinme.ry group is U(13}, and
the states of N-hosons belong to the totally syinmetric irreducib e representation (irrep)
[N]is of the U(15). Moreover, it has been shown that the sdg [3M has strong coupling
dynamical symmetries SU(3), SU(5), SU(6), O(15) and weak coupling dynamical sym-
metries Uug(6) 2 Uy(9), Uggl14), Ua(3) 2 U,p(10). Numerical calzulations show that the
sdg IBM is quite successful in describing nuclear states with laige deformation and E4
transitions!'?. On the other hand, with the projective coherent state schemel® Leing
exploited, Devi and collaborators showed!1213 that the potential cnergy surface of the nu-
cleus with dynamicat symmetry U.(6)@ Uy(9), Uiy (14), Ua(3) @ /,(10), SU(3) or O(13)
has one minimum , which is just the same as that in the sd 13> However, Lhe energy
surface of a nucleus with SU(6) symmetry has three degenerate minima and that of the
SU(5) symmetry has two minima that are displaced in energy (see Fig. 5 of Ref.[12} and
Figs. tb—th of Ref {13]). Lt indicates that the sdg IBM admits shape coexistence and
shape phase transformation which can be driven Ly angular mo nentum!™!. Considering
this fact and the view that superdeformed states are generated in the second minimum
of the potential energy surfacel™®, we know that the superdefornmed nuclear states can be
described with the SU(3) limit of the sdy [BAL

As a nucleus has the SU(5) symumetry in the sdg IBM, the states of the nucleus can
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be classified by the irreps of the group chain
U(13) D SU(3) D S0(3) D 50(N. (n
The wave function can then be written as

| wil}) =] [Vhs {n‘,ng,n},nA.]st}(rl,r!)sa I )
U(13) SU(3) S0(3) SO

where J is ihe additional quantum number to distinguish the same (7, m)s belonging
to the same [n;, 2,13, nys, and « is the additional quantum number to differ the same
[ belonging to the same (7, 72)s. They are the integers satisfving the relations 1 <
3 < Bmazy | € & € amas respectively, in which ez is the multiplicityvof icrep (71, 72)s
belonging to the irrep {n1, na, nangs, and amaz is the multiplicity of [ belonging to the irrep
(71, m)s. All the irreps and the multiplicities can be determined from the branching rules
of the irrep reductions which have been discussed by Sun et all'!!, For a given V], the
itrep [ny, na, N3, m4]s can be all the possible (2N —2p—4q—Br—6s,2(p+q+7r), 2q+7), 2r)s
with restriction 2p + 37 + 4r + 3s < V. TFor a given [m1, na, na, nyls, the irrep (1, 72)s
can be determined with the Young tableaux techniquel' or Schur runction method('™,

for instance,

) 0.0) (for n = even)
(,0,0,0); = (n,0) B (n—-2,0) T (n-L.0)& -3 ( ' 3
b= (03200 e 2 e T
F(ry,n) 3 Flni=2,n) & @ Flnat2,n2)
(1, n2,0,0)5 = %[n;,ng‘], . (for ny—n, = even), (1)
Flny,ny) & F(ny=2,m) & - @ F(ny43, na)
PDF(n,+1,n), (for ny —ny = odd),

where

{n.n] = Zﬁv(n —2i,n— 21 - 2j),

iy
F(ny,ng) = 25(”1 — i,y —1—2j).
.7
Fot a given (7, 72)s, the reduction of SO(5) D O(3) can be obtamed with the multi-
partition technique!™®l. For example, for a given (r,,0)s, the corresponding [ can be 2r,
2y =2, 27y =3, . For a given (7, 72)s, the cotresponding [ can be 27y +1y, 27y +7y — 1,
ey +ra— 2 or 2r + g, 2r AT =2 s .
The interaction Hamiltonian of the bosons in a nucleus with the SU(3) symmetry can

be written as

H = Eg + ACssu(sy + BCasors) + CChsoay, (;

el
g

3

in which Cy, is the quadratic Castmir operator of the group g. Lhe energy of the state

|V [y, na, ny, nals{rn 7)) can be given as

E(1) = Eo + Alm(m + 1)+ ma(ny +2) + 03 +ung = 2) = gln Frr kst )] (6)
2B (n + 3) + e+ D CHT+ 1),

