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ABSTRACT

Reconstructing charged particle tracks is a fundamental task in modern collider experiments. The
unprecedented particle multiplicities expected at the High-Luminosity Large Hadron Collider pose
significant challenges for track reconstruction, where traditional algorithms become computationally
infeasible. To address this challenge, we present a novel learned approach to track reconstruction
that adapts recent advances in computer vision and object detection. Our architecture combines a
Transformer hit filtering network with a MaskFormer reconstruction model that jointly optimises
hit assignments and the estimation of the charged particles’ properties. Evaluated on the TrackML
dataset, our best performing model achieves state-of-the-art tracking performance with 97% efficiency
for a fake rate of 0.6%, and inference times of 100ms. Our tunable approach enables specialisation
for specific applications like triggering systems, while its underlying principles can be extended to
other reconstruction challenges in high energy physics. This work demonstrates the potential of
modern deep learning architectures to address emerging computational challenges in particle physics
while maintaining the precision required for groundbreaking physics analysis.
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1 Introduction

Particle colliders such as the Large Hadron Collider (LHC) [1] at CERN have deepened our understanding of fun-
damental physics through the analysis of high-energy proton-proton (pp) collisions. These interactions generate a
multitude of subatomic particles that propagate outward from the collision point through surrounding detectors. The
trajectories of charged particles (tracks) are an essential observable in general purpose collider experiments, as they
reveal the presence of the charged particles produced in a collision and provide information about their properties, such
as momenta and charge [2, 3]. The accurate measurement of charged particles is crucial for many downstream tasks,
such as lepton reconstruction [4–7], hadronic τ reconstruction [8, 9], particle flow jet algorithms [10, 11], and jet
flavour identification [12, 13]. Collectively, these processes underpin nearly all analyses conducted at LHC experiments,
for example searches for and precision measurements of rare processes such as Higgs boson pair production [14, 15].

Particle trajectories are observed via the interaction of charged particles with sensitive detector elements in specialised
silicon tracking detectors. In general purpose collider experiments, these detectors are arranged around the collision
region in concentric cylindrical (barrel) layers, with disks (endcaps) at each open end. The resulting discrete 3-
dimensional position measurements are referred to as hits. Tracks are formed by grouping compatible hits and extracting
the track parameters via fitting a trajectory to the assigned hits. The complexity of track reconstruction increases with
the particle and hit multiplicity, both of which will increase dramatically with the planned High-Luminosity LHC
(HL-LHC) upgrade [16]. The HL-LHC is designed to increase the LHC’s collision rate by up to a factor of seven,
enabling up to 200 simultaneous pp interactions and generating O(10k) particles with O(100k) hits per event. This
dramatic increase in hit multiplicity presents significant challenges for conventional approaches to track reconstruction,
which exhibit scaling behaviour that is worse than quadratic in the number of hits and leads to prohibitive computing
resource requirements [17, 18]. Under HL-LHC conditions, track reconstruction is expected to dominate the CPU
budget for offline track reconstruction at ATLAS [19, 20], making the development of fast and scalable tracking
algorithms critical to ensuring feasible computing demands. These new approaches must not only be computationally
efficient but also maintain or improve physics performance in this demanding new environment.

Aside from general purpose collider experiments, specialised LHC detectors like LHCb [21], dedicated to heavy
flavour physics, and ALICE [22], which focuses on heavy-ion collisions, as well as experiments beyond the LHC
such as Mu3e [23], also depend on precise tracking capabilities to resolve particle trajectories in high-density and
low-momentum environments. These experiments, each with unique detector configurations and tracking requirements,
highlight the need for flexible community-wide solutions that can easily be adapted to a range of particle densities,
momenta, and detector geometries.

In this work, we introduce a novel method for fast and tunable track reconstruction using MaskFormer [24], a
Transformer-based architecture [25] originally developed for image object detection. Our approach processes a set
of input hits and reconstructs trajectories by simultaneously assigning hits to tracks and estimating track parameters,
removing the need for dedicated off-model pre- and post-processing steps. By leveraging the efficiency and scalability
of Transformers, we address the computational bottlenecks of traditional algorithms and meet the stringent demands of
the HL-LHC environment. Our model achieves state-of-the-art performance in both accuracy and speed, successfully
reconstructing particles with pT > 600 MeV – a notable improvement over existing machine learning (ML) approaches.
It also naturally allows for multiple assignment of hits to tracks. Previous success in applying Transformer-based
models to vertex reconstruction [26] further demonstrates the potential of this architecture to generalize across varied
particle physics reconstruction tasks.

