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We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the
strange and charm quarks to the anomalous magnetic moment of the muon in isospin symmetric
QCD. We employ the gauge configurations generated by the Extended Twisted Mass Collaboration
(ETMC) with Nf = 2+1+1 flavors of Wilson-clover twisted-mass quarks at five lattice spacings and
at values of the quark mass parameters that are close and/or include the isospin symmetric QCD
point of interest. After computing the small corrections necessary to precisely match this point,
and carrying out an extrapolation to the continuum limit based on the data at lattice spacings
a ≃ 0.049, 0.057, 0.068, 0.080 fm and spatial lattice sizes up to L ≃ 7.6 fm, we obtain aHVP

µ (s) =

(53.57± 0.63)× 10−10 and aHVP
µ (c) = (14.56± 0.13)× 10−10, for the quark-connected strange and

charm contributions, respectively. Our findings agree well with the corresponding results by other
lattice groups.
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I. INTRODUCTION

The polarization of the vacuum induced by fluctuations of a virtual photon into quarks and gluons, known as the
Hadronic Vacuum Polarization (HVP), has recently received a lot of attention and interest due to its importance in
the Standard Model (SM) predictions of the anomalous magnetic moment of the muon aµ. This quantity is currently
investigated at the Fermi National Accelerator Laboratory (FNAL) [1] and at a forthcoming experiment at J-PARC
(E34) [2]. The Fermilab Muon g − 2 experiment (E989), has published the results of the analysis of the Run-1 data
collected in 2018 [1, 3–5], where a remarkably good agreement with the previous E821 measurement at BNL [6] is
found. More recently, also the results of the analysis of the Run-2 and Run-3 data, collected in 2019 and 2020, have
been published [7], with statistics increased by more than a factor of four and systematic errors reduced by more than
a factor of two.

The current experimental world average [7] is aexpµ = 116 592 059(22)× 10−11 with a relative uncertainty of 0.19 ppm.
The ongoing analysis of the remaining data from three additional years of data collection by the Fermilab Muon g−2
Collaboration is expected to lead to another factor of two of improvement in statistical precision, while a completely
independent cross-check and possibly a further reduction of the total error will come from the forthcoming experiment
planned at J-PARC.

From the theoretical side, the dominant source of uncertainty in the determination of aµ comes from the HVP term
at leading order in the electromagnetic (e.m.) coupling, aHVP

µ (see Ref. [8]). Presently, there are two approaches
for obtaining precise predictions of the HVP contribution. The first one makes use of the experimental data on the
process e+e− → hadrons, while the other one is represented by numerical simulations of QCD and QCD+QED on
the lattice.

The data-driven determination of aHVP
µ quotes [8–10] a precision of ≃ 0.6% and it corresponds to a SM prediction

for aµ that is found [7] to differ by ≃ 5.0σ from the current experimental world average aexpµ . However, a recent

determination of the cross section e+e− → π+π−(γ), carried out by the CMD-3 Collaboration [11], shows important
tensions with previous measurements, including the one made by the same Collaboration [12] and, if correct, would
make nearly negligible the tension with aexpµ . Whether radiative corrections can provide an explanation for such

tensions in the data-driven determination of aHVP
µ is presently under active investigation (see, e.g., Refs. [13–15] and

also Ref. [16] for a first-principle isoQCD lattice calculation of the R-ratio smeared in gaussian energy bins).

In recent years, impressive progress has been made by the lattice QCD community that enables the evaluation of
aHVP
µ with increasing precision, reaching the goal of a few permille accuracy. A breakthrough concerning the precision

achieved came from the lattice calculation performed by the BMW Collaboration in 2020 [17], corresponding to a
relative uncertainty of 0.8%. This result has been recently updated by the same collaboration [18], by combining a
refinement of their 2020 lattice computation with an experimental data-driven input for the very low energy tail of the
R-ratio of the process e+e− → hadrons. In this hybrid approach, assuming that the e+e− experimental data of input
have controlled systematics and are not affected by contributions of physics beyond the SM, they reach a precision of
≃ 0.5% and obtain a phenomenological prediction for aHVP

µ that, once combined with the SM computations for the
QED and electroweak contributions to aµ, yields a prediction for aµ that deviates by only ≃ 0.9σ from the current
experimental value aexpµ . Moreover, very recently, the CLS/Mainz collaboration presented [19] its lattice prediction

for aHVP
µ that has an accuracy of ≃ 1% (≃ 0.8% for the isoQCD contribution) and that, once combined with the SM

computations for the QED and electroweak contributions, is fully compatible within errors with aexpµ . The CLS/Mainz
result exhibits a slightly larger central value than aexpµ and is in small tension with the BMW 2020 result. Finally,
also the RBC/UKQCD collaboration presented [20] a lattice result for the dominating light quark contribution to
aHVP
µ that is in between the corresponding results of the CLS/Mainz and BMW collaborations and compatible with

both of them within errors.

Furthermore, the BMW and the CLS/Mainz results are in strong tension (respectively ≃ 2σ [17], ≃ 4σ [18] and
≃ 4σ [19]) with the data-driven one of Ref. [8] (i.e. without including the recent CMD3 data). Since 2020, i.e.
after the appearance of Ref. [17], this issue has triggered a lot of investigations of the so-called window contributions
to aHVP

µ , which were first introduced by the RBC/UKQCD collaboration in Ref. [21]. Such quantities, obtained by

introducing suitable weight functions in the Euclidean time-momentum representation of aHVP
µ , have proven to be

quite useful since at short and intermediate time distances they can be predicted with high accuracy on the lattice. In
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particular, in the so-called intermediate window the disagreement between e+e− → hadrons cross-section data-driven
results, as quoted by Ref. [8] (i.e. without the recent CMD-3 result), and the lattice determinations has reached the
remarkable level of ≃ 4.5σ already in 2022 (see Ref. [22]). However, if one employs instead the recent determination
of the cross section of e+e− → π+π−(γ) carried out by the CMD-3 collaboration [11], the experimental results for the
intermediate window contribution to aHVP

µ are in agreement with the SM lattice prediction.

In this work, we present a high-precision determination of the quark-connected contributions to aHVP
µ due to strange

and charm flavors that are obtained by the ETMC within the so-called isospin symmetric QCD (isoQCD), where
isospin breaking effects, due to different up and down quark masses and quark electric charges, are neglected.

The analysis1 is performed using the gauge configurations generated by ETMC [23–26] with Nf = 2 + 1 + 1 flavors
of Wilson Clover twisted-mass sea quarks with masses tuned very close to the target isoQCD values, i.e. the ones
corresponding to our scheme of choice for defining isoQCD which is the so-called Edinburgh/FLAG consensus [27,
28]. We have computed the small non-perturbative corrections needed to fine-tune the bare parameters to the
target isoQCD values and, after applying these corrections to the simulated ensembles (listed in Table II in the
Appendices), we obtain the corrected isoQCD physical-point ensembles listed in Table I, with lattice spacings a ≃
0.049, 0.057, 0.068, 0.080 fm. Using these isoQCD physical-point ensembles, taking into account the tiny finite size
effects (FSE) and adopting a proper Akaike-Information-Criterion (AIC)-based model average for the continuum limit
extrapolation, the results that we obtain for the quark-connected strange and charm contributions to aHVP

µ are

aHVP
µ (s) = (53.57± 0.63)× 10−10 , (1)

aHVP
µ (c) = (14.56± 0.13)× 10−10 .

Here the quoted error is the total one resulting from purely statistical, mistuning corrections and continuum-limit
extrapolation errors plus the tiny uncertainties related to FSE and to the finite normalization factors ZV.A.

The results for partial short-distance (SD) window, intermediate window (W) and long distance (LD) window contri-
butions are given in Section III. Our current results for SD and W window contributions are nicely consistent with,
and supersede in accuracy, those we published in Ref. [22]. Compared to that paper, we now employ one physical-point
ensemble at finer (a ≃ 0.049 fm) lattice spacing which allowed us to exclude the ensembles at unphysical values of the
pion mass and at the coarsest lattice spacing used in Ref. [22] and to achieve a significant reduction of the statistical
and continuum extrapolation errors. Furthermore, precisely because of this error reduction, we carried out a careful
analysis of the small mistuning errors affecting our previous results, computed the required corrections and took into
account the associated uncertainties, thus improving our control of the total errors.

The paper is organized as follows: In Section II, we provide the relevant notations and definitions. In Section III
we present our determinations of the strange- and charm-quark connected contributions to the vector correlator,
including a detailed analysis of the continuum limit. In Section IV, we conclude by presenting a comparison with
other available lattice QCD calculations and an outlook.

Further technical information is given in the Appendices as follows: In AppendixA, we give details about our lattice
setup and the bare parameters we used in Monte Carlo simulations, as a step “zero” in our definition of isoQCD.
In AppendixB, we detail the procedure we apply to fine-tune the bare parameters of our lattice action in order to
implement the chosen definition of isoQCD at a level of accuracy comparable with the statistical errors affecting the
hadronic inputs used for theory renormalization. In AppendixC we discuss the evaluation of the strange and charm
HVP (aHVP

µ (s) and aHVP
µ (c)), along with the corresponding SD, LD and W, contributions at the Edinburgh/FLAG

isoQCD point determined in AppendixB. In AppendixD, we present technical details about our numerical estimate
of the systematic effects on both the hadronic renormalization inputs (Fπ, Mπ, MK , MDs) and a

HVP
µ (s, c) themselves

stemming from the small mistuning in the bare action parameters used in our Monte Carlo simulations. In AppendixE,
we collect the values of the scale-invariant renormalization constants (RCs) of the vector and axial-vector local quark
currents, ZV and ZA, employing the hadronic method of Ref. [22], which relies onWard Identities (WIs) and unversality

1 We are currently working on the calculation of the dominating light-quarks quark-connected isoQCD contribution aHVP
µ (ℓ) and, for

that quantity, we have implemented a blinded analysis procedure whose details will be explained in a forthcoming publication. In the
case of the contributions considered in this paper (as well as in the case of the isoQCD quark-disconnected and of the isospin breaking
contributions on which we are also currently working) we have considered unnecessary to implement a blinded analysis.
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of renormalized matrix elements. Owing to a high statistics determination of the relevant correlators, we achieve a
very precise determination of ZV and ZA, as needed to guarantee a few permille level statistical accuracy of the
quark-connected strange and charm HVP terms at fixed lattice spacing.

II. TIME-MOMENTUM REPRESENTATION

Following our previous works [22, 29–31], we adopt the time momentum representation [32] and, in continuum notation,
evaluate the HVP contribution to the muon anomalous magnetic moment aHVP

µ as

aHVP
µ = 2α2

em

∫ ∞

0

dt t2K(mµt)V (t) , (2)

where t is the Euclidean time and the kernel function K(mµt) is defined as2

K(z) = 2

∫ 1

0

dy(1− y)

[
1− j20

(
z

2

y√
1− y

)]
, j0(y) =

sin (y)

y
. (3)

The Euclidean vector correlator V (t) is defined as

V (t) ≡ 1

3

∑
i=1,2,3

∫
d3x ⟨Ji(x⃗, t)J†

i (0)⟩ = −1

3

∑
i=1,2,3

∫
d3x ⟨Ji(x⃗, t)Ji(0)⟩ , (4)

with Jµ(x) being the e.m. current operator

Jµ(x) ≡
∑

f=u,d,s,c,...