where 4 determines the energy difference between.the lowest [ = 0 states with different
irrep {ny, 12, na, ngls. B decides the energy difference between the different lowest [ states
with different (7y, 72)s but the saine {ry, i, Ny nys. C gives the energy difference between
the states with different [ but the same (1, 72)s and [y, na, n3, n.)s. In ordec to keep the
[ = 0 state with iirep [2V,0,0,0§s (V is the total number of the bosons) and (71, r2)s =
(0,0) being the ground state, the parameters should be taken as A < 0, B>0,C > 0.
Thus, the energy bands generated by the totally symimetric ittep (2:V,0,0,0] are usually
lower than those generated by the nontotally symmetric irreps {2 V=2, 2,0,0] and others.
On the other hand, the branch rules of the irrep creduction show that the totally symmetric
ivrep [2V,0,0,0] of the SU{3) generates the energy bands with evel sequences {0, 4,8,
S 4NY, {2,6,10, o, BV =2) e respectively (see Fig. 2: of Ref {13]). We know
then that the irrep [2/,0,0,0] of SU(3) can reproduce the low- ving energy bands with
level sequence fo, fo+4, lo + 3, ---, but can not generate the superdeformed energy band
with level sequence fo, fo +2, lo + 4, -+ For the irrep [‘2N—‘.!,2,0,0] of SU(3), since
the irreps of SO(3) can be (2V ~2,2), (2N =4,2), -+, (2,2) anc (2V~2,0), (2N -4,0),

-, (2,0), (0,0), of which the corresponding largest angular monenta are 4N =2, 1V -6,
4V —-10, -, 10, 6 and 4N =4, V=3, AN—12, .-, 8, 4, 0 respectively. Two closely placed
energy bands with tevel sequences [y, [o +4, lo + 8, and [o +2, lo +6, [o+ 19,
come to naturally, and couple to one band with level sequence lo, fo + 2, fo +4, -+, of
which the states differing by 2 in angular momentum are stagger 0g in energy. Figure | is
an example of the energy spectrum built on the ivrep [2V —2,2,0,0] of the SU(3). From
the irrep reduction rule in the group chain 50(5) D SO(3) and figure | we know that
many bands with A = 2 staggering id energy can appear in one system. Thereloce, one
nucleus can have mare than one superdeformed rotational bands with M = 4 bifurcation,
such as the ones reported in Ref. {2].

To show the A = 4 bilurcation more explicitly, we discuss the energy differences
AE, between two consecutive y-ray transitions of the energy band generated by the
irrep [2V —2,2,0,0 of the SU(3) as a function of angular mwomentum and rotational
frequency respectively after subtraction of a smooth reference AET/(]). Since AE(])
is defined as AE,({) = E,([ + 2} — E,({) and the AENI(I) is given as AET(I) =
(DB, —2) +20E,(1) + AEL(L 4+ 2))/4, we have AEL(T) - AEFEH(IY = {E,(1 = 2) —
3ELD) +3E, (1 +2) - E.({ + 4)]/4. Figures 2 and 3 illustrate the changing feature of
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the AEL({) — NEIS/(I) versus the angular momentum [ and that against the rotational
frequency hw = }E,([) respectively with the parameters in eqs. (3) and (6) are taken
as Eg =0, A =0, B=35KeV,C =01KeVfora nucleus with 138 s-, d-, g-bosons. In
figures 4 and 3 we show the two kind variation features with parameters £ = 0. 4 =10,
B =001 KeV, C = 625 KeV [or the same nucleus. Since the parameters £y and A
determine only the enersy of the lowest { = U state belonging to 2V = 2,2.0,0] with
respect to the ground state, we take £o =0 and 4 = 0. And the choice of parameters in
this way does not change the band structure being consideced.

As the parameters are taken as B =35 KeV, C =0.1 KeV, i.e.. B> C, the Hamil-
tonian (3) has the SU(3) symmetry. [Figure 2 shows that the A/ = 2 staggering in
energy generated by the SU(5) symmetry is very ohvious (for negative energy differences
NEL(1) = AEI/ (1), the amplitude is in the same order of magnitude as the £.(1); for
the positive energy differences, the amplitude is in the same order of magnitude as the
neighboring transition energy £,([ -2} or E.,(I + 2)) and the staggering amplitude gets
large and large as the angular momentum [ increases. Figure 3 indicates that energy
differences AE,([) — AET/(I) versus the rotationat frequency are separated into two
isolated branches for the two A7 = 4 level sequences. For one Al = 4 level sequence the
AE(I}) = AETI{I) is always positive and the rotational frequency of the state [ is very
small (less than 0.03 MeV). For another A = 4 level sequence AE(f) — AE/(]) is
definitely negative and the rotational frequency is in the usual situation (from 0.03 MeV
to 0.32 MeV). Since the difference between the rotational frequencies of the states with
angular momentum [, [+2is quite large, the positive A, (1) —AEI(1) and the negative
AEL(Iy— NEIF([) does not appear alternately but split into two branches. {t suggests
that if the energy of state [ ina b_and with level sequence g, lo+4, o +3, - is close
to the energy of the state { + 2 in the band with level sequence lo+2, [o+6, - - the
Af = 2 staggering of the AE (/) — AET/(I) washes out and two segregated branches
emerge. It shows also that to describe well the observed A/ = 4 bifurcation theoretically,
the staggering of enetgy differences as a function of the rotational frequency i1s a move
reliable characteristic than that versus the angulat momentum.

