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Abstract: Non-perturbative gravitational effects induce explicit global symmetry break-

ing terms within axion models. These exponentially suppressed terms in the potential give

a mass contribution to the axion-like particles (ALPs). In this work we investigate this sce-

nario with a scalar field charged under a global U(1) symmetry and having a non-minimal

coupling to gravity. Given the exponential dependence, the ALP can retain a mass span-

ning a wide range, which can act as a dark matter component. We specify pre-inflationary

and post-inflationary production mechanisms of these ALPs, with the former from the mis-

alignment mechanism and the latter from both the misalignment and cosmic-string decay.

We identify the allowed parameter ranges that explain the dark matter abundance for both

a general inflation case and a case where the radial mode scalar drives inflation, each in

metric and Palatini formalisms. We show that the ALP can be the dominant component

of the dark matter in a wide range of its mass, ma ∈ [10−21 eV, TeV], depending on the

inflationary scenario and the U(1) breaking scale. These results indicate that ALPs can

be responsible for our dark matter abundance within a setup purely from non-perturbative

gravitational effects.
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1 Introduction

Among beyond the Standard Model (BSM) theories, axion or axion-like particles (ALPs)

have been obtaining much attention due to their unique characteristics.1 First of all,

the existence of the axion has the potential to address two major unsolved problems in

particle physics and cosmology, namely the strong CP problem [1–4] and the nature of

dark matter [5–7]. For the latter case, frameworks that generalize beyond the QCD axion

can also provide good dark matter candidates. These ALP models are generally associated

with global U(1) symmetries, where the ALP mass is determined by the symmetry-breaking

terms and can span a much wider range.

In general, at the very least, all global symmetries are expected to be explicitly bro-

ken in the presence of gravity [8–12]. One definite origin of the symmetry breaking is

coming from non-perturbative gravitational effects, which include gravitational instantons

represented by Euclidean wormhole solutions [8, 13–27]. For the QCD axion scenario, this

explicit PQ symmetry breaking becomes another source in addition to the QCD instanton

effects, which shifts the vacuum expectation value (vev) away from the desired value that

solves the strong CP problem, leading to the ‘axion quality problem’ [28–32].

1In this work, the term ‘axion’ refers to the QCD axion which is particularly motivated to solve the

string CP problem and have a designated coupling to Standard Model fields. Other than that, we will use

the terminology ‘ALP’.
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However, the possible implications of gravitational global symmetry breaking reach out

to any Goldstone bosons, including ALPs beyond the QCD axion. These symmetry break-

ing terms can be a universal source giving the mass of general pseudo Nambu-Goldstone

bosons (pNGBs) [18, 33]. These now massive ALPs can then be a dark matter component,

in analogy to axion dark matter. A nonzero initial angle induces a misalignment mech-

anism [5–7], and cosmic strings associated with the global symmetry can also emit ALP

dark matter particles [34–39], with the mass, in this case, being solely determined through

gravitational effects. The mass range highly depends on the wormhole action value, which

itself depends on the axion model context.

Especially, in Refs. [40–42], it was shown that a large non-minimal coupling to grav-

ity with coupling ξ significantly alters the wormhole properties with respect to minimal

gravity cases. This motivates the necessity to rigorously revisit the possible effects of these

gravitational instantons on ALP DM.

In this paper, we explore the possibility that non-perturbative gravitational effects can

induce explicit global symmetry breaking in ALP models. Specifically, we consider a global

U(1) scalar field non-minimally coupled to gravity, and investigate how the resulting ALP

mass, determined by exponentially suppressed symmetry breaking terms, can span a wide

range. Notably, for ξ = 0, the wormhole-induced ALP mass resulting from explicit U(1)

symmetry breaking is too large to be a viable dark matter candidate. This also emphasizes

the need to introduce a non-minimal coupling as a minimal mechanism to suppress the

U(1) global symmetry breaking caused by the wormhole.

Our study covers both pre-inflation and post-inflation production mechanisms. We

examine the allowed parameter spaces that explain the dark matter abundance, considering

both general inflationary scenarios and cases where the radial mode scalar drives inflation.