Jµ
f (x) , Jµ

f (x) = qem,f ψf (x)γµψf (x) , (5)

and qem,f the electric charge for the quark flavor f (in units of the positron charge).

The fermionic Wick contractions appearing in the right hand side (r.h.s.) of Eq. (4) give rise to two distinct topologies of
Feynman diagrams, namely to the quark-connected and quark-disconnected contributions. Connected contributions
are flavor diagonal, while the disconnected ones have both diagonal and off-diagonal flavor components. In what
follows we decompose aHVP

µ into the following contributions

aHVP
µ = aHVP

µ (ℓ) + aHVP
µ (s) + aHVP

µ (c) + aHVP
µ (disc.) + . . . , (6)

where the first three terms correspond to the quark-connected contributions of mass degenerate up and down (ℓ)
quarks, and a strange (s) and a charm (c) quark, respectively, while the fourth term represents all quark-disconnected
(flavour diagonal and off-diagonal) contributions3. In Eq. (6) the ellipses corresponds to subleading terms, namely the
isospin breaking effects and the contributions of quarks heavier than the charm in QCD + QED (i.e. the low energy
effective theory of the Standard Model).

Following the analysis of the RBC/UKQCD collaboration [21], each of the terms appearing in Eq. (6) can further
be decomposed by multiplying the integration kernel K(mµt) appearing in Eq. (2) with suitably smoothed Heaviside

2 The leptonic kernel K(z) is proportional to z2 at small values of z and it approaches 1 as z → ∞.

3 Following Ref. [22], the separation of quark connected and disconnected contributions to a given correlator can be expressed in terms
of local correlators by formally introducing, when needed, a suitable number of extra valence flavours (having the same masses as
the physical quarks) and the corresponding ghosts. The different flavor contributions to aHVP

µ , appearing in Eq. (6), can be separately
extracted from local current-current vector correlators computed within the renormalizable mixed action lattice setup described in detail
in Appendix A of Ref. [22], which is briefly recalled also in Appendix A of this work.
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ensemble V/a4 aiso [fm] L [fm] amiso
ℓ amiso

s amiso
c amcr

B64 643 × 128 0.07948(11) 5.09 0.0006669(28) 0.018267(53) 0.23134(52) -0.4138934(46)
B96 963 × 192 0.07948(11) 7.63 0.0006669(28) 0.018267(53) 0.23134(52) -0.4138934(46)

C80 803 × 160 0.06819(14) 5.46 0.0005864(34) 0.016053(67) 0.19849(64) -0.3964534(41)
C112 1123 × 224 0.06819(14) 7.64 0.0005864(34) 0.016053(67) 0.19849(64) -0.3964534(41)

D96 963 × 192 0.056850(90) 5.46 0.0004934(24) 0.013559(39) 0.16474(44) -0.3761252(39)

E112 1123 × 224 0.04892(11) 5.48 0.0004306(23) 0.011787(55) 0.14154(54) -0.3613136(75)

TABLE I. ETMC gauge ensembles used to compute aHVP
µ (s) and aHVP

µ (c). The values of the lattice spacing and of the bare quark
masses are fine-tuned to match our target definition of isoQCD, the one corresponding to the Edinburgh/FLAG consensus [27,
28]. This is done by starting from the simulated gauge ensembles, listed in Table II, and by taking into account the reweighting
factors needed to correct the small mistunings of the simulated bare parameters (see Appendices A and B).

step-functions, namely

aHVP,w
µ = 2α2

em

∫ ∞

0

dt t2K(mµt)Θ
w(t)V (t) w = {SD,W,LD} , (7)

where the time-modulating functions Θw(t) are given by

ΘSD(t) ≡ 1− 1

1 + e−2(t−t0)/∆
, (8)

ΘW(t) ≡ 1

1 + e−2(t−t0)/∆
− 1

1 + e−2(t−t1)/∆
, (9)

ΘLD(t) ≡ 1

1 + e−2(t−t1)/∆
, (10)

with the parameters t0, t1,∆ chosen [21] to be equal to

t0 = 0.4 fm , t1 = 1 fm , ∆ = 0.15 fm . (11)

The resulting time-modulating functions ΘSD,W,LD(t) are shown, e.g., in Fig. 1 of Ref. [22].

In this work, together with the full contributions aHVP
µ (s) and aHVP

µ (c), we also compute the three window observables,

i.e. aHVP,w
µ , w = {SD,W,LD}, for the strange and charm (connected) HVP terms. Our results are presented and

discussed in the next Section.

The light quark-connected contribution, aHVP
µ (ℓ), and all quark-disconnnected contributions, aHVP

µ (disc.), which also
include those arising from the product of two strange/charm e.m. currents, will be given in a forthcoming paper
devoted to the full HVP contribution aHVP

µ within isoQCD, Ref. [33]. In a subsequent paper the leading isospin

breaking effects on aHVP
µ in QCD+QED with u, d, s and c active flavours will be included too [34].

III. THE CONNECTED CONTRIBUTIONS TO aHVP
µ (s) AND aHVP

µ (c)

In this section we present our numerical results for aHVP
µ (f), where f = {s, c}, and for the corresponding window

quantities. The results presented here improve and supersede in accuracy the ones previously obtained in Ref. [22].

With respect to our previous calculation, in addition to the first five Nf = 2 + 1 + 1 isoQCD ensembles listed in
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FIG. 1. The left-panel shows aHVP
µ (s) while the right-panel shows aHVP

µ (c) as functions of tcut. The data correspond to the
ensemble D96, to the TM regularization and to the smallest simulated values of the valence strange and charm masses. A
detailed study of the dependence upon the valence and see quark masses is presented in the Appendices C and D. We observe
that the results are independent of tcut/a within the statistical errors for large enough tcut/a. Similar plots can be shown for
the other simulated values of the lattice spacing, of the valence masses and for the OS regularization.

Table I (with lattice spacings a ≃ {0.079, 0.068, 0.057} fm) we included an additional ensemble, the entry E112 in the
same table, with the finest lattice spacing (a ≃ 0.049 fm) ever simulated by the ETMC. This allowed us to better
control the continuum extrapolations and, consequently, to reduce the corresponding systematic errors. Moreover, to
further improve the accuracy of our results, in this work we computed the corrections needed to fine-tune the bare
parameters of our simulations in order to precisely match our target definition of isoQCD, the Edinburgh/FLAG
consensus [27, 28], corresponding to the following hadronic inputs

M iso
π = 135.0 MeV , M iso

K = 494.6 MeV , M iso
Ds

= 1967 MeV , F iso
π = 130.5 MeV . (12)

The numerical procedure that we used to compute these corrections, on both the input observables and on the target
quantities aHVP

µ (f), is described in the Appedices A, B, C and D to which we refer for all the technical details of
our lattice setup and of our calculation. Here below we present our results by focusing on the main steps of the
analysis, i.e. the extraction of the observables from the lattice correlators, the estimate of FSE and the continuum
extrapolations.

We consider two lattice discretizations of the e.m. currents Jµ,reg
f (see Eq. (5)), with reg = {TM,OS}, corresponding

to the so-called Twisted-Mass (TM) and Osterwalder-Seiler (OS) regularizations, and compute the corresponding
connected Wick contractions of the vector correlators V reg

f (t) (see Eq. (4)) on each gauge ensemble. The two regular-

izations become equivalent in the continuum and differ at fixed cutoff by O(a2) lattice artifacts (see the final part of
Appendix B). From the lattice correlators V reg

f (t) we extracted aHVP,reg
µ (f) by using the following discretized version

of Eq. (2),

aHVP,reg
µ (f ; anmin) = 2α2

em lim
tcut 7→∞

a3
tcut/a∑
n=nmin

w(n)n2K(mµan)V
reg
f (an) ,

aHVP,reg
µ (f) ≡ aHVP,reg

µ (f ; 0) . (13)

In Eq. (13), n = t/a is the Euclidean time in lattice units and the lattice spacing a is intended to be fixed at a = aiso.
We restrict the integral appearing in Eq. (2) to the region [tmin, tcut], indicate explicitly the limit tcut 7→ ∞ and keep
track of the dependence upon tmin = anmin to better control our continuum extrapolations (see below). By setting
the weights w(n) to 3/8 at the end-points, to 3/4 when n−nmin is a multiple of 3 and to 9/8 for the remaining points
(Simpson-3/8 rule), our discretization differs from the corresponding integral by errors of O(a2).

As customary, we take the tcut 7→ ∞ limit of our results by performing a plateaux-analysis of the partial sums as
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FIG. 2. Ratio of aHVP
µ (s) left and aHVP

µ (c) for the two regularizations OS and TM, computed at the lattice spacing a ≃ 0.07 fm
with two linear sizes L ∼ 5.4 fm and L′ ∼ 7.6 fm using the ensembles C80 and C112. For the strange contribution we plot also
the same ratio at a = 0.08 fm with two linear sizes L ∼ 5.1 fm and L′ ∼ 7.6 fm using the ensembles B64 and B96.

functions of tcut. Examples of these analyses are shown in Figure 1.

In order to quantify the FSE on aHVP,reg
µ (f) we perform simulations on two different volumes. More precisely, among

the ensembles listed in Table I, the B64 and the B96 have the same value of the lattice spacing, a ≃ 0.08 fm, but
different physical volumes, L ∼ 5.1 fm and L′ ∼ 7.6 fm. Similarly, the lattice spacing of the ensembles C80 and
C112 is a ≃ 0.07 fm and the corresponding linear sizes are L ∼ 5.4 fm and L′ ∼ 7.6 fm. Figure 2 shows the
ratio of aHVP,reg

µ (f) computed on the two systems of different linear size (and volume). As it can be seen, the FSE

on aHVP,reg
µ (f) are totally negligible w.r.t. the statistical errors. Nevertheless, we use these results to estimate a

systematic error associated with FSE as in [16] according to the formula

∆FSE(f) = max
reg,a

{∣∣aHVP,reg
µ (f, L)− aHVP,reg

µ (f, L′)
∣∣ erf (∣∣aHVP,reg

µ (f, L)− aHVP,reg
µ (f, L′)

∣∣
√
2
√
∆reg(f, L)2 +∆reg(f, L′)2

)}
, (14)

where the maximum is computed over the two regularization and over the lattice spacings a ≃ 0.07 fm and a ≃ 0.08 fm
when available. ∆reg(f, L) is the statistical error of aHVP,reg

µ (f, L) and erf is the error function.

By keeping track of the dependence of our results upon tmin in Eq. (13) we are able to better control our continuum
extrapolations and to safely estimate the associated systematic errors. To this end we perform two different analyses.
In the main branch of the analysis we fix tmin = 0 and perform the continuum extrapolations of our results at fixed
cutoff that in this case, with a small abuse of notation, we simply call aHVP,reg

µ (f). In the second branch of the

analysis we keep tmin fixed in physical units by interpolating the results aHVP,reg
µ (f ; anmin) as functions of the integer

variable nmin. Then we extrapolate the results aHVP,reg
µ (f ; tmin) to the continuum and add the contributions of the

region [0, tmin] of the integral appearing in Eq. (2). These are computed at NNLO in continuum perturbation theory
by using the RHAD [35] software package. Finally we study the dependence upon tmin of the results thus obtained
to better quantify the systematic errors associated with our continuum extrapolations. In the case of the full and SD
contributions and in both branches of the analysis we compute the tree-level O(a2) cutoff effects on our results in
lattice perturbation theory and remove them before performing the continuum extrapolations.