When the parameters are chosen as B = 0.01 KeV, C =6.25 KeV, ie., 8« C, the
interacting Hamiltonian is expressed as an axial rotational interaction and a perturbation
with the SU{5) symmetry. The calculated results of the energy differences hetween two
consecutive y-ray transitions AE,([) — AET/([) as a (unction of the angular momentum
and that as a function of the rotational {tequency are illustrated in figures 4 and 5 respec-
tively. The Ggures show that the energy differences AE, between wwo consecutive y-ray
transitions after subtraction of a smooth reference are really very small even though they
do not agree with the experimentally data precisely (we are not atlempt to fit the data

)

i this letter at all). Meanwhile the variation characteristic of A, (1) — AE ([} as a
{unction of rotational frequency represents the observed changing ‘eature of the stagger-
ing versus the rotational frequency, and is consistent with that as a function of angular
momentuin. Comparing figures 2.3 with figures 4, 3 respectively, we know that, as the
‘uteraction with the SU(3) svmmetry is handled as a perturbation, the A/ = 2 staggering
in y-ray energy dilferences can be described better than in the case that the interaction
is taken as a dominant. It suggests that, even Lhou;;h the SU(5) s /mmetry is imperative
in generating energy levels with M = 4 sequence, the interaction generating the superde-
formed nuclear states with A1 = { bifurcation is not governed by the SU(3) symmetry,
but still regulated by the rotational interaction. Nevertheless, the perturbation causing
the Af = 2 rotational band to split into A1 = 4 bifurcation may possess SU(3) symmetry.
We have also investigated the changing feature of the energy diffe-ences AE, introduced
as the manifestation of the N[ = 1 bifurcation by Cedrewalll®. The same result as shown
above is obtained.

In summary, we have shown in this letter that the superdeformed nuclear states can be
described in the framework of the interacting boson model as the ;-bosous are taken into
account. [n experiment, the representation to show the AJ = 4 bilurcation is the stagger-
ing in energy differences AE, between two consecutive v-ray transitions after subtraction
of a smooth referencel® as a function of the rotational frequency since the angular mo-
menta are not assigned. In theoretical description, although the angular momentum can
be assigned, the changing feature of the energy differences AE, ws a function of angular
momentwimn is not consistent with that versus the rotational frequency when the difference
of rotational {requencies between the two AT = 4 branches is large. Then, to describe the
observed Al = 2 staggering well, one should consider the same changing characteristic
as in experiment as {ully as possible. Otherwise, we have not attempted to fit the ex-
perimental data in the sdg IBM in this letter. However, preliminery calculation indicates
that the general feature of the staggering in energy differences AL, in a Al = 2 superde-
tormed rotational band can be described in the sdg IBM as the ‘familtonian is taken as
a rotational interaction plus a perturbation with SU(3) symmetry. [n this scheme, one
nuclens can naturally have nore than one superdeformed rotaticnal bands with Af =4
bilurcation. We then come to a couclusion that the perturbative interaction making the
Al = 2 superdeformed rotational band split into Af = 4 bifurcation may possess SU(3)

symmetry.

This work is supported by the National Natural Science foundation of China. This
work has benefited from stimulating discussions with Professor [ lachello. Helplul dis-
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Figure Captions:

Figure 1. A part of the coergy spectrum generated by the irrep (3,2,0.0f of the
SU(5)(the parameter are taken as £y = A =0, B = 253 eV, (' = 35 KeV. The

labels at the left side of the levels are the corsesponding itr :p of the SO(3) group).

Figure 2. The encrgy differences A £, between Lwo consecutive y-ray transitions in the
energy band generated by the irrep {2V —2,2,0,0] of the SU(5) as a [unction of
angular momentum alter subtraction of a smooth reference MAE7*/(1). The nucleus
is taken as the one with 13 s-, d- and g-bosns and the parameters are taken as
Eg=0,4=0, B=23ReV, (=01 KeV.

Figure 3. The energy differences A £, between two consecutive v-ray transitions in the
energy band belonging to the irrep [2NV —2,2,0,0] of the SU(3) as a function of
rotational frequency after subtraction of a smooth refecence AET/(). The nucleus
is also taken as the one with 18 s-, d- and g-bosons and the parameters are taken

as £ =0,4=0, B=35KeV, C =0.1KeV.

Figure 4. The same as figure 2 but for parameters £, = 0, A = 0, 8 = 0.01 KeV,
C =6.25 KeV.
v
Figure 5. The same as figure 3 but for parameters £y = 0, 4 =0, B = 0.01 KeV,

C =6.25 ReV.
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