Our approach relies on a stand-alone hit filtering stage to reduce the input hit multiplicity before passing them to the
track reconstruction MaskFormer. This filtering step is conceptually simple and computationally efficient, and is able
to effectively replace the graph construction stage used in the previous approaches described in Section 2. Given the
strong performance of the Transformer-based hit filtering model, we anticipate that this approach may benefit other
approaches to track reconstruction, including traditional algorithms.

The structure of this article is as follows. In Section 2, we present an overview of related research. Section 3 details
the model architecture, and Section 4 outlines the simulated samples and training procedures used. The results are
discussed in Section 5, followed by the conclusions in Section 6.

2 Related Work

GNN4ITK Graph Neural Networks (GNNs) [27] have emerged as a leading approach to address the computational
challenges of track reconstruction at the HL-LHC. The Exa.TrkX collaboration has developed a multi-stage GNN
pipeline for processing detector hits called GNN4ITK [28, 29]. The method begins with a graph construction
preprocessing step to define initial node connectivity. A GNN then scores the edges in this graph, and edge filtering
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is applied to low-probability connections. Finally, track candidates are extracted in a postprocessing step through an
iterative graph segmentation algorithm. While this pipeline demonstrates promising performance and scalability, the
initial graph construction stage remains a computational bottleneck.

HGNN Hierarchical Graph Neural Networks (HGNN) [30] have been proposed as an alternative to the iterative graph
segmentation approach used by GNN4ITK. The method groups nodes into super-nodes, enlarging the receptive field of
the graph convolutions and allowing message passing across disconnected graph components. While HGNN improves
track reconstruction efficiency, it has a high fake rate that would have to be reduced via additional post-processing and
an increased computational cost, both of which raise concerns about its viability for HL-LHC deployment.

Object Condensation Object condensation (OC) [31] is an approach to track reconstruction in which hits are clustered
in a learned latent space. The method selects representative hits to characterise entire tracks, with remaining hits
assigned through an off-model clustering algorithm. Similar to other approaches, OC relies on an edge classification
step to reduce hit connections. We hypothesise that OC’s reliance on single representative hits to characterise entire
tracks may limit its effectiveness, as it couples hit feature extraction and track reconstruction stages. Additionally, the
assignment of hits to tracks is not explicitly provided by the model, and the current clustering-based assignment does
not support the assignment of hits to multiple tracks.

Experimental Transformer approaches Transformers have been explored for track reconstruction in previous works
[32–34], which either directly classify hits or rely on modelling tracks as a sequence of hits and training autoregressive
models. Detailed comparisons with these approaches are omitted as they have not yet been validated on the full
TrackML dataset or do not fully characterise tracking performance in terms of efficiency, fake-rate and timing.

Computer Vision Recent advancements in computer vision, particularly in object detection and instance segmentation,
offer a promising alternative to the geometric deep learning techniques used by existing ML-based track reconstruction
efforts. In computer vision, object detection has evolved from simple bounding box prediction [35, 36] to sophisticated
pixel-level instance segmentation [24, 37]. The MaskFormer architecture [24, 38], built on Transformer networks [25],
has been particularly successful in simultaneously handling semantic and instance segmentation tasks. This approach
distinguishes multiple instances of the same object class through unique instance masks while maintaining shared class
labels —- a capability directly relevant to particle track reconstruction. By replacing the image pixels with an unordered
set of hits and the image-depicted objects with charged particle tracks, we can leverage the MaskFormer architecture to
address the challenges of track reconstruction.

MaskFormers in High Energy Physics The utility of computer vision approaches in particle physics was recently
demonstrated in Ref. [26], which successfully adapted the MaskFormer architecture to reconstruct displaced secondary
decay vertices. While particle physics tasks have traditionally relied on specialised architectures designed for specific
problems, this work showed that a single versatile architecture can effectively handle unordered sets of particle physics
data, successfully identifying and characterising multiple vertices within jets. We extend this by applying the same
architectural foundation to the distinct challenge of track reconstruction. The successful application of a common
architecture to two different reconstruction tasks -— vertex finding and track reconstruction —- suggests a promising
path toward more unified approaches in particle physics reconstruction, potentially reducing the field’s reliance on
task-specific solutions.