We will provide numerical evidence of the branch of the analysis in which we keep track of the dependence upon tmin

in the case of the SD contributions aHVP,SD
µ (f) which are the more sensitive to cutoff effects (see subsection IIIA).

To extrapolate aHVP
µ (f) ≡ aHVP,reg

µ (f ; tmin = 0) to the continuum limit we consider the following Ansatz,

aHVP,reg
µ (f) = P0 + P reg

1 a2 + P reg
2 a4 , (15)
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FIG. 3. Continuum extrapolation of the full aHVP
µ for the strange (left panel) and charm (right panel). For each panel, we show

the OS lattice regularization as blue circles, the TM regularization in red triangles, the grey lines represent the various fits, the
AIC average of the continuum values is plotted as a green cross and on the left we show the histogram of the continuum values
weighted according to the AIC.

for both the regularizations. We also explore fits in which we remove PTM
2 and POS

2 either together or separately and
fits in which the a4 term is replaced with a2/[log(a2/λ20)]

n for n = 1, 2, 3 and λ0 = 1 fm. We perform all the above
fits for three different data sets: (1) the full data set available, (2) the data set excluding the coarsest lattice spacing
in both regularizations or only in one of them, and (3) the data set excluding the next-to-coarsest lattice spacing in
both regularizations or only in one of them. To find the average over the different results of the analyses of the lattice
data, we make use of the procedure developed in Ref. [36]. Namely, starting from N computations with mean values
xk and uncertainties σk (k = 1, · · · , N), based on the same set of input data, their average x and uncertainty σx are
given by

x =

N∑
k=1

ωk xk , σ2
x = σ2

x,stat + σ2
x,syst , σ2

x,stat =

N∑
k=1

ωk σ
2
k, σ2

x,syst =

N∑
k=1

ωk (xk − x)2 , (16)

where ωk represents the weight associated with the k-th determination. The weights ωk are based on the Akaike
Information Criterion (AIC) [37], namely

ωk ∝ exp[−(χ2 + 2Nparms − 2Ndata)/2] , (17)

where χ2
k is the value of the χ2 variable for the k-th computation, Nparms is the number of free parameters and Ndata

the number of data points4. We show the resulting fits in Fig. 3. The final results, obtained after averaging all the
results of the different analyses by using Eq. (16), are

aHVP
µ (s) = 53.57 (41)stat (48)cont (3)FSE × 10−10 = 53.57(63)× 10−10 , (18)

aHVP
µ (c) = 14.56 (10)stat (9)cont (0)FSE × 10−10 = 14.56 (13)× 10−10 , (19)

where (.)stat represents the statistical error resulting from the continuum extrapolation, computed as σx,stat from
Eq. (16), (.)cont denotes the systematic error due to the continuum limit, calculated as σx,syst from Eq. (16) and (.)FSE
denotes the error associated with the finite volume of our lattice simulations, which is calculated using Eq. (14). All
the errors are summed in quadrature to give the total error.

The results for each window contribution are presented in the next subsections.

4 We have verified that the use of the slightly different definition proposed in Ref. [38], namely ωk ∝ e−(χ2
k+2Nparms−Ndata)/2 leads to

very similar averages and errors as compared with those corresponding to the use of Eq. (17).
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FIG. 4. Continuum extrapolation of the short distance contribution to aHVP
µ for the strange (left panel) and charm (right

panel). For each panel, we show the OS lattice regularization as blue circles, the TM regularization in red triangles, the grey
lines represent the various fits, the AIC average of the continuum values is plotted as a green cross and on the left we show the
histogram of the continuum values weighted according to the AIC.
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FIG. 5. Continuum values of the short distance contribution to aHVP,SD
µ computed as a function of tmin for the strange (left

panel) and charm (right panel). The blue point is computed with the first branch of our analysis, i.e. setting tmin = 0 while the
black points are computed with the second branch, i.e. keeping tmin fixed in physical units and adding the contribution in the
region [0, tmin] that we have computed at NNLO in continuum perturbation theory by using the RHAD [35] software package.

A. The short-distance window contributions aHVP,SD
µ (s) and aHVP,SD

µ (c)

The SD window contribution is obtained by inserting the kernel ΘSD(t) of Eq. (8) in the sum of Eq. (13). As for the full
contribution, we take the tcut 7→ ∞ limit of our results performing a plateaux-analysis of the partial sums as functions
of tcut. Then we subtract from our results the tree-level O(a2) cutoff effects calculated in lattice perturbation theory
(the details of the tree-level calculation can be found in Appendix E of Ref. [22]). We first discuss the first branch
of our analysis, i.e. taking first tmin = 0. The continuum limit and the uncertainty estimate are addressed using the
same strategy used in the full contribution. In Fig. 4 we show the continuum extrapolations and the resulting values
are

aHVP,SD
µ (s) = 9.063 (16)stat (22)cont (1)FSE × 10−10 = 9.063(27)× 10−10 , (20)

aHVP,SD
µ (c) = 11.61 (7)stat (11)cont (0)FSE × 10−10 = 11.61(14)× 10−10 . (21)
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FIG. 6. Continuum extrapolation of the intermediate window contribution to aHVP,W
µ for the strange (left panel) and charm

(right panel). For each panel, we show the OS lattice regularization as blue circles, the TM regularization in red triangles, the
grey lines represent the various fits, the AIC average of the continuum values is plotted as a green cross and on the left we show
the histogram of the continuum values weighted according to the AIC.

The different contributions to the error are estimated as for the full aHVP
µ above. Our previous determination in

Ref. [22] was aHVP,SD
µ (s) = 9.074(64) × 10−10 and aHVP,SD

µ (c) = 11.61(27) × 10−10. The values given here are
compatible with our previous determination and they exhibit a significant reduction of the error.

We now compare the above analysis to our second branch, i.e. when we keep tmin fixed in physical units by interpolating
the results aHVP,SD

µ (f ; anmin) as functions of the integer variable nmin. We then extrapolate those values to the
continuum with the same strategy as in the first analysis branch and then add to the integral appearing in Eq. (2)
the contribution from the region [0, tmin] which we compute at NNLO in continuum perturbation theory by using
the RHAD [35] software package. The results obtained from both branches of our analysis are plotted in Fig. 5. We
observe that for small enough tmin the two branches of our analysis give compatible results, corroborating the result
obtained with the first branch.

B. The intermediate windows aHVP,W
µ (s) and aHVP,W

µ (c)

The intermediate window contribution is obtained by inserting the kernel ΘW(t) of Eq. (9) in the sum of Eq. (13). As
for the full contribution, we take the tcut 7→ ∞ limit of our results performing a plateaux-analysis of the partial sums
as functions of tcut. The continuum extrapolation is done as in the case of the full contributions and the various fits
are shown in Fig. 6. The values obtained are

aHVP,W
µ (s) = 27.16 (15)stat (20)cont (2)FSE × 10−10 = 27.16(25)× 10−10 , (22)

aHVP,W
µ (c) = 2.920 (43)stat (48)cont (0)FSE × 10−10 = 2.920(64)× 10−10 . (23)

Our previous determination in Ref. [22] was aHVP,W
µ (s) = 27.28(20)× 10−10 and aHVP,W

µ (c) = 2.90(12)× 10−10. The
values given here are compatible with our previous determination. We note a reduction of the error for the charm
contribution only. For the strange contribution the total error slightly increased w.r.t. our previous determination.
This is due to the contribution to the statistical errors coming from the uncertainties on the fine-tuning corrections
that, at this level of precision, must be taken into account (see Appendix D and, in particular, Fig. 18).
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FIG. 7. We show the lattice QCD determinations of aHVP,SD
µ (s) (left panel), of aHVP,W

µ (s) (central panel) and of aHVP
µ (s) (right

panel) obtained in this work (in red) and in Refs. [17–19, 21, 22, 29, 39–47]. In all panels the vertical red band corresponds to
our determination and it is displayed to ease the comparison. Note that the BMW-24 result of Ref. [18] for aHVP

µ (s) refers to
a time window defined in the range [0,2.8]fm.

C. The long distance windows aHVP,LD
µ (s) and aHVP,LD

µ (c)

The long-distance window contribution is computed by inserting the kernel ΘLD(t) from Eq. (10) into the summation
of Eq. (13). As for the full contribution, we take the tcut 7→ ∞ limit of our results performing a plateaux-analysis of
the partial sums as functions of tcut. The continuum extrapolation is done as in the case of the full contributions and
the values obtained are

aHVP,LD
µ (s) = 17.32 (29)stat (24)cont (1)FSE × 10−10 = 17.32(38)× 10−10 , (24)

aHVP,LD
µ (c) = 0.01352 (37)stat (68)cont (14)FSE × 10−10 = 0.01352(79)× 10−10 . (25)

By subtracting the values in the continuum of the short distance, Eq. (21), and of the intermediate window, Eq. (23),
from the full contribution, Eq. (19), and by propagating the error in quadrature we get aHVP,LD

µ (s) = 17.35(73)×10−10

and aHVP,LD
µ (c) = 0.03(20)× 10−10, which are consistent with Eq. (25) but with larger errors.

IV. COMPARISON WITH OTHER LATTICE QCD RESULTS AND OUTLOOK

In the isospin symmetric limit of QCD, according to the Edinburgh/FLAG consensus as specified in Eq. (12), we
obtain results for the total, short-distance, intermediate window and long-distance contributions to aHVP

µ coming
from the strange and charm quark-connected diagrams that are listed in Eqs. (18)–(25). In Fig. 7 and Fig. 8, to the
best of our knowledge, we compare5 our results in this work with the corresponding ones by other lattice studies, see

5 The comparison of our results with the other lattice determinations presented in Figs. 7 and 8 has been done by directly using the
results quoted in Refs. [8, 17–19, 21, 22, 29, 39–47] without taking into account the small differences associated with the fact that, in
some cases, slightly different definitions of isoQCD have been adopted. Moreover, the BMW-24 [18] results correspond to the window
[0.2.8] fm, obtained by setting t0 = 2.8 fm in Eq. (8).
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FIG. 8. We show the lattice QCD determinations of aHVP,SD
µ (c) (left panel), of aHVP,W

µ (c) (central panel) and of aHVP
µ (c) (right

panel) obtained in this work (in red) and in Refs. [17–19, 21, 22, 29, 39–47]. In all panels the vertical red band corresponds to
our determination and it is displayed to ease the comparison. Note that the BMW-24 result of Ref. [18] for aHVP

µ (c) refers to
a time window defined in the range [0,2.8]fm.

Refs. [8, 17–19, 21, 22, 29, 39–47].

The results for the short-distance and intermediate window contributions to aHVP
µ (s) and aHVP

µ (c) presented in this
work exhibit in most cases a significant reduction of the uncertainty compared to our previous determination in
Ref. [22]. This is more notable in the case of aHVP,SD

µ (c) as it can be appreciated in the left panel of Fig. 8. Our new

determinations of aHVP,SD
µ (s) and aHVP,W

µ (c) are presently the most precise among the available lattice results.

In addition to this update, we also provide the total and the long-distance quark-connected contributions for aHVP
µ (s)

and aHVP
µ (c), see Eqs. (18)–(19) and Eqs. (24)–(25). Our results for the total quark-connected aHVP

µ (s) and aHVP
µ (c)

are in excellent agreement with all the other lattice determinations. The result we quote for aHVP
µ (c) is among the

most accurate ones.