Our analysis includes both the metric and Palatini formalisms, and we demonstrate that

ALPs can account for the observed dark matter density over a broad range of mass and

symmetry breaking scales, driven purely by non-perturbative gravitational effects.

This paper is organized as follows. We first review the wormhole properties within

an analytic framework, and obtain the ALP mass expression in Section 2. In Section 3,

we further analyze the ALP dark matter production mechanisms, considering the global

symmetry breaking scale. We then present possible parameter ranges that explain our

dark matter abundance after identifying relevant constraints for both general inflation in

Section 4 and the case when the radial mode of the complex scalar being the inflaton field

in Section 5. In Section 6, we conclude with possible further implications of these wormhole

dark matter candidates.
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2 ALP Mass from the Wormhole Solution

2.1 Non-minimally Coupled U(1) Scalar

In this work, we consider a model of a complex scalar field Φ = 1√
2
ρeiθ with a U(1)

symmetry which is spontaneously broken by the Mexican hat potential:

S =

∫
d4x
√
|g|
[
−M2 + 2ξ|Φ|2

2
R(Γ) + |∂µΦ|2 + λΦ

(
|Φ|2 − f2

a/2
)2]

=

∫
d4x
√

|g|
[
−M2 + ξρ2

2
R(Γ) +

1

2
(∂µρ)

2 +
1

2
ρ2(∂µθ)

2 +
λΦ

4

(
ρ2 − f2

a

)2]
,

(2.1)

where g ≡ det gµν , and the mass parameter M is defined as M2 ≡ M2
P − ξf2

a with the

reduced Planck mass MP ≡ 1/
√
8πG ≈ 2.4×1018GeV to guarantee that the gravity sector

reduces to canonical Einstein-Hilbert action with the vev of ρ as ⟨ρ⟩ = fa. Normally, pNGB

degree of freedom θ is canonicalized to a ≡ faθ and we refer this axial mode as ALP. On

the other hand, we will call ρ as a radial mode or radial field.

Note that we also have included the non-minimal coupling of the U(1) scalar Φ to the

Ricci scalar R with coupling ξ. Especially, we will refer the special case of ξ = M2
P /f

2
a

as the induced gravity limit, or Gidding-Strominger (GS) limit [40, 41, 43]. Also, we

intentionally denote the affine connection Γ dependence of the Ricci scalar R explicitly,

while we do not specify whether Γ is determined by the metric or not in prior. In fact,

the choice of the connection depends on the formulation of the gravity one chooses. In

this work, we consider two formulations of the gravity: metric and Palatini [44, 45]. In the

metric formulation, affine connection Γ is given by the Christoffel symbol from the first,

while it is obtained from the equations of motion in Palatini formulation. Although these

two formulations are equivalent in pure Einstein-Hilbert gravity, they differ each other once

one adds non-minimal coupling and so does the physical predictions [46, 47].

2.2 Wormhole Solution

The numerical evaluation of the axionic wormhole action Sw and the wormhole throat

size Lw of the model with a non-minimal coupling as given in Eq. (2.1) was studied in

Refs. [40, 41] and analytically analyzed in Ref. [42]. For our purpose, we generalize the

results of Ref. [42] to incorporate the case near the GS limit.2

For an action

S =

∫
d4x
√
|g|
(
−
M2

P

2
R+

1

2
G(ρ)(∂µρ)

2 +
1

2
F 2
a (ρ)(∂µθ)

2

)
, (2.2)

containing functions G(ρ) and Fa(ρ) with the Euclidean wormhole metric in spherical

coordinates

ds2 =
dr2

(1− L4
w/r

4)
+ r2dΩ2

3 (2.3)

2For the following equations to hold, we restrict ourselves to be in the regime where λΦ < O(1) , or

more specifically, Q ≡ n2λ2
Φ/(8π

4) < 1.
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where dΩ2
3 is the metric of the unit 3-sphere, the wormhole throat size Lw is given by

L2
w =

n

2π2
√
6

(
1

MPFa(ρ0)

)
(2.4)

with the radial mode field value ρ0 at the wormhole throat obtained from the condition∫ ρ0

ρ∞

dϱ

MP

√
G(ϱ)√

F 2
a (ρ0)/F

2
a (ϱ)− 1

≡ K(ρ0, ρ∞) =
π
√
6

4
(2.5)

where ρ∞ is the vev of the ρ field at r → ∞. Then, the wormhole action is obtained as