Table 1 summarises the key aspects of the various ML-based approaches to charged particle track reconstruction
discussed in this section, including a comparison of the minimum transverse momentum (pmin

T ) and maximum
pseudorapidity (η) used to define target particles (for more information see Section 4).

pmin
T max |η| Layers Used Preprocessing Postprocessing

GNN4ITK [29] 1GeV 4.0 Pixel + strip Edge classification Graph traversal
HGNN [30] 1GeV 4.0 Pixel + strip Edge classification GMPool [30]
OC [31] 900MeV 4.0 Pixel Edge classification Clustering
This Work 600MeV 2.5 Pixel Hit filtering None

Table 1: Comparison of ML-based approaches to charged particle track reconstruction. Tracking detectors at general
purpose collider experiments are composed of pixel and strip layers, see Ref. [39] for more information. More
information about the dataset can be found in Section 4.1.
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3 Model Architecture

3.1 Leveraging Transformers

Transformers [25] have revolutionised natural language processing and computer vision tasks, offering a scalable and
efficient architecture for processing sequential data. However, due to their quadratic complexity in the number of input
tokens, custom GNN-based architectures have so far been preferred for particle tracking tasks [29, 31].

To neutralise the quadratic complexity of Transformers, we hypothesise that hits only need to attend to nearby hits in
the azimuthal angle ϕ, and apply this powerful prior of ϕ-locality by ordering hits in ϕ and applying sliding window
attention [40] with a window size w. This results in O(M × w) complexity scaling, which is linear in the number of
input hits M . To allow hits to communicate around the ±π boundary, the first w/2 hits are appended to the end of the
sequence and vice versa. We further benefit from the fused attention kernels provided by FlashAttention2 [41] for
efficient computation, and SwiGLU activation [42] for improved performance.

This approach allows us to efficiently encode 60k pixel hits in 25ms on a single GPU, making it suitable for low-latency
trigger-level track reconstruction at the HL-LHC. The encoder is used in both the hit filtering and track reconstruction
stages of our model, as described in the following sections. Detailed timing results can be found in Section 5.3.

3.2 Hit Filtering Model

The large number of hits present in each event makes it computationally infeasible to feed all hits directly into the
tracking model. As described in Section 2, previous approaches to ML-based track reconstruction have required a
graph construction stage based on geometric constraints and/or edge classification to reduce the input hit multiplicities.
In contrast, we introduce a Transformer-based hit filtering model to reduce the input hit multiplicities by directly
predicting whether each hit is noise or signal. Noise hits are defined as hits belonging to particles that we do not wish to
reconstruct, for example, particles below a pT threshold or outside a specified pseudorapidity range, in addition to the
intrinsic noise hits which do not belong to any simulation-level particle.

The hit filtering model is composed of an embedding layer, a Transformer encoder, and a dense hit-level classifier. In
the model, the input features of each hit are first passed through an embedding layer to produce a d = 256-dimensional
representation for each of the M hits. Positional encodings are applied [25] in the cylindrical hit coordinates (see
Section 4.1) to allow the self-attention (SA) mechanism to readily identify nearby hits. In particular, a cyclic positional
encoding [43] is used for ϕ. The initial hit embeddings are then passed into an efficient SA Transformer encoder as
described in Section 3.1. The encoder has twelve layers (eight for the 1GeV model, see Section 4), model dimension
d, and feed-forward dimension 2d. A window size of w = 1024 is used for the sliding window attention. The output
embeddings are classified using a dense network with three hidden layers.

The hit stand-alone filtering step offers broad applicability beyond our MaskFormer-based approach to track recon-
struction. It could be integrated as a pre-processing step into other traditional and ML-based tracking pipelines, or
repurposed for other tasks such as pileup mitigation.

3.3 Track Reconstruction Model

The tracking model follows an encoder-decoder architecture as shown in Fig. 1, with the encoder processing the input
hits and the decoder reconstructing the tracks. The encoder model is the same as the hit filtering model, except for the
window size which is decreased to 512 to compensate for the reduced hit multiplicities after filtering. The object decoder
is a MaskFormer-based model [24, 38, 44] which forms an explicit latent representation for each track candidate,
allowing for joint optimisation of hit assignments and track parameters. Similar to Ref. [26], we include modifications
to handle sparse inputs, and to allow additional regression tasks for the reconstructed tracks.