Being concerned with analyses that give results with typical total errors at the 0.5–1.0% level, we have chosen a definite
prescription for the isosymmetric QCD theory, the Edinburgh/FLAG consensus, and made an effort to consider and
quantify as well as possible all the uncertainties related to the necessary hadronic renormalization inputs and their
feedback on the observables of interest here. The subpercent accuracy level achieved for the observable estimators at
finite lattice spacing has required considering a set of continuum fit Ansatz that go well beyond the basic fit linear in
a2 and are averaged using the AIC, as discussed in Sect. III. A similar kind of analyses will likely be necessary for
several other physical observables that are obtained in lattice studies at comparable accuracy level.

At the level of precision reached now for aHVP
µ (s) and aHVP

µ (c) and their partial window contributions, the evaluation
of the leading isospin breaking contributions within QCD + QED with u, d, s and c active flavours is of course
mandatory. This work is currently in progress by our collaboration using the RM123 method [48]. Similarly in
progress is the evaluation of the light quark-connected contribution, aHVP

µ (ℓ), and the all-flavours quark-disconnected

contribution, aHVP
µ (disc.), as well as of the corresponding leading isospin breaking corrections in QCD+QED.
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Appendix A: Lattice setup and simulation details

In this work, we compute correlation functions, and from these extract the physical observables of interest, on the
gauge ensembles produced by ETMC in isoQCD with Nf = 2 + 1 + 1 flavors of Wilson-Clover twisted-mass quarks
as described in Refs. [23–26]. As already done in Ref. [22], the correlation functions are evaluated in the mixed-action
lattice theory corresponding to the following renormalizable action

S = SYM(g0) + STM(µsim
i ,msim

cr ) + Sghost(m
sim
f ,msim

cr ) + SOS(mf ,mcr) . (A1)
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The gluon action is the mean-field improved Iwasaki one [65],

SYM(g0) =
β

3

∑
x

∑
µ<ν

(
b0
{
1− ReTr

[
U1×1
µν (x)

]}
+ b1

{
1− ReTr

[
U1×2
µν (x)

]})
, (A2)

where β = 6/g20 is the inverse bare QCD gauge coupling, b1 = −0.331, b0 = 1− 8b1, U
1×1
µν (x) is the square plaquette

and U1×2
µν (x) the rectangular one, see Ref. [66].

The Twisted Mass (TM) quark action depends on the bare mass parameters µsim
i with i = {ℓ, σ, δ} and on the critical

mass msim
cr and is given by

STM(µsim
i ,msim

cr ) =
∑
x

Ψ̄ℓ

{
γµ∇̄µ[U ]− iτ3γ5

(
W cl[U ] +msim

cr

)
+ µsim

ℓ

}
Ψℓ

+
∑
x

Ψ̄h

{
γµ∇̄µ[U ]− iτ1γ5

(
W cl[U ] +msim

cr

)
+ µsim

σ + τ3µsim
δ

}
Ψh , (A3)

where ΨT
ℓ = (u, d) is the light-quark TM doublet, ΨT

h = (c, s) is the heavy TM doublet. We refer to Ref. [67] for the
explicit expression of the Wilson-Clover term W cl[U ]. The TM quark action is non-diagonal in the charm-strange
flavor sector.

The Osterwalder-Seiler (OS) action is flavor-diagonal also in the heavy sector and is given by

SOS(mf ,mcr) =
∑
f

∑
x

q̄f
{
γµ∇̄µ[U ]− irfγ5

(
W cl[U ] +mcr

)
+mf

}
qf , (A4)

where the flavor index f = {u, d, s, c} runs over the four lightest quarks and, in isoQCD, we take mu = md = mℓ and
set ru,c = 1 and rd,s = −1.

Finally, we have the ghost action, which is given by

Sghost(m
sim
f ,msim

cr ) =
∑
f

∑
x

ϕ̄f
{
γµ∇̄µ[U ]− irfγ5

(
W cl[U ] +msim

cr

)
+msim

f

}
ϕf , (A5)

where the pseudo-quarks ϕf are the bosonic fields associated with the OS quark fields qf and, therefore, in this case
we set ru,c = 1 and rd,s = −1.

By integrating out all the quarks and pseudo-quarks fields appearing in S, one gets the weight that should be used
to generate the gluon field gauge configurations corresponding to the action given in Eq. (A1). This, up to its
normalization, is given by

P [U ] = e−SYM(g0) ×Dℓ
TM(µsim

ℓ ,msim
cr )Dh

TM(µsim
σ , µsim

δ ,msim
cr )×

∏
f

Df
OS(mf ,mcr)

Df
OS(m

sim
f ,msim

cr )
(A6)

= e−SYM(g0) × Dh
TM(µsim

σ , µsim
δ ,msim

0 )

Ds
OS(m

sim
s ,msim

cr ) Dc
OS(m

sim
c ,msim

cr )
×
∏
f

Df
OS(mf ,m0) , (A7)
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where

Dh
TM(µsim

σ , µsim
δ ,msim

cr ) = det
{
γµ∇̄µ[U ]− iτ1γ5

(
W cl[U ] +msim

cr

)
+ µsim

σ + τ3µsim
δ

}
,

Df
OS(m

sim
f ,msim

cr ) = det
{
γµ∇̄µ[U ]− irfγ5

(
W cl[U ] +msim

cr

)
+msim

f

}
, (A8)

and where, in passing from Eq. (A6) to Eq. (A7), we use the relation

Dℓ
TM(µsim

ℓ ,msim
cr ) = det

{
γµ∇̄µ[U ]− iτ3γ5

(
W cl[U ] +msim

cr

)
+ µsim

ℓ

}
= Du

OS(µ
sim
ℓ ,msim

cr ) Dd
OS(µ

sim
ℓ ,msim

cr ) . (A9)

Some important remarks are in order. Our gluon gauge field configurations are generated with the action SYM(g0) +
STM(µsim

i ,msim
cr ) which, at the price of introducing charm-strange flavor mixing at fixed cutoff, is automatically O(a)-

improved. In addition, it has a real and positive weight, which can thus be interpreted as a probability density and
which is given by

P sim[U ] = e−SYM(g0) ×Dℓ
TM(µsim

ℓ ,msim
cr )Dh

TM(µsim
σ , µsim

δ ,msim
cr ) . (A10)

The OS quarks and the corresponding ghosts are introduced in our setup for two reasons:

• to avoid the technical complications associated with the heavy-flavor mixing at finite cutoff in the calculation of
physical observables which we define in terms of the OS quarks: this is possible because the TM and OS actions
can be matched by relying on the following, renormalization scale and scheme independent, relations

mℓ = µℓ , ms = µσ − ZP

ZS
µδ , mc = µσ +

ZP

ZS
µδ , (A11)

and/or matching physical quantities computed with both the TM and OS actions (see below). Once the matching
is performed, the ratio of the TM and the ghost determinants appearing in Eq. (A7) is a mere lattice artifact
of O(a2),

Dh
TM(µsim

σ , µsim
δ ,msim

0 )

Ds
OS(m

sim
s ,msim

cr ) Dc
OS(m

sim
c ,msim

cr )
= 1 +O(a2) . (A12)

This implies that our mixed-action lattice theory, which is fully unitary in the light-quarks sector, can also be
considered unitary in the heavy-quarks sector up to tiny O(a2) violations;

• to improve the precision of the tuning of the critical mass counterterm mcr and to match our target definition
of isoQCD by fine-tuning the OS quark masses at the values mf = miso

f : this is accomplished by evaluating the

re-weighting factors appearing in Eq. (A6),

Wf (mf ,mcr) =
Df

OS(mf ,mcr)

Df
OS(m

sim
f ,msim

cr )
, (A13)

which are identically equal to one when mf = msim
f and mcr = msim

cr .

In the remaining part of this appendix, we explain how the simulated values of the bare parameters µsim
i and msim

cr

are fixed during the Monte Carlo simulations. The fine-tuning of the bare parameters, i.e. the determination of the
parameters miso

f and mcr, will be the subject of Appendix B.

The critical mass counter-term msim
cr ∼ 1/a is set to a unique value for all flavors [68] and is tuned, at each simulated

value of the bare gauge coupling g0, in order to guarantee automatic O(a)-improvement of physical observables [69, 70].
This is done, as explained in detail in Ref. [23], by computing the Partially Conserved Axial Current (PCAC) quark



16

ensemble β V/a4 asim (fm) aµsim
ℓ Mπ (MeV) MπL

cB211.072.64 1.778 643 × 128 0.08 0.00072 140 3.6
cB211.072.96 1.778 963 × 192 0.08 0.00072 140 5.4
cC211.060.80 1.836 803 × 160 0.07 0.00060 137 3.8
cC211.060.112 1.836 1123 × 224 0.07 0.00060 137 5.3
cD211.054.96 1.900 963 × 192 0.06 0.00054 141 3.9
cE211.044.112 1.960 1123 × 224 0.05 0.00044 136 3.8

cA211.53.24 1.726 243 × 48 0.09 0.00530 360 4.0
cA211.40.24 1.726 243 × 48 0.09 0.00400 315 3.5
cA211.30.32 1.726 323 × 64 0.09 0.00300 272 4.0
cA211.12.48 1.726 483 × 96 0.09 0.00120 174 3.8
cB211.25.48 1.778 483 × 96 0.08 0.0025 260 5.0
cB211.14.64 1.778 643 × 112 0.08 0.0014 194 5.0

TABLE II. We provide the full list of the ETMC gauge ensembles used in this work. These are produced by performing Monte
Carlo simulations with the action SYM(g0) + STM(µsim

i ,msim
0 ) and, therefore, with the probabilistic weight P sim[U ] given in

Eq. (A10), see Refs. [23–26]. The bare parameters of these simulations (reported in the table) are slightly different from the
ones (determined in this work) corresponding to our target definition of isoQCD which, among the other inputs, prescribes
M iso

π = 135 MeV. The ensembles at heavier pion masses, listed in the last six lines of the table, are only used to check
the determination of the fine-tuned isoQCD bare parameters (see Eq. (B22) and the related discussion). The large volumes
ensembles with Mπ ≃ M iso

π , listed in the first six lines of the table, are corrected for the small mistunings of the bare parameters
by applying the reweighting technique thoroughly discussed in Appendix B. The values of the light, strange and charm quark
masses corresponding to our definition of isoQCD (miso

ℓ,s,c), along with the values of the critical mass counterterm (mcr) and the

lattice spacing aiso, which we use for the present calculation of the strange and charm HVP, are reported in Table I. Note the
different naming conventions used in Table I to distinguish the reweighted ensembles from the simulated ones that are listed
here.

mass of the TM light doublet,

2mPCAC(m
sim
f ,m0) =

∑
x⃗

〈
[∂0χ̄ℓγ5γ0τ

1χℓ](t, x⃗)[χ̄ℓγ5τ
1χℓ](0)

〉∑
x⃗ ⟨[χ̄ℓγ5γ0τ1χℓ](t, x⃗)[χ̄ℓγ5γ0τ1χℓ](0)⟩

(A14)

χℓ(x) = exp
(
−iπ

4
γ5τ

3
)
Ψℓ(x) , χ̄ℓ(x) = Ψ̄ℓ(x) exp

(
−iπ

4
γ5τ

3
)
, (A15)

and by determining m0 = msim
cr through the condition amPCAC(m

sim
f ,m0) < 0.1amsim

ℓ /ZA, where m
sim
ℓ = µsim

ℓ is the
bare mass of the light TM doublet and ZA is an estimate, for which even a modest accuracy of several percent is
enough here, of the renormalization constant of the operator χ̄ℓγ5γ0τ

1χℓ.