Sw(ρ0, ρ∞) = n

∫ ρ0

ρ∞

dϱ

Fa(ϱ)

√
G(ϱ)√

1− F 2
a (ϱ)/F

2
a (ρ0)

. (2.6)

For the specific case of Eq. (2.1), after performing the redefinition of the metric gµν →
Ω2gµν with Ω2 ≡ (M2 + ξρ2)/M2

P and identifying ρ∞ = fa, the functions G(ρ) and Fa(ρ)

are given as

G(ρ) =
1 + ξρ2(1 + αξ)− ξf2

a

(1 + ξ(ρ2 − f2
a ))

2
, Fa(ρ) =

ρ√
1 + ξ(ρ2 − f2

a )
(2.7)

where α = 6 and 0 for metric and Palatini formalisms, respectively [42]. Inserting these

expressions into Eq. (2.5) and Eq. (2.6) yields

K(ρ0, fa) =

√
(1 + αξ)(1− ξf2

a + ξρ20)

ξ(1− ξf2
a )

arccos

[√
1 + αξ2f2

a

1− ξf2
a + (1 + αξ)ξρ20

]

−
√
α arctan

[√
(1− ξf2

a )ξ
2α(ρ20 − f2

a )

(1 + αξ2f2
a )(1− ξf2

a + ξρ20)

]
(2.8)

and

Sw(ρ0, fa) =

√
ξ(1 + αξ)

1− f2
aξ

ρ0 arccos

[√
1 + ξ2αf2

a

1− ξf2
a + ξ(1 + αξ)ρ20

]

+
1

2

(
ln

[
1 +

√
(1− ξf2

a )(ρ
2
0 − f2

a )

(1 + ξ2αf2
a )ρ

2
0

]
− ln

[
1−

√
(1− ξf2

a )(ρ
2
0 − f2

a )

(1 + ξ2αf2
a )ρ

2
0

])
.

(2.9)

Different ξ dependence in the Sw and Lw appears with the ξ value range of interest.

For small non-minimal couplings, ξ ≪ 1, the wormhole throat size becomes effectively

independent of the ξ value. In both gravity formalisms, the wormhole has a throat of

Planck length, and the wormhole action is suppressed logarithmically:

Sξ≪1
w ≃ n ln

(
MP

fa

)
, (Lξ≪1

w )2 ≃ n

3π3M2
P

(2.10)

where n is the number of charge [8, 15]. In fact, for the QCD axion, this smallness of

the wormhole action leads to unsuppressed U(1) symmetry breaking terms which could be

relevant when discussing the QCD axion quality problem.

– 4 –



On the other hand, for values 1 ≪ ξ ≲ M2
P /f

2
a , the wormhole action is dominated by

the throat contribution yielding [42]

Sξ≫1
w ≃


π
√
30

4
nξ1/2 (metric)

π
√
6

4
nξ1/2 (Palatini)

, (Lξ≫1
w )2 ≃


√
3nξ1/2

2π2
√
10M2

P

(metric)

nξ−1/2

2π2
√
6M2

P

(Palatini)

. (2.11)

The limiting case is when ξ value takes its maximum value, ξ = M2
P /f

2
a , which becomes

equivalent to the GS wormhole, with the wormhole action fixed as [18, 40, 41, 43]

SGS
w =

√
6πnMP

4fa
, (LGS

w )2 =
n

2π2
√
6MP fa

. (2.12)

Note that this result does not depend on the formulations of gravity. Henceforth, we always

set n = 1 because this gives the leading contribution.3

2.3 ALP Mass

On dimensional grounds, the U(1) symmetry breaking terms in the potential have the

following schematic form

∆V ∼ e−SwL−3
w (Φ + Φ∗) + · · · ∼ e−Sw

ρ

L3
w

cos

(
a

fa

)
+ · · · (2.13)

with · · · representing subleading order contributions associated with larger charges. The

exponential contribution of the wormhole action clearly shows its non-perturbative nature.