The object decoder initialises a set of N object queries as learned vectors of dimension d. Each object query represents a
possible output track. The number of object queries N sets the maximum number of tracks that can be reconstructed per
event, and is chosen as the maximum number of tracks over the events in the training sample (described in Section 4.1).
The object queries are then passed through eight decoder layers. In each layer, the object queries aggregate information
from relevant hits via bi-directional cross-attention (CA), and from other object queries via SA. The MaskAttention
operator [38] is used to generate attention masks from the intermediate mask proposals produced by the preceding
decoder layer, encouraging object queries to attend only to relevant hits. The resulting object queries from the object
decoder are processed by three task heads, which predict the track class, track-to-hit assignments, and track properties.
The number of decoder layers and model dimension d was chosen to achieve good performance with reasonable training
and inference times..
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Figure 1: Overview of the track reconstruction model, with data and operations being shown in green and blue
respectively. M input tokens representing the hits are fed into an initial Transformer encoder. The object decoder then
takes a set of N object queries, which represent tracks, and iteratively updates them with information from the input
elements and other object queries. Finally, three task heads are used to: categorise each object as being from one of
C + 1 object classes (including a NULL class), estimate R regression targets, and predict N ×M binary masks which
provide the assignment of input hits to output tracks. The resulting embedded queries and hits are then fed into another
decoder layer to refine the predictions and produce an intermediate auxiliary loss for each layer. These decoder layers
can be stacked repeatedly to increase accuracy at the expense of computational cost. On the right, a detailed view of an
object decoder layer is shown.

Since the number of object queries is fixed, but the number of tracks in each event is variable, a dense binary classifier
with a single hidden layer of size d is used to predict whether each object query corresponds to a track or not. If
not, other outputs for that object query are ignored. The assignment of each of the hits to tracks is given by an
M -dimensional mask over the input hits for each of the N object queries. Mask tokens are formed from the query
embeddings via a dense network with a single hidden layer of size 2d. The mask for each hit is computed by taking the
dot product between the updated hit embeddings from the object decoder and the query mask token for each object
query. After applying a sigmoid activation, the mask is binarised, and a value of 1 indicates assignment of the hit
to the track, while 0 indicates no assignment. The choice of sigmoid activation allows the model to assign a single
hit to multiple tracks. Track parameters are regressed using a dense network with four output nodes, with each node
corresponding to an output target. We regress the particle 3-momenta in Cartesian space (px, py, pz), along with the
z position of the production vertex vz . The total momentum is not regressed directly, but rather calculated from the
component predictions and added to the loss to enforce consistency. Other track parameters, such as the track transverse
momentum pT, angle ϕ and pseudorapidity η, are derived from the regressed Cartesian components of the momentum.

The training loss is the sum of the loss terms from each of the tasks. For the object class, a categorical cross-entropy loss
LCE is used. For the regression targets, a SmoothL1 loss [45] LRegression is used. The mask loss LMask is a combination
of a Dice loss LDice [46] and focal loss LFocal [47]. The total loss is then the weighted sum

L = 0.1LCE + 2LDice + 50LFocal︸ ︷︷ ︸
LMask

+0.1LRegression, (1)

where the weights are coarsely optimised to provide an good trade-off between the performance of the different tasks.
To ensure that the loss is invariant over permutations of the object queries, the loss is defined using the optimal bipartite
matching between the predicted and target objects, as computed with an efficient linear assignment problem solver [48].
Regression targets are scaled to be of order ∼1 during the loss computation so that they do not dominate the loss or
interfere with the matching process. Finally, the intermediate outputs from each decoder layer are used to compute
auxiliary loss terms which are included in the total loss [38].
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4 Dataset & Experimental Setup

4.1 Dataset

The TrackML challenge [49–51] was established to promote the development of novel techniques for particle track
reconstruction in the dense environments anticipated at the HL-LHC. The TrackML dataset has since become a standard
benchmark for evaluating track reconstruction methods. The dataset simulates a generalised LHC-like detector, inspired
by planned ATLAS and CMS upgrades for the HL-LHC, and is composed of approximately nine thousand simulated
events, each containing an average of 200 simultaneous pp interactions. A sample event is depicted in Fig. 2. As shown
in Fig. 3, O(10k) particles and O(100k) hits are simulated per event, resulting in O(100M) tracks to be identified from
approximately O(1B) hits across the entire dataset.

For each event, TrackML provides information about simulated hits, particles, and their associations. The detector
geometry follows a typical collider layout, with distinct tracking subsystems arranged in concentric layers around the
beam axis. The innermost tracking system consists of silicon pixel sensors arranged in four cylindrical barrel layers,
complemented by seven pixel endcap disks on each side. The outer tracking system comprises strip detectors with six
barrel layers and six endcap disks per side. In this work, we focus exclusively on the innermost pixel detector, including
the central barrel and endcap layers. This restricted geometry may present a more difficult challenge than using all
layers, as on average only 4-6 hits are available per track. However the computational complexity is reduced, making it
suitable for our initial studies.