In the early stages of the Monte Carlo simulations of the various ensembles, at each β = 6/g20 , the value of msim
ℓ is

chosen so as to obtain Mπ as close as possible to the reference value Mπ = 135 MeV. The simulated values of µsim
σ

and µsim
δ , i.e. the bare mass parameters of the heavy TM doublet, are tuned in order to reproduce the renormalization

group invariant (RGI) values MDs/fDs = 7.9(0.1) and msim
c /msim

s = 11.8(0.2). As detailed in Ref. [23], the two
conditions above are first imposed on the mass parameters ms and mc of the valence quark action (A.4), for some
trial values of the sea quark mass parameters µσ and µδ. We then use Eq. (A.11) to set µσ = 1

2 (ms +mc) while µδ

is determined by the equivalent to Eq. (A11), but statistically more precise condition of matching the mass of the
unitary Kaon, i.e. it is obtained from the appropriate two-point correlators with interpolating operators Ψ̄ℓγ5Ψh and
Ψ̄hγ5Ψℓ made out the fields entering in the TM action, to the mass of the valence Kaon evaluated using the OS quark
lattice action with rs = −ru. Note that by following this strategy the renormalization scale and scheme independent
ratio ZP /ZS appearing in Eq. (A11) is not needed. After this matching step, the Monte Carlo simulation is then
repeated at the selected values of µσ and µδ and a set of corresponding gauge configurations is used to re-evaluate ms

and mc. After convergence of this iterative procedure we get the values of msim
s and msim

c as well as of µsim
σ and µsim

δ .
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The essential information on the ETMC ensembles that are relevant for this work are collected in Table II. With
respect to Ref. [22] two new dedicated gauge ensembles, the cE211.044.112 and the cC211.060.112, are included in
the current analysis to improve the control of cutoff and finite-size effects. The cE211.044.112 ensemble corresponds
to our finest lattice spacing a ≈ 0.05 fm. We remind that the cB211.074.96 and the cC211.060.112 ensembles, which
have a spatial lattice size L ≈ 7.6 fm, are used to estimate FSEs by comparing to the cB211.074.64 and cC211.060.80
ensembles of smaller spatial size, respectively. Note that for the ensembles listed in the upper part of Table II, which
are the only ones that are used for the calculation of aHVP

µ (s) and aHVP
µ (c), the pion mass is simulated very close to

the reference value Mπ = 135 MeV. For the evaluation of the quark connected contribution to aHVP
µ (s) (aHVP

µ (c)),
the inversions of the Dirac operator are performed using up to Nhits = 112 (Nhits = 24) spin-diluted spatial stochastic
sources per gauge configuration.

Appendix B: Scheme defining isospin symmetric Nf = 2 + 1 + 1 QCD

In this appendix, we describe in detail the procedure that we use to fine-tune the bare parameters of our lattice action,
i.e. the determination of the parameters mcr, m

iso
ℓ , miso

s and miso
c .

Our target definition of isoQCD is the one corresponding to the Edinburgh/FLAG consensus [27, 28]and is implemented
by using the hadronic inputs given in Eq. (12) to determine, at any fixed value of the strong bare coupling g0, the
bare quark masses miso

f and the lattice spacing aiso.

In appendix A (see also Ref. [23] for more details) we discussed the strategy used to set the bare parameters µsim
i of

the Monte Carlo simulations and, therefore, also the corresponding matched parameters msim
f (see Eq. (A11) and text

below it). Since the conditions that we used to fix msim
f correspond to an alternative possible definition of isoQCD,

that in fact differs from the Edinburgh/FLAG one for corrections that are of the order of isospin breaking effects
on hadronic quantities, it turns out that the differences miso

f − msim
f are very small. Moreover, the tuning of the

chiral symmetry breaking bare parameter msim
cr achieved at the time in which the Monte Carlo simulations have been

performed is very accurate and, consequently, also the difference mcr−msim
cr is very small, of the order of the statistical

errors on mPCAC (see Eq. (A14)). By relying on these observations, we split the re-weighting factors Wf (mf ,mcr)
defined in Eq. (A13) according to

Wf (mf ,mcr) = Ŵf (mcr) W̄f (mf ) , Ŵf (mcr) =
Df

OS(m
sim
f ,mcr)

Df
OS(m

sim
f ,msim

cr )
, W̄f (mf ) =

Df
OS(mf ,mcr)

Df
OS(m

sim
f ,mcr)

, (B1)

and expanded them in powers of the differences

∆mf = mf −msim
f , ∆mcr = mcr −msim

cr , (B2)

which are treated as being of equal order, O(∆m), and we neglect O(∆m2) corrections. Therefore, the formulae used
to evaluate the re-weighting factors are

Ŵf (mcr) = 1 +∆mcrTr

[
(−irfγ5)

1

Dsim
OS

]
+O(∆m)2 , W̄f (mf ) = 1 +∆mfTr

[
1

Dsim
OS

]
+O(∆m)2 , (B3)

where we use the compact operator notation

Dsim
OS = γµ∇̄µ[U ]− irfγ5

(
W cl[U ] +msim

cr

)
+msim

f . (B4)

These formulae have been employed to evaluate the sea quark contribution to the derivatives of physical observables
w.r.t. the critical mass and the bare quark masses, as we are now going to explain.
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Any physical quantity O is calculated by taking its path-integral expectation value according to

O =

〈
O[U ]

∏
f Ŵf (mcr) W̄f (mf )

〉sim
〈∏

f Ŵf (mcr) W̄f (mf )
〉sim , (B5)

where the expectation value ⟨·⟩sim includes the simulated probabilistic weight P sim[U ] given in Eq. (A10). By using
Eq. (B3) and by expanding the previous formula at first order w.r.t. the mass differences we have

O = Osim +∆mcr ∂
sea
cr O +

∑
f

∆mf ∂
sea
f O , (B6)

where Osim = ⟨O[U ]⟩sim while the derivative w.r.t. the sea critical mass is given by

∂seacr O =

〈
O[U ]

∑
f

Tr

[
(−irfγ5)

1

Dsim
OS

]〉sim

− ⟨O[U ]⟩sim
∑
f

〈
Tr

[
(−irfγ5)

1

Dsim
OS

]〉sim

, (B7)

and the derivative w.r.t. the sea mass of the f -flavour is given by

∂seaf O =

〈
O[U ] Tr

[
1

Dsim
OS

]〉sim

− ⟨O[U ]⟩sim
〈
Tr

[
1

Dsim
OS

]〉sim

. (B8)

We use Eqs. (B6)-(B8) to calculate the sea-quark contribution to the variation of a physical quantity O under a small
change ∆mf (or ∆mcr) in the quark mass mf (or the critical mass mcr).

6 So far, our discussion has centered on the
variation of O as the sea-quark masses and critical mass vary, with the valence quark masses entering O held constant.

To explain the procedure we implemented for determining miso
f (for f = ℓ, s, c) and mcr, it is helpful to separate the

dependencies of the observable O on the flavour quark masses (mf ) and the critical mass parameter m0 that arise,
after use of the Wick theorem at fixed gauge configuration, from the fermionic determinant (sea quark effects) and
from the relevant quark propagators (valence quark effects) and to show them explicitly. In fact, in the intermediate
steps for tuning miso

f and mcr (see below), a given mass parameter, for practical reasons, can temporarily assume

different values in the quark determinants (sea quark mass parameters) and in the quark propagators (valence quark
mass parameters, which we label with a superscript “val”). For this reason, we introduce the following notation:

O(mf ,m0|mval
f ,mval

0 ) ≡ Osim(mval
f ,mval

0 ) + (m0 −msim
0 ) ∂seacr O +

∑
f

(mf −msim
f ) ∂seaf O , (B9)

where on the l.h.s. the first set of variables in the argument denotes the sea quark mass parameters and the second set
refers to the valence quark mass parameters, while on the r.h.s. Osim(mval

f ,mval
0 ) denotes O computed with valence

quark mass parameters mval
f and mval

0 at sea quark mass parameters msim
f and msim

cr .

We are now in position to discuss the procedure that in practice we follow to match the Edinburgh/FLAG definition
of isosymmetric QCD. In order to determine the dependence of Osim(mval

f ,mval
0 ) on the valence quark masses mval

f , in

general we perform the inversion of the Dirac operator using a few values of mval
f for all quark flavors, while keeping

the valence critical mass parameter fixed at mval
0 = msim

cr . Instead, in order to determine the mval
0 -dependence, we

6 For the charm sea-quark mass corrections, the results obtained using leading-order reweighting turn out to be too noisy to be used.
We estimate the charm sea-quark mass derivative ∂sea

c from the strange sea-quark mass derivative ∂sea
s , assuming the scaling mc∂sea

c ∼
ms∂sea

s (see the discussion in Appendix D for more details on this point).
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explicitly evaluate the derivative

∂valcr O ≡ ∂mval
0
Osim(mval

f ,mval
0 ) , (B10)

which, after setting mval
0 = m0, allows us to write

O(mf ,m0|mval
f ,m0) = Osim(mval

f ,msim
cr ) + (m0 −msim

0 )
[
∂seacr O + ∂valcr O

]
+
∑
f

(mf −msim
f ) ∂seaf O . (B11)

The fine-tuning of mcr, i.e. the determination of the small mismatch mcr −msim
cr , can be carried out independently

of the tuning of the quark masses mf → miso
f . Indeed, on one hand mcr = a−1wcr(g

2
0 , amf ), as determined from the

condition (A14) in twisted mass lattice QCD, depends very weakly (actually only at O(a) level for mcr) on the values
of the individual quark masses mf . On the other hand the values of msim

f at which the condition (A14) is imposed

are quite close to the target values miso
f and the value of msim

0 determined in the early stages of the Monte Carlo

simulation differ from zero by a small amount, which is always (in modulus) below 0.06msim
ℓ and typically different

from zero by two to six standard deviations [71]. For these reasons, within the linear approximation approach we
follow here, the differences ∆mf , f = ℓ, s, c (see Eq. (B2)) can safely be treated as negligible second order effects in
the determination of ∆mcr = mcr −msim

cr .

Considering O = mPCAC, see Eq. (A14), expressed in the notation of Eq.(B9), and making use of Eq. (B11), we
determine mcr by solving the equation

mPCAC(m
sim
f ;mcr|msim

f ,mcr) = mPCAC(m
sim
f ,msim

cr |msim
f ,msim

cr ) + (mcr −msim
cr )

[
∂seacr + ∂valcr

]
mPCAC = 0 . (B12)

In Figure 9, we present the derivatives of mPCAC with respect to the valence quark (∂valcr mPCAC) and sea quark
(∂seacr mPCAC) critical mass for the cB211.072.64 ensemble. As illustrated, both valence- and sea-quark contributions
are of the same sign. However, the magnitude of the valence-quark contribution is approximately an order of magnitude
smaller than that of the sea-quark contribution. The cB211.072.64 ensemble is the only one for which we have
computed the valence-quark mass derivative ∂valcr mPCAC. For the C-type and D-type ensembles, we focused on
the dominant sea-quark derivative alone, introducing an additional 10% uncertainty to account for the uncomputed
valence-quark term. For the cE211.044.112 ensemble, where neither the valence- nor sea-quark contributions to the
derivative are available, we estimated

[
∂valcr + ∂seacr

]
mPCAC by using the D-type ensemble derivative as a central value.