Asymptotically, the heavy ρ field value stabilizes to have a vacuum expectation value

⟨ρ⟩ = fa giving a mass to the ALP in the form

m2
a ∼ 1

faL3
w

e−Sw (2.14)

assuming there is no other source of the symmetry breaking that would induce additional

mass contributions.4 In this sense, unless there is a large cancellation between symmetry

breaking terms, this mass in Eq. (2.14) may be regarded as the ALP’s minimal mass

originating from the gravitational coupling.

For the QCD axion, restrictions on the wormhole action coming from the axion quality

problem also need to be considered. For the QCD axion quality to be guaranteed, the

wormhole action needs to be sufficiently large, Sw ≳ 190, which suppresses the wormhole

mass contribution to negligible values compared to the original predictions of the QCD

axion mass ma ∼ Λ2
QCD/fa with ΛQCD is the QCD confinement scale. Therefore, we do

not consider the QCD axion case in this work and take the ALP to be a generic U(1)

pNGB.

3Here, we do not take into account the Gibbons-Hawking-York (GHY) term. When there is a boundary of

the manifold in the consideration, the GHY term should be introduced in the case of the metric formulation

to make the variation principle well-defined [48, 49]. In this case, the action value is suppressed by a factor

(1− 2/π) multiplied where the second term is from the GHY term [18].
4Hereafter, we assume m2

a ≲ m2
ρ ≃ 2λΦf

2
a , for simplicity. In the case of m2

a ≫ m2
ρ, there are corrections

to the vev of the radial mode and the ALP mass as ⟨ρ⟩ → (ma/mρ)
2/3⟨ρ⟩ and m2

a → (ma/mρ)
2/3m2

a, but

the following discussion does not change qualitatively.
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Figure 1. The wormhole-induced ALP mass in terms of (log10 ξ, log10 fa/GeV) for metric (left)

and Palatini (right) formulations. The black solid line corresponds to the lower bound of fuzzy

dark matter ma ≃ 10−21 eV [50–52], while the gray dashed line corresponds to the upper bound for

dark energy candidates ma ≃ H0 ≃ 10−33 eV. Blue lines denote the boundaries where mρ = ma

depending on values of λ = (1, 10−2, 10−4) with solid, dashed, dot-dashed lines respectively. Below

these lines, the radial mode mass is smaller than the ALP mass. Gray shaded regions labeled Stellar

BH and SMBH are constraints from superradiance for stellar mass BH and SMBH respectively [53–

56]. See the main text for details.

Figure 1 depicts the ALP mass given in Eq. (2.14) for both metric and Palatini for-

mulation of gravity as a function of the axion decay constant fa and the non-minimal

coupling to gravity ξ. In both cases, the gray region is excluded as in this parameter space

the coefficient of the Ricci scalar becomes negative with ξ > M2
P /f

2
a . For a fixed fa, a

larger ξ implies a larger wormhole action Sw giving a smaller ALP mass. While the mass

hardly depends on fa in the Palatini case, for the metric formalism there is a rapid change

to the GS limit at larger fa values. In GS limit, both formulations give the same mass as

expected.

When these ALPs acts as DM candidates, these may be subject to additional con-

straints, including isocurvature perturbations (depending on its generation mechanism)

and structure formation. We will revisit isocurvature constraints in the next section, while

successful structure formation demands a model independent bound ma ≳ 10−21 eV [50–

52]. Ultralight bosons are also subject to constraints from black hole superradiance. Re-

cent studies on stellar mass black holes and supermassive black holes put constraints on

the ALP mass depending on the axion decay constant fa [53–56]. We depict the masses

8.6×10−20 eV ≲ ma ≲ 5.6×10−19 eV corresponding to supermassive black hole superradi-

ance, and 1.9× 10−13 eV ≲ ma ≲ 2.7× 10−12 eV for stellar mass black hole superradiance

in Figure 1.

On the other hand, these ALPs can behave as dark energy (DE) for ALP masses smaller

than the current universe’s Hubble parameter H0 ≃ 10−33 eV. Recently, these ALP DE

scenarios particularly gained increased interest (i) as an early dark energy component being

a possible solution to the Hubble tension [57] or/and (ii) being responsible for the observed
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isotropic CMB birefringence through the Chern-Simon’s coupling with photons [58]. We

also note that such time-varying dark energy has received much attention due to the recent

DESI results [59]. In order for wormhole-induced ALPs to be dark energy, given the small

H0 value, we need a large non-minimal coupling ξ; ξ ≳ 3.6×103 for the metric case (except

near the GS limit), and ξ ≳ 4.3×104 for the Palatini case. From the next section, we focus

on the possibility of ALP DM in more detail.