Figure 2: (Left) The positions of pixel hits in the x-y plane, facing down the beam-line, for a single event. (Middle)
Hits passing the MF-1GeV filter at a cut of 0.1. (Right) Filtered hits along with the trajectories of reconstructable
particles that satisfy pT > 1GeV and |η| < 2.5.

Hits are 3-dimensional spacepoints formed from pixel elements which have been clustered together. The model is
given information about the position of each hit and the shape and orientation of the corresponding clusters. For the hit
position, the superset of the Cartesian and cylindrical coordinates, each defined with the origin at the geometric centre
of the detector, is used as this was found to improve convergence during training. Additional position information is
provided in the form of the hit pseudorapidity η, and the conformal tracking coordinates [52]. Finally, information
about the associated cluster is provided in the form of the charge fraction (the sum of the charge in the cluster divided
by the number of activated channels), the cluster size, and the cluster shape, following the approach in [53].

4.2 Experiments & Training Setup

We aim to reconstruct particles that satisfy the following criteria: at least three hits in the pixel layers, pseudorapidity
|η| < 2.5, and transverse momentum exceeding a variable threshold pmin

T , which is set to 600MeV, 750MeV, and
1GeV in different experiments.

For each experiment, a hit filtering model and a tracking model are trained. The hit filtering models are referred
to HF-pmin

T . The HF-600MeV, HF-750MeV models each have approximately 8M trainable parameters, while the
HF-1GeV model, which was optimised to minimise inference times, has approximately 5M parameters. A track
reconstruction model is then trained on each set of filtered hits to reconstruct tracks with the same pmin

T thresholds,
which are similarly referred to as MF-pmin

T . Each tracking model has approximately 22M trainable parameters. A
summary of the different experiments is provided in Table 2. The different choices of pmin

T allow us to explore the
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Figure 3: Histograms summarising the kinematics and object multiplicities of the TrackML dataset restricted to the
inner pixel layers. (Top left) The pT distribution of all particles. (Top right) A histogram showing the distribution of
the pseudorapidity η of the particles. (Bottom left) The distribution of the number of total particles in each event. The
distribution for all particles is shown in black. Also shown are the number of particles left after applying the three pT
cuts used in this work. (Bottom right) The distribution of the number of hits in the events before filtering.

trade-offs between model complexity, inference time, and performance. They also provide an insight into the impact of
reducing the effective training statistics (i.e. the number of target particles), as discussed in Section 5.

For each of the validation and testing sets, 100 events are reserved with the remaining events used for training. Models
are trained on a single NVIDIA A100 GPU for 30 epochs. The hit filtering models trained in approximately 10 hours,
while the tracking models trained in 20-60 hours, depending on the pmin

T threshold. A batch size of a single event is
used. Inference times can be found in Section 5.3.

pmin
T Hits (Pre) Hits (Post) Particles Object Queries

1GeV 57k 6k 800 1100
750MeV 57k 8k 1300 1800
600MeV 57k 12k 1800 2100

Table 2: Summary of the models trained with different minimum particle thresholds pmin
T . For each threshold, the

number of hits pre- and post-filtering is shown, along with the average number of target particles in the event, and the
configured number of object queries for the associated track reconstruction model. Hit and particle counts are averaged
over the test set.

5 Results

As described in Section 4.1, we consider a particle to be reconstructable if it leaves at least three hits in the pixel
detector, has an absolute pseudorapidity of |η| < 2.5, and a transverse momentum pT above a variable threshold pmin

T .
The hit filtering performance is discussed in Section 5.1, while the tracking performance is discussed in Section 5.2 and
inference times are presented in Section 5.3. All results shown are obtained using the test set of 100 events.

5.1 Hit Filtering

In the hit filtering task, hits are labelled as signal if they belong to a reconstructable particle and noise otherwise. The
filter performance is evaluated using binary efficiency and purity. The hit efficiency is defined as the fraction of signal
hits retained after filtering, while the purity represents the fraction of retained hits that are signal hits.

Fig. 4 demonstrates how these metrics vary with the probability threshold used to classify hits. At our chosen operating
threshold of 0.1, the models achieve impressive performance while significantly reducing the input multiplicity for

7



Transformers for Charged Particle Track Reconstruction in High Energy Physics A PREPRINT

downstream tracking. The dramatic reduction in hit multiplicity achieved - from approximately 57k to 6k-12k hits
depending on the model - are detailed in Table 2 and also visualised in Fig. 2.
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Figure 4: (Left) Signal hit purity as a function of the signal hit efficiency for the three different hit filtering models.
The markers show the efficiency and purity at the chosen threshold of 0.1 and each model achieves an area under the
curve of 0.998. (Right) The fraction of particles that remain reconstructable as a function of simulated particle pT after
filtering hits that fall below the 0.1 threshold. Binominal errors are indicated by the vertical spans.