We then included a systematic uncertainty based on the observed difference between the C-type and D-type ensemble
derivatives.

Having fine-tuned the critical mass by determining the small difference mcr −msim
cr for all lattice spacings employed

in the present analysis, we now proceed to discuss the conditions that determine the quark masses miso
f as needed to

match our definition of isosymmetric QCD given in Eq. (12). To simplify the notation, we set from now on

O(mf |mval
f ) ≡ O(mf ,mcr|mval

f ,mcr) . (B13)

From the theoretical perspective, the solution miso
f=ℓ,s,c of our tuning problem is obtained by solving the following

system of equations

Oi(miso
f |miso

f ) = Oi(msim
f |miso

f ) +
∑
f

[
miso

f −msim
f

]
∂seaf Oi(msim

f |miso
f ) = [Oi]iso , (B14)

where

O =

{
aMπ

aFπ
,
aMK

aFπ
,
aMDs

aFπ

}
, (B15)
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FIG. 9. Sea-quark (blue) and valence-quark (red) contribution to the derivative of the mPCAC mass defined in Eq. (A14), as a
function of the Euclidean time t/a on the cB211.072.64 ensemble.

and then by defining the lattice spacing according to

aiso =
aFπ(m

iso
f |miso

f )

F iso
π

. (B16)

Initialization Step:

i = 0

m
(i)
f = msim

f

a(i) =
[aFπ](m

(i)
f |m(i)

ℓ )

F iso
π

Light Step: i = i + 1[
Mπ
Fπ

](
m

(i)
ℓ ,m

(i−1)
s,c

∣∣∣∣m(i)
ℓ

)
=
(
Mπ
Fπ

)iso
→ m

(i)
ℓ ;

a(i) = [aFπ]

(
m

(i)
ℓ ,m

(i−1)
s,c

∣∣∣∣m(i)
ℓ

)
/F iso

π

Strange Step:[
aMK

a(i)

](
m

(i−1)
ℓ,s,c

∣∣∣∣m(i)
ℓ,s

)
= M iso

K → m
(i)
s

Charm Step:[
aMDs

a(i)

](
m

(i−1)
ℓ,s,c

∣∣∣∣m(i)
s,c

)
= M iso

Ds
→ m

(i)
c

Check Condition:

∥m(i)
f −m

(i−1)
f ∥ ≤ 1.5σ[m

(i−1)
f ]

∥a(i) − a(i−1)∥ ≤ 1.5σ[a(i−1)]

miso
f = m

(i)
f

aiso = a(i)

Yes

No

FIG. 10. Schematic description of the iterative algorithm used to determine miso
f , which is described in detail in the text below.

At each iteration, we update the values of the quark masses and of the lattice spacing until convergence is achieved. In the

convergence condition, shown in the pink box, σ[X] denotes the full (mostly statistical) error on X, for X = m
(i−1)
f , a(i−1).

In practice, we solve the system by implementing an iterative procedure that we are now going to explain in detail.
An illustrative sketch of this procedure is also shown in Fig. (10).
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Before starting the iteration we have the following

Initialization Step : i = 0 , m
(i)
f = msim

f , a(i) ≡
aFπ

(
m

(i)
ℓ,s,c|m

(i)
ℓ

)
F iso
π

, (B17)

where i is the iteration index, and we are using the fact that aFπ does not depend on the strange and charm valence
masses. The iteration then starts and runs on the flavour index that we order from lighter to heavier, namely f = ℓ, s, c.
To improve the tuning of the light quark mass and of the lattice spacing we implement the following

Light Step : i = i+ 1 ,

[
aMπ

aFπ

](
m

(i)
ℓ ,m(i−1)

s,c |m(i)
ℓ

)
=

[
Mπ

Fπ

]iso
−→ m

(i)
ℓ ,

a(i) ≡
aFπ

(
m

(i)
ℓ ,m

(i−1)
s,c |m(i)

ℓ

)
F iso
π

, (B18)

where again we are using the fact that aMπ and aFπ do not depend upon the strange and charm valence masses.

In all steps, as already mentioned in the text above, the valence quark masses are changed by performing the needed
valence-quark propagator inversions required to compute the input observables.

To improve the tuning of the strange quark mass we then implement the following

Strange Step :

[
aMK

a(i)

](
m

(i−1)
ℓ,s,c |m(i)

ℓ,s

)
=M iso

K −→ m(i)
s . (B19)

Here we are using the fact that aMK does not depend upon the charm valence masses.

To improve the tuning of the charm quark mass we then implement the following

Charm Step :

[
aMDs

a(i)

](
m

(i−1)
ℓ,s,c , |m(i)

s,c

)
=M iso

Ds
−→ m(i)

c . (B20)

At the end of the charm-step the lattice spacing and all quark masses are updated, and we check whether we reach
the target precision given by the following convergence condition

Check Condition :

if
∥∥∥m(i)

f −m
(i−1)
f

∥∥∥ ≤ 3

2
σ[m

(i−1)
f ] and

∥∥∥a(i) − a(i−1)
∥∥∥ ≤ 3

2
σ[a(i−1)]

miso
f = m

(i)
f , aiso = a(i) ,

end

else goto light− step (B21)

where σ[m
(i−1)
f ] and σ[a(i−1)] are the statistical errors on the tuned quark masses and on the lattice spacing.

It turns out that at the end of the first iteration, i = 1, the convergence condition is not satisfied. The values of

the simulated sea-quark masses msim
f = m

(0)
f differ from the quark masses m

(1)
f by a few percent. The difference is

between 2 − 7% for m
(1)
ℓ − m

(0)
ℓ , and between 2 − 4% for m

(1)
s − m

(0)
s and m

(1)
c − m

(0)
c . We therefore continue to

i = 2, incorporating the sea-quark mass corrections through the linear-reweighting approximation of Eq. (B9). The
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sea-quark mass corrections to aMπ, aFπ, aMK and aMDs
turn out to be extremely tiny. Compared to the statistical

errors of the uncorrected quantities, they amount to at most 1.5σ for aFπ, about 1σ for aMπ and are completely
negligible for aMK and aMDs

. This allows us to verify the condition in Eq. (B21) and to exit the loop at the end of
the iteration i = 2.

We now give a separate description of the tuning steps described above and present our final results for the quark
masses miso

f .

• Light Step: To determine m
(i)
ℓ and a(i) at each step i, we employ two methods: the direct and global fit

approaches. In the direct approach, starting from the values of aFπ and aMπ on the nearly-physical ensembles
of Table II, we apply Eq. (B9) to vary the light sea-quark mass, while in order to be able to perform the
corresponding change in the valence sector we have produced data for aFπ and aMπ at a second value of
mval

ℓ < msim
ℓ . Since the nearly-physical ensembles of Table II have pion masses which differ from M iso

π at most
by 5 MeV, the valence- and sea-quark mass corrections needed to match the Edinburgh/FLAG conditions are
small, making the linear reweighting approximation reliable. To confirm this, we carry out a second type of
analysis, based on a global fit of aFπ and Mπ/Fπ, exploiting all the ensemble in Table II, included those with
larger-than-physical pion mass. The global-fit analysis has been already discussed in Appendix A (Section 2) of
Ref. [22], to which we refer for additional details. In a nutshell, for this analysis we perform a global fit of aFπ

and amℓ, using all the ensembles of Table II, according to the following ChPT-inspired Ansatz

aFπ(ξπ, β) = aFπ(β) ·
{
1− 2ξπ log(ξπ/ξ

iso
π ) + [P + Pdisc(aFπ(ξπ, β))

2](ξπ − ξisoπ )
}

amℓ(ξπ, β) = amℓ(β)
ξπ
ξisoπ

·
{
1 + 5ξπ log(ξπ/ξ

iso
π ) + (B + a2Bdisc)(ξπ − ξisoπ )

}−1
, (B22)

where β = 6/g20 is the inverse QCD gauge coupling and

ξπ =
M2

π

16π2F 2
π

. (B23)

In Eq. (B22), aFπ(β), amℓ(β), P , Pdisc, B and Bdisc are free-fit parameters (for aFπ(β) and amℓ(β) there is a
different fit parameter for each β). In the global fit method, at each iteration step, the (bare) light quark mass
and the lattice spacing corresponding to the Edinburgh/FLAG definition of isosymmetric QCD are given, for
each value of the coupling β, by

a(i)(β) =
aFπ(β)

F iso
π

, m
(i)
ℓ (β) = mℓ(β) . (B24)

The hadronic observables Fπ and Mπ (and hence ξπ) entering Eq. (B22) are intended as infinite-volume quan-
tities. The needed infinite-volume extrapolation of our lattice data is carried out by employing next-to-leading-
order ChPT, i.e. making use of the Gasser-Leutwyler formulae [72]. We have checked that next-to-leading-order
ChPT nicely describes the spread between the Fπ and Mπ values on the ensembles of Table II produced at
different values of the spatial volume, but equal values of β and quark masses.

The advantage of the global fit approach is that it captures the dependence of both Fπ andMπ/Fπ onmℓ without
relying on leading-order reweighting, instead utilizing gauge ensembles generated away from the physical point
(we emphasize that all data contributing to the global fit in Eq. (B22) were produced at different values of mℓ,
but for each ensemble, the valence light-quark mass is equal to the sea light-quark mass).

In Figure 11, we show the result of the global fit and compare it with that of the direct approach, which as
already stressed, only uses the nearly-physical ensembles of Table II, and relies on leading-order reweighting to
describe the light sea-quark mass dependence of Mπ and Fπ. The reduced χ2 of the global fit to aFπ and amℓ

is very good, about 0.5. The results in the two figures correspond to the global fit performed during the first
light-step iteration (i = 1), where the strange and charm sea-quark masses are held fixed to their simulation
value msim

s,c . As the figures show, the agreement between the two approaches is excellent; the difference between

the two determinations of m
(1)
ℓ and a(1) is smaller than the statistical uncertainty.
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FIG. 11. Results of the global fit to aFπ (top panels) and amℓ (bottom panels). The coloured bands correspond to the best fit
curve obtained in the global fit at each value of β, while the datapoints to our determination of aFπ and (Mπ/Fπ)

2 on each of the
gauge ensembles of Table II. The rightmost plots show a zoom in the region close to the physical point, where, for comparison,
we include the result obtained using the direct approach at the iteration i = 1 (datapoints in brown), and the final result after
the iteration i = 2 (datapoints in sky-blue), i.e. after inserting the charm and strange sea-quark mass corrections making use of
Eq. (B9). In these plots, the vertical and horizontal lines correspond to the point ξπ = ξisoπ . In the bottom-right (top-right) plot
the datapoints in brown, corresponding to the results of the direct approach at the iteration i = 1, are slightly shifted vertically
(horizontally) for better visualization.

Two remarks are relevant here. First, as it is shown by Eq. (B18), during the i-th light-step the strange and
charm quark masses are held fixed to the value obtained at the (i− 1)-th iteration, and therefore for i = 1 they

are set to the simulated values m
(i=1)
s,c = msim

s,c . At the end of the first iteration we do not reach convergence, and
therefore at the second iteration (i = 2), we proceed by adding the strange and charm sea-quark corrections to
Fπ andMπ according to Eq. (B9). These corrections have basically the only effects of increasing the uncertainty
on the determination of mℓ and of the lattice spacing. In the left panels of Figure 11 we add, for comparison,

the results obtained for m
(2)
ℓ and a(2)F iso

π , which then also correspond to our final results for miso
ℓ and aiso.