As summarised in Table 3, the HF-600MeV model maintains a hit efficiency of 99.5% while improving purity from
15.6% pre-filter to 72.7% post-filter. Similarly, the HF-750MeV and HF-1GeV models achieve efficiencies of 99.6%
and 99.4% respectively, with corresponding purities of 66.8% and 53.6%. This represents dramatic purity improvements
from their pre-filter values of 11.1% and 6.8%. When considering only hits from particles in the central detector region
(|η| < 2.5), the initial purities are higher at 30.6%, 21.9%, and 13.3% respectively, still demonstrating a significant
improvement.

Model Initial Purity (|η| < 2.5) Filter Efficiency Filter Purity Reconstructable

HF-1GeV 6.8% (13.3%) 99.4% 53.6% 99.1%
HF-750MeV 11.1% (21.9%) 99.6% 66.8% 99.4%
HF-600MeV 15.6% (30.6%) 99.5% 72.7% 99.3%

Table 3: Performance of the hit filtering models on the test set. From left to right the columns show the initial hit
purity (and the purity considering only hits from particles with |η| > 2.5), the post-filter efficiency and purity, and
the percentage of particles which remain reconstructable (i.e. retain three or more hits in the pixel layers) after the
application of the filter. Statistical uncertainties are negligible.

We also examine the fraction of particles that remain reconstructable after filtering (i.e. those that retain at least
three pixel hits). The results are shown as a function of the particle pT in Fig. 4, and integrated values are shown
in Table 3. For particles with pT > 1GeV, both the HF-600MeV and HF-750MeV models maintain excellent
performance, preserving more than 99.5% of particles. This performance degrades as particle pT approaches pmin

T . The
HF-1GeV model’s reduced performance across all pT ranges (99.1% reconstructable fraction compared to 99.4% for
HF-750MeV) demonstrates the advantage of training with lower pT particles (increasing the training statistics and
avoiding boundary effects), and the benefit of using a larger model.

5.2 Tracking

Track reconstruction performance is evaluated in terms of the efficiency and fake rate. Tracking efficiency is defined as
the fraction of reconstructable particles that are correctly matched to a reconstructed track. The fake rate is defined as
the fraction of reconstructed tracks that are not well-matched to any reconstructable particle. We consider two different
criteria to define whether a track is matched to a particle or not: double majority and perfect matching. Under the double
majority (DM) criteria, a match occurs if > 50% of the particle’s hits are assigned to the track and > 50% of the hits on
the track are from that particle. Under the perfect criteria, a match occurs if all of the particle’s hits are assigned to the
track, and no other hits are assigned. Each track is matched to the simulated particle that contributes the largest number
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of hits to the track. If two particles have the same number of hits on a given track, one is chosen at random. εDM
pT>1 GeV

and εperfectpT>1 GeV are the efficiencies using the DM and perfect match criteria respectively. Subscripts are used to indicate
the minimum pT of the matched simulated particles included in the calculation. The fake rate fDM is defined using the
DM matching and without any selections on pT. To enable comparison with other methods, we also define a fake rate
fDM
pT>0.9 GeV, which considers only tracks matched to target particles with pT > 0.9GeV. The inefficiencies resulting

from the filtering step are included in the tracking efficiencies discussed here.
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Figure 5: Tracking efficiency as a function of simulated particle pT (left) and fake rate as a function of reconstructed
track pT (right). For the efficiency plot (left) the solid lines show the efficiency under the double match criteria, while
the dashed lines show the efficiency under the perfect match criteria. The vertical span of the markers indicate the
binomial error about the mean while the horizontal span shows the bin extent.
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Figure 6: Tracking efficiency as a function of simulated particle η (left) and fake rate as a function of reconstructed
track η (right). In both cases, the double majority matching is used. The vertical span of the markers indicate the
binomial error about the mean while the horizontal span shows the bin extent. Only tracks with pT > 1GeV are shown.

The tracking performance of the different models depends on the value of pmin
T used to define the target particles during

training. As shown in Fig. 5, all three models achieve a plateau efficiency of approximately 97% for higher-pT tracks,
with the efficiency dropping steadily as particle pT approaches pmin

T and falling to nearly zero below this threshold.
The MF-600MeV and MF-750MeV models effectively reconstruct tracks down to their respective pmin

T thresholds
with efficiencies of 86% and 90% respectively at these points. Above this threshold, the efficiencies quickly plateau,
reaching approximately 96% and 97% for pT > 750MeV and 1GeV respectively. In contrast, the MF-1GeV model
only reaches its performance plateau for particles above approximately 1.5GeV. The improved performance of the
MF-600MeV and MF-750MeV models versus the the MF-1GeV model demonstrates the advantage of using a lower
value of pmin

T for training. This provides increased statistics and a broader coverage in pT, outweighing the additional
complexity of reconstructing lower-pT particles. In terms of fake rates, the MF-750MeV configuration performs best
with approximately 0.5%, while the MF-600MeV and MF-600MeV models show slightly higher rates, particularly in
the challenging low-pT region for the MF-600MeV model.

The models also achieve high perfect track reconstruction rates, with the MF-600MeV and MF-750MeV models
perfectly reconstructing approximately 94% of tracks, and the MF-1GeV model achieving a perfect reconstruction rate
of approximately 92%. This high performance underscores the models ability to handle the combinatorial complexity
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of the TrackML dataset, with only a low number of output tracks not perfectly reconstructed (around 2-4% depending
on the model and pT).

Fig. 6 shows the efficiency and fake rate as a function of the particle and reconstructed track η, respectively, demonstrat-
ing good performance across the full η region studied. The drop in efficiency and increase in fake rate in the central η
region is consistent with the increased track density in this region.

Performance comparisons with existing methods are summarised in Table 4, though several important methodological
differences should be noted. For example, while OC and HGNN include particles in the forward region (|η| < 4),
our approach focuses on the more challenging central region (|η| < 2.5) where track density is highest. Despite this
more demanding task, the MF-750MeV model achieves a higher efficiency (εDM

pT>0.9 GeV = 97.1%) than OC while
reducing the fake rate by a factor of 3 to fDM

pT>0.9 GeV = 0.2%. In addition, our approach demonstrates a significantly
improved perfect match efficiency. The HGNN method includes hits on the strip layers and requires more than 5 hits
for a particle to be reconstructable, and would require additional post-processing steps after the model to reduce the
high fake rate. While these differences complicate direct comparisons, our results achieve slightly reduced efficiency
with significantly better fake rate, whilst using less information. Furthermore, as shown in Table 5, our method achieves
this while significantly improving inference times.

εperfectpT>1 GeV εperfectpT>0.9 GeV εDM
pT>1 GeV εDM

pT>0.9 GeV fDM fDM
pT>0.9 GeV

MF-1GeV 91.9% - 94.4% - 0.8% -
MF-750MeV 94.5% 94.2% 97.1% 97.0% 0.6% 0.2%
MF-600MeV 92.9% 92.7% 97.0% 96.9% 0.9% 0.4%

OC [31] - 85.8% - 96.4% - 0.9%
HGNN [54] - - 97.9% - 36.7% -

Table 4: Comparison of the results for the various models using the TrackML dataset on the test set. For the efficiencies,
we use two different pT thresholds to facilitate comparisons with previous approaches. OC [31] uses pmin

T = 0.9GeV,
while HGNN [54] uses pmin

T = 1GeV and also includes hits from the strip layers. Both OC and HGNN attempt to
reconstruct particles satisfying |η| < 4, whereas we target |η| < 2.5 in this work. Statistical uncertainties are negligible.

Analysis of model performance versus training set size for the MF-1GeV model reveals that the model has not yet
reached performance saturation when using the complete TrackML dataset. This suggests significant potential for
improved performance through additional training data. Furthermore, in applications where inference speed is not
critical, enhanced performance could be achieved by increasing the model size.

Fig. 7 shows the residuals between reconstructed and target track parameters, where the target parameters are derived
from DM matched particles. While vz is regressed directly, the pT, η, and ϕ are constructed from the track’s Cartesian
momentum. The residuals demonstrate minimal bias, however the current regression performance does not yet match
the precision achieved by established experiments like ATLAS and CMS, which employ highly tuned parametric fitting
techniques [2, 3]. Regardless, these results serve as a promising proof-of-principle for our novel approach of jointly
performing hit-to-track assignment and track parameter fitting in a single model. Several avenues exist for improving
the parameter estimation. First, incorporating hits from the outer strip layers would significantly enhance momentum
resolution. Secondly, directly regressing the parameters of interest, rather than constructing them from the Cartesian
momentum, would likely improve performance. Finally, the model could be extended to estimate track parameter
uncertainties and their correlations, bringing the approach closer to the comprehensive track fitting methods used in
production environments.