Indeed, after the second iteration we achieve convergence, and hence exit the loop.

The second comment concerns the corrections to Fπ and Mπ that stem from the small-mistuning, mcr −msim
cr ,

of the critical mass. These corrections may of course be included by adding the second term in Eq. (B11). In
the specific case of Mπ and Fπ, however, to include such corrections, one can also profit from the existence of
the following analytic expression [25], for the leading, O(a0), dependence of Mπ and Fπ on the mPCAC mass

Fπ(mPCAC = 0) = Fπ(mPCAC)
√
1 + (ZAmPCAC/mℓ)2

M2
π(mPCAC = 0) =

M2
π(mPCAC)√

1 + (ZAmPCAC/mℓ)2
, (B25)
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FIG. 12. Left: effective mass of the kaon for the two simulated values of the valence strange quark mass amval
s = 0.018, 0.019 on

the cB211.072.64 ensemble. Right: interpolation of the strange quark mass ams to the physical point defined by MK = M iso
K =

494.6 MeV, indicated in the plot by the vertical dashed line. The interpolation has been performed according to the Ansatz of
Eq. (B26).

where ZA (see Appendix E) is the renormalization constant of the axial current. We have employed the analytic
expressions (B25) to correct Fπ and Mπ on all the ensembles of Table II, included those with higher-than-
physical pion masses, for which a first-principle estimate of the critical mass derivative in Eq. (B11) is not
available to us. We have explicitly checked, in the case of the nearly-physical ensembles of Table II, that the
corrections produced by the analytic expressions above, agree within uncertainties with the numerical results
from the second term in the r.h.s. of Eq. (B11).

• Strange Step: The determination of the strange-quark mass miso
s (as well as of the charm quark mass to be

discussed in the next bullet-point), turns out to be substantially less involved than the determination of miso
ℓ

and of the lattice spacing.

For this analysis, we have employed only the nearly-physical ensemble of Table II, which as already remarked,
are the only ones entering the analysis of aHVP

µ (s) and aHVP
µ (c). At each iteration, to be able to vary the valence

light and strange quark masses we have performed the inversion of the two-point pseudoscalar light-strange
correlator employing two values of mval

s and two values of mval
ℓ (one of these two values is mval

ℓ = msim
ℓ ). The

critical mass corrections due to the small difference mcr −msim
cr have been included by adding the second term

of Eq. (B9) for O =MK . This correction, however, turns out to be much smaller than the statistical errors and
can safely be neglected. During the first iteration i = 1, the light, strange, and charm quark masses are fixed
to their simulation value and therefore no correction has been applied. During the second iteration, i = 2, we
have applied these corrections adding the last term in Eq. (B9). Moreover, all the sea-quark mass corrections

turn out to be extremely tiny and negligible. The only (small) difference between m
(1)
s and m

(2)
s , comes from

the slightly increased uncertainties on the lattice spacing. As already pointed out, at the end of the second
iteration, we achieve convergence and exit the loop.

To illustrate the quality of the effective-mass plateaus, we show in the left panel of Figure 12 the effective mass
of the kaon, determined on the cB211b.072.64 ensemble, for the two different values of the valence strange quark
mass employed for this calculation and for mval

ℓ = msim
ℓ . The panel on the right shows instead the result of the

final strange-mass interpolation needed to impose MK = M iso
K , which we performed according to the following

ChPT-inspired Ansatz

ms = A+BM2
K , (B26)

where A and B are fit parameters.

• Charm Step: For charm mass tuning we have included in the analysis only the nearly-physical ensembles of
Table II. At each iteration, we vary the valence strange and charm quark masses and evaluate the two-point
pseudoscalar strange-charm correlator employing up to two values of mval

s and up to three values of mval
c .7

7 On the cC211.060.112, cD211.054.96 and cE211.044.112 ensembles, we have considered a single value of mval
s , carefully chosen to be
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FIG. 13. Left: effective mass of the Ds meson for the three simulated values of the valence charm quark mass amval
c = 0.18, 0.19

and 0.20 on the cC211.060.112 ensemble. Right: interpolation of the charm quark mass amc to the physical point defined
by MDs = M iso

Ds
= 1967 MeV, indicated in the plot by the vertical dashed line. The interpolation is performed according

to the Ansatz of Eq. (B27) including also a quadratic term proportional to M2
Ds

. However, the results at the physical point

MDs = M iso
Ds

, remain unchanged if a simple linear interpolation to the two rightmost red data points in the figure is performed.

For aMDs , all the sea-quark mass and critical mass corrections, which have been included during the second
iteration step i = 2 making use of Eq. (B9), turn out to be negligible within statistical uncertainty, and, as in

the case of the strange-quark mass, the only difference between m
(1)
c and m

(2)
c comes from the slightly increased

lattice spacing uncertainties.

To illustrate the quality of the effective-mass plateaus, we show in the left panel of Figure 13 the effective mass
of the Ds meson, determined on the cC211.060.112 ensemble, for the three different values of the charm quark
mass and for the single value of the valence quark mass, mval

s ∼ miso
s , that we employed. The right panel plot

shows instead the result of the final interpolation needed to imposeMDs =M iso
Ds

, which was performed according
to the following Ansatz

mc = A+BMDs
, (B27)

where A and B are fit parameters. We have checked, on the ensembles where three different valence charm
quark masses are employed, namely the cC211.060.112, the cD211.054.96, and the cE211.044.112 ensemble, that
the inclusion of a quadratic term proportional to M2

Ds
in the interpolation, produces a negligible change in the

value of m
(i)
c .

Having described all the tuning steps of the iterative procedure that allow us to match the Edinburgh/FLAG isosym-
metric world, Table I collects the resulting values of the lattice spacing aiso, the critical mass amcr and the quark
masses amiso

ℓ,s,c for the four lattice spacings used in the calculation of aHVP
µ (s) and aHVP

µ (c). The values quoted in

Table I for the lattice spacing have slightly larger uncertainties than the ones given in Ref. [73], due to the improved
analysis of the sea-quark mistuning effects. However, the slightly increased uncertainty on the lattice spacing does
not have any impact on the final values and errors quoted in Ref. [73].

We conclude this section with a brief description of the two discretized versions of the electromagnetic current (called
in the main text the TM and the OS currents) employed for the evaluation of aHVP

µ (s) and aHVP
µ (c). To define the TM

bilinear operators, starting from the action in Eq. (A1), we introduce additional valence quark fields with no feedback
on the gauge effective action. This amounts to i) including, for each quark field qf , f = {u, d, s, c} appearing in
Eq. (A4), a replica field q′f with the same soft mass, m′

f = mf , but opposite value of the Wilson parameter, r′f = −rf

very close to m
(1)
s ∼ m

(2)
s = miso

s . We have checked, using our determination of the slope ∂MDs/∂m
val
s on the ensembles where results

at two different values of the valence strange-quark mass are available, that the small difference mval
s − m

(i)
s , produces a completely

negligible impact on the determination of m
(i)
c .
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and hence opposite critical mass, mcr(r
′
f ) = −mcr(rf ); and ii) adding the corresponding ghost field ϕ′f , in order to

remove any contributions of these extra fields to the fermionic determinants, i.e. to the lattice gauge effective action.
In summary, in order to define the TM bilinears we add to the action S of Eq. (A1) the action term 8

Srep =
∑
f

∑
x

q̄′f
{
γµ∇̄µ[U ] + irfγ5

(
W cl[U ] +mcr

)
+mf

}
q′f+

+
∑
f

∑
x

ϕ̄′f
{
γµ∇̄µ[U ] + irfγ5

(
W cl[U ] +mcr

)
+mf

}
ϕ′f , (B28)

i.e. we work with the mixed lattice action Smixed = S + Srep. The TM quark bilinears are then defined as

JTM
Γ (x) = q̄f (x)Γq

′
f (x) , (B29)

with Γ a generic Dirac matrix, and in particular the TM electromagnetic current is given by

Jµ,TM
f (x) = ZAqem,f q̄f (x)γ

µq′f (x) , f = {s, c} , (B30)

where ZA is the renormalization constant of the axial current. To define the corresponding OS version, we do not
need in principle to introduce additional replica valence fields, since the OS bilinears are constructed in terms of the
quark fields qf entering the OS quark action defined in Eq. (A4). However, in order to single out the connected part
of a two-point correlation function of OS bilinears, we find it convenient to add to the action S of Eq. (A1) the valence
quark action term of Eq. (B28) with the replacement r′f → −r′f = −rf . In terms of the quark fields qf and of the

replica valence fields q′f , with r
′
f = rf , the OS electromagnetic current is thus given by

Jµ,OS
f (x) = ZV qem,f q̄f (x)γ

µq′f (x) , f = {s, c} , (B31)

where ZV is the renormalization constant of the vector current (see Appendix E). The vector correlators V TM
f and

V OS
f entering in the rh.s. of Eq. (13) are then defined as

V TM
f (t) ≡ 1

3

∑
x

∑
i=1,2,3

〈
J i,TM
f (x)[J i,TM

f ]†(0)
〉
,

V OS
f (t) ≡ 1

3

∑
x

∑
i=1,2,3

〈
J i,OS
f (x)[J i,OS

f ]†(0)
〉
, (B32)

Two-point correlation functions constructed in terms of the TM or OS bilinears, such as V TM
f (t) and V OS

f (t), produce

equivalent results in the continuum limit [68]. At non-zero values of the lattice spacing a, they however differ by
O(a2) UV cutoff effects and, as explained in the main text, we exploit this fact to perform joint fits of the results
obtained with the two regularizations while enforcing a common continuum-limit.

Appendix C: Evaluating the HVP at the isoQCD point

To evaluate the strange and charm HVP, along with the corresponding SD, LD and W contributions, at the Edin-
burgh/FLAG isoQCD point (discussed in Appendix B), we exploited all gauge ensembles in the upper part of Table II.
For each ensemble, we performed the inversions of the vector TM and OS correlators of Eq. (B32), for different valence
quark masses mval

s and mval
c , while fixing sea-quark masses and critical mass to msim

f and msim
cr , respectively. For each

8 Note the different sign, as compared to Eq. (A4), in front of the critical Wilson term with coefficient iγ5, which is due to r′f = −rf .
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β, we carefully chose two values for mval
s and three values for mval

c , in such a way that they are always rather close to
miso

s and miso
c .

Adopting the notation of Eq. (B9), we first performed the required valence quark-mass interpolation of both
aHVP,w
µ (s)(msim

f ,msim
cr |mval

s ,msim
cr ) and aHVP,w

µ (c)(msim
f ,msim

cr |mval
c ,msim

cr ), using the following Ansatz

aHVP,w
µ (c)(msim

f ,msim
cr |mval

c ,msim
cr ) = aHVP,w

µ (c)(msim
f ,msim

cr |miso
c ,msim

cr ) ·
[
1 +Aw

c

(
mval

c −miso
c

)
+Bw

c

(
mval

c −miso
c

)2]
aHVP,w
µ (s)(msim

f ,msim
cr |mval

s ,msim
cr ) = aHVP,w

µ (s)(msim
f ,msim

cr |miso
s ,msim

cr ) ·
[
1 +Aw

s

(
mval

s −miso
s

)]
, (C1)

where Aw
s , A

w
c and Bw

c , as well as aHVP,w
µ (s)(msim

f ,msim
cr |miso

s ,msim
cr ) and aHVP,w

µ (c)(msim
f ,msim

cr |miso
c ,msim

cr ), are fit
parameters.