5.3 Inference Time

Inference time is a critical metric for track reconstruction at particle colliders. Our Transformer-based models
demonstrate competitive performance in this key metric, with the hit filtering forward pass requiring on average
approximately 23ms to process a single event comprising O(60k) hits when using an NVIDIA A100 GPU. The
tracking inference time depends on the choice of pmin

T , and ranges from 51ms for the 1GeV model to 101ms for the
600MeV model, as detailed in Table 5. For the 750MeV model, which represents a good balance between tracking
performance and inference time, the total time for hit filtering and tracking is 100ms.
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Figure 7: Residuals between the regressed parameters of reconstructed tracks and the targets from the DM matched
tracks. Tracks matched to simulated particles with pT > pmin

T are used for each model. The mean µ and inter-quartile
range (IQR) of the residuals for each model is shown in the legend. Residuals that lie outside the plot range are placed
into extremal bins. Note that residuals for the angle ϕ and pseudorapidity η are shown in thousandths in both the plot
and the legend values.

Tracking time [ms] Filter + tracking time [ms]

MF-1GeV 50± 7 73± 8

MF-750MeV 77± 9 100± 11

MF-600MeV 101± 12 124± 14

Table 5: Mean inference times and standard deviations for the tracking model forward pass, and combined filtering and
tracking forward pass, evaluated on an NVIDIA A100 GPU with a batch size of 1.

To understand scaling behaviour, we analysed inference times as a function of hit multiplicity in Fig. 8. Both the
filtering and tracking models exhibit linear scaling with the number of input hits, a critical result achieved through
the optimisations described in Section 3.1. This linear scaling allows us to extrapolate performance to more realistic
detectors. With the O(300k) hits expected in the ITk at the start of Run 4 [55], we project a combined filter and tracking
time of 390ms, assuming the linear scaling holds and the hit filter retains 25% of all hits. This projection is competitive
with recent results from the GNN4ITk project [56] and timing studies in Ref. [54], and is comparable to the timings
achieved by an optimised non-ML approach to trigger-level tracking [57].

Figure 8: Inference times as a function of the input hit multiplicity for the hit filtering model (left) and 1GeV track
reconstruction model (right), evaluated on an NVIDIA A100 GPU with a batch size of 1. The average time in each bin
and the 95% confidence intervals are shown by the markers and vertical error bars. A linear fit is shown in the dashed
line, along with a 95% confidence interval shown by the shaded region.
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The current inference times, while already competitive, has been achieved without extensive optimisation. Our approach
could likely achieve substantial speed improvements through established techniques such as model pruning and
quantisation. Additional gains could be realised by training smaller models on expanded datasets, while inference
throughput could be enhanced by batching multiple events during inference.

6 Conclusion

We present a novel application of the Transformer architecture to charged particle track reconstruction, achieving
state-of-the-art results on the full TrackML dataset. Our approach demonstrates exceptional performance, with an
efficiency of approximately 97.0% and a fake rate of 0.6% for the best performing, and can be used to reconstruct
particles with transverse momenta as low as 600MeV. The model’s inference time of approximately 100ms makes it
highly competitive for real-world applications.

This success stems from two key innovations: a Transformer-based hit filtering stage that effectively reduces input
multiplicities without requiring complex graph construction, and a MaskFormer track reconstruction stage that leverages
cross-attention to build an explicit latent representation of each track. This unified approach enables simultaneous
track finding and parameter estimation while naturally handling hit sharing between tracks. The model’s linear scaling
with hit multiplicity, enabled by efficient attention kernels and demonstrated in our timing studies, suggests promising
scalability for future detector environments. By aligning with recent advancements in the field of machine learning, our
approach stands to benefit from future developments, offering scalable, adaptable, and high-performance solutions to
meet the increasing computational demands of high-energy physics.

Future work could involve the reconstruction of particles in the forward region and at lower transverse momenta.
Combining the filtering and reconstruction steps into a single model could streamline training and reduce inference
times. Finally, incorporating additional information from other detector systems, such as calorimeters, could further
enhance the reconstruction of charged particles and enable the simultaneous reconstruction of neutral particles.

Beyond its immediate application, our work offers several broader contributions. The hit filtering component can
be readily integrated into existing approaches to tracking. The model’s tunable nature, allowing trade-offs between
efficiency and inference times and the targeting of certain particle kinematics, makes it adaptable for various high
energy physics experiments, and requirements from triggering systems to offline reconstruction. Most significantly, the
success of Transformer architectures in both tracking and vertexing demonstrates the potential for a unified approach to
particle physics reconstruction, moving away from specialised solutions and toward generalised learned models that
could significantly impact how we process and analyse particle physics data.
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