After interpolating mval
s → miso

s , and mval
c → miso

c , we applied the corrections needed to incorporate the effects of
the fine-tuning of the critical mass and of the sea-quark mass parameters. As discussed in Appendix B, leading-order
reweighting has been used to evaluate the sea-quark corrections, ultimately allowing us to determine the HVP at our
isosymmetric point of reference by using Eq. (B11) with mval

f = miso
f and

O =
{
aHVP,w
µ (s), aHVP,w

µ (c)
}
. (C2)

Appendix D provides a detailed discussion of the evaluation of the sea-quark mass and critical mass derivatives
appearing in the r.h.s. of Eq. (B11).

Appendix D: Estimating effects of mistunings of simulation parameters

In this section, we give some details on the calculation of the sea-quark mass corrections to the physical observ-
ables O relevant for the present analysis, which we performed employing the leading-order reweighting discussed in
Appendix B, i.e. making use of the formula in Eq. (B6).

The observables O, of which we discuss the sea-quark mass corrections in this appendix, are:

O =
{
Mπ, Fπ,MK ,MDs , a

HVP
µ (s), aHVP

µ (c)
}
. (D1)

We start from the observables used to determine the quark masses miso
f and to set the scale, namely Mπ, Fπ,MK and

MDs . In Figure 14 we show the results for the light and strange sea-quark mass derivatives of the effective pion mass
and decay constant, ∂seaℓ,sM

eff
π (t) and ∂seaℓ,s F

eff
π (t), as obtained on the cB211.072.64 ensemble. As the figure shows, the

quark-mass derivative, as expected, strongly decreases as the quark mass increases (i.e. going from light to strange).
The light-quark derivative is in absolute value larger for Fπ than forMπ, by a factor of about 5. The largest mistuning
∆mℓ = mℓ −msim

f occurs on the cB211.072.64 and cD211.054.96 ensembles, for which ∆mℓ ≃ 0.16 MeV, which then
gives rise to a correction to Fπ of about 0.3 − 0.4 MeV, and smaller than 0.1 MeV for Mπ. The signal-to-noise in
the strange-quark mass derivative is sensibly smaller than in the light-quark one. The typical size of the derivatives
are |∂seas Mπ| ∼ 0.08 and |∂seas Fπ| ∼ 0.12. The largest mistuning ∆ms = ms − msim

s occurs on the cC211.060.80
ensemble where ∆ms ∼ −1.7 MeV, which produces on this ensemble a correction to Mπ of about 0.13 MeV and of
about 0.2 MeV to Fπ, i.e. at the level of 0.1% and 0.15%, respectively. For the charm quark, as already mentioned in
footnote 6, the sea-quark derivatives turn out to be too noisy to provide a useful determination of the corresponding
mistuning correction. For all observables O, we include in the analysis an estimate of the derivative ∂seac O, assuming
the following approximate scaling of the sea quark mass derivative with the quark mass

∂seac O ≃ ms

mc
∂seas O . (D2)
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FIG. 14. The light and strange sea-quark mass derivatives of the effective pion mass (left) and of the effective pion decay
constant (right), as a function of the Euclidean time on the cB211.072.64 ensemble.
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FIG. 15. The mPCAC-derivative of the effective pion mass (left) and of the effective pion decay constant (right) on the
cC211.060.80 ensemble. The magenta bands correspond to the predictions of the analytic formulae of Eq. (B25).

The 1/mc suppression of the derivative with respect to the sea quark mass of a generic observable O is expected in
the (approximatively well realized) limit mc ≫ ms ∼ ΛQCD on each gauge background at finite lattice spacing from
its analytic expressionEq. (B8). Actually an even stronger suppression, as 1/m2

c , is predicted in the same limit up to
lattice artifacts by perturbation theory. As for the critical mass corrections to Fπ and Mπ, as detailed in Appendix B,
we rely on the analytic formulae of Eq. (B25). In Figure 15, we however compare on the cC211.060.80 ensemble, for
which the difference ∆mcr = mcr − msim

cr is maximal, the results obtained using Eq. (B25) with that obtained by
evaluating numerically the second term in Eq. (B11) with O =Mπ, Fπ. Specifically, in the figure we show the results
for

∂mPCAC
O ≡ ∂crO

∂crmPCAC
, O = {Mπ, Fπ} , (D3)

where ∂cr ≡ ∂seacr + ∂valcr (see Eq. (B11)). 9 As the figure shows, the result of the numerical estimates and that of the
analytic formulae of Eq. (B25) are in fairly good agreement. We now move to the case of MK and MDs

. In Figure 16
we show the results for the light and strange sea-quark mass derivatives of the effective mass of the kaon and of the Ds

meson, as obtained on the cB211.072.64 ensemble. All derivatives turn out to be very small and compatible with zero
within a few standard deviations. For the kaon mass MK , the typical magnitude of the derivatives are: |∂ℓMK | ∼ 0.2,
|∂sMK | ∼ 0.1. For the Ds-meson they are: |∂ℓMDs

| ∼ 0.5, |∂sMDs
| ∼ 0.3. The largest mistunings that we have are

∆mℓ ≃ 0.16 MeV, ∆ms ≃ −1.7 MeV. The largest correction to the kaon mass (including those from the fine-tuning
of the critical mass, and from charm sea-quark mass mistuning estimated employing Eq. (D2)) is of about 0.2 MeV,
while it is of about 0.5 MeV for MDs

. In both cases, the corrections are smaller than our statistical uncertainties,
hence completely negligible.

9 The valence-quark mass derivative ∂val
cr contribution to both terms in the numerator and denominator of Eq. (D3), which we estimated

on the cB211.072.64 ensemble, turns out to be negligible within errors w.r.t. to the sea-quark contribution, and has been neglected.
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Finally, we discuss the mistuning corrections on aHVP
µ (s) and aHVP

µ (c). In this case, there are two different types of
corrections. The first is an indirect one that it is caused by the feedback on the HVP due to a change of the lattice
spacing (through which we define the physical time t in the integrand of Eq. (2)) and of the isoQCD quark masses
miso

f . These corrections can be applied from scratch by evaluating the HVP using the values of the lattice spacing

aiso and of the quark masses miso
f given in Table I. The second source of corrections, which we discuss now, arises

from the sea-quark mass and critical mass corrections to the vector correlators V reg
s (t) and V reg

c (t) of Eq. (B32), and
we define the following partial derivatives of aHVP

µ (s) and aHVP
µ (c) w.r.t. to the x-flavour sea quark mass and the (sea

plus valence) critical quark mass at fixed lattice spacing a = aiso:

∂sea−part
x aHVP

µ (f) = 2α2
ema

3

T/(2a)∑
n=1

w(n)n2K(amµn) ∂
sea−part
x V reg

f (na) , f = s, c , x = ℓ, s, c,

∂partcr aHVP
µ (f) = 2α2

ema
3

T/(2a)∑
n=1

w(n)n2K(amµn)
[
∂seacr + ∂valcr

]
V reg
f (na) , f = s, c . (D4)

where n = t/a = 1, . . . , T/(2a) is the Euclidean time in lattice units. The partial derivatives of the SD, W and LD
contributions can be defined analogously.

In Figure 17, we present the results for the light and strange (partial) sea-quark mass derivatives of aHVP
µ (s) and

aHVP
µ (c) as obtained on the cB211.072.64 and cD211.054.96 ensembles. The results correspond to reg =TM, but

within uncertainties no dependence of the derivatives on the regularization has been observed. As the figure shows
the derivatives are sensibly larger for aHVP

µ (s) than for aHVP
µ (c). The typical size of the light sea-quark mass derivative
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is for the strange HVP |∂sea−part
ℓ aHVP

µ (s)| ∼ 0.2−0.3 MeV−1 while it is of about |∂sea−part
ℓ aHVP

µ (c)| ∼ 0−0.015 MeV−1

for the charm HVP. Considering that the largest light sea-quark mistuning is ∆mℓ ∼ 0.16 MeV, the corresponding
corrections to the strange HVP, aHVP

µ (s), turn out to be smaller than 0.1% (although this is only slightly smaller than

our statistical errors on aHVP
µ (s)), and completely negligible for aHVP

µ (c). The corrections due to the fine-tuning of
the critical mass are of a similar magnitude to those resulting from light sea-quark mass mistuning effects.

As for the strange sea-quark mass derivatives, they are of order |∂sea−part
s aHVP

µ (s)| ∼ 0.05 − 0.1 MeV−1 and

|∂sea−part
c aHVP

µ (s)| ∼ 0.005 − 0.01 MeV−1. The largest strange sea-quark mass mistuning is ∆ms ∼ −1.7 MeV.

For the charm HVP, aHVP
µ (c), the size of these corrections is still below (on some ensembles however comparable

to) our statistical uncertainties. For the strange HVP, aHVP
µ (s), the contribution is significantly larger—on some

ensembles, up to twice the size of our statistical uncertainties in aHVP
µ (s). After accounting for the charm sea-quark

mass mistuning effect, estimated using Eq. (D2), the errors on aHVP
µ (s) (as well as on aHVP,W

µ ) increased. This almost
completely offset the improvements in the intermediate strange window resulting from the addition of a new lattice
spacing ensemble (cE211.044.112) and the larger statistics used in this calculation compared to our previous results
in Ref. [22]. In Figure 18 we show, for each β, the comparison between the values of aHVP

µ (s) and aHVP
µ (c) obtained

before and after applying the corrections due to the mistuning of sea-quark masses and critical mass.

We conclude this section with a comment on the corrections to the scale-invariant RCs ZV and ZA (which enter
the determination of the strange and charm HVP), due to sea-quark mass and critical mass mistuning effects. For
these two quantities the corrections turned out to be extremely tiny, reaching at most, on the coarser ensembles, the
level of 0.005-0.01%. For ZV , which has an astonishing precision < 0.002%, the correction is however larger than the
statistical uncertainty. The central values and errors of ZV and ZA, that we provide in Appendix E, are inclusive of
the corrections due to mistuning effects.

Appendix E: Hadronic determination of ZV and ZA

In order to reach a high precision determination of the two scale-invariant RCs ZV and ZA we employ the hadronic
method, already adopted in Ref. [22], based on the Ward identity (WI) and universality of renormalized correlation
functions, combined with a high statistics determination of the relevant bare correlators. This allows us to obtain on
the ensembles of Table I, after correcting for sea-quark mass and critical mass mistuning effects (see Appendix D), an
accuracy of ≃ 0.03% for ZA and of ≃ 0.01% for ZV , thus reaching the desired accuracy. We collect in Table III the
values of ZA and ZV used in this work for each of the ETMC ensembles of Table I.
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ensemble ZV ZA

B64 0.706354(54) 0.74296(19)
B96 0.706406(52) 0.74261(19)
C80 0.725440(33) 0.75814(13)
C112 0.725458(31) 0.75824(15)
D96 0.744132(31) 0.77367(10)
E112 0.758238(18) 0.78548(9)

TABLE III. The values of ZV and ZA used in this work for each of the ETMC ensembles of Table I, determined by employing
the WI-based hadronic method described in Appendix B of Ref. [22].
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