3 ALP Dark Matter Abundance

Having the relations for the ALP mass induced by the wormhole solution, we revisit the

parameter regimes of ALP DM associated with a large non-minimal coupling to gravity.

In general, the ALP DM abundance strongly depends on the relative magnitudes of

the U(1) breaking scale fa, reheating temperature Treh, and the de-Sitter (dS) temperature

during inflation TdS ≡ Hinf/(2π) quantifying the amount of the quantum fluctuation of the

massless particle during the inflation, where Hinf is the Hubble scale during the inflation.

For instance, if TdS > fa, the amplitude of the quantum fluctuation dominates over the

vev, and the PQ symmetry remains unbroken during the inflation. In the subsequent

subsections, we discuss each of the following cases separately in more detail.

1. fa > max{Treh, TdS}: pre-inflationary scenario. (Section 3.1.)

2. fa < max{Treh, TdS}: post-inflationary scenario. (Section 3.2.)

We summarize the various cases of ALP DM abundance depending on the hierarchy be-

tween axion decay constant (fa), the Hubble scale of the inflation (Hinf), at the end of the

reheating (Hreh), and when the coherent oscillation of the ALP starts (Hosc) in Table 1.

In the following, we parameterize the reheating temperature as

Treh = ϵeff
√
HinfMP (3.1)

where ϵeff denotes the efficiency of the reheating, which is in principle determined by the

couplings of the inflaton field with Standard Model and DM particles. It takes the maximal

value in the limit of instantaneous reheating:

ϵeff ≤ ϵmax
eff =

(
90

g∗(Treh)π2

)1/4

, (3.2)

where g∗(Treh) is the effective number of the relativistic degrees of freedom at the end the

reheating. With this definition, Hreh can be expressed as Hreh = (π2g∗(Treh)/90)
1/2ϵ2effHinf .

Another important parameter to determine the ALP abundance is the Hubble pa-

rameter when the ALP starts its coherent oscillation. In the quadratic ALP potential,

V (a) ≃ m2
aa

2/2, the ALP starts to oscillate when the Hubble parameter becomes compa-

rable to the ALP mass, H = Hosc ≃ ma/3.

– 7 –



fa > Treh

fa > TdS

“Pre-Inflationary Scenario” (θi ∈ [−π, π]) [Section 3.1]
Hosc ≲ Hreh osc. during RD at H = Hosc [Eq. (3.6)]

Hreh ≲ Hosc ≲ Hinf osc. during reheating at H = Hosc [Eq. (3.7)]

Hosc ≳ Hinf no misalignment

fa < TdS

Case II [Section 3.2.2]{
Hosc ≲ Hreh osc. during RD at H = Hosc [Eq. (3.6)]

Hosc ≳ Hreh osc. during reheating at H = Hosc [Eq. (3.7)]

fa < Treh

Case I [Section 3.2.1]{
Hosc ≲ Hc osc. during RD at H = Hosc [Eq. (3.6)]

Hosc ≳ Hc osc. during RD at H = Hc [Eq. (3.9)]

“Post-Inflationary Scenario”
(〈
θ2i
〉
= π2/3

)
Table 1. Cases of ALP DM misalignment scenarios. The orange colored box corresponds to pre-

inflationary scenarios, while blue colored ones are for post-inflationary scenarios.

3.1 fa > max{Treh, TdS}: Pre-inflationary Scenario

If fa > max{Treh, TdS}, U(1) symmetry is spontaneously broken during the inflation and

the symmetry is never restored after that. In this case, unless the ALP is heavier than the

Hubble scale of the inflation so thatHosc≳Hinf , the initial ALP field value of the observable

universe is randomly determined by a single initial misalignment angle θi ∈ [−π, π]. With

the quantum fluctuation during the inflation on top of this classical misalignment angle,

the averaged initial angle over several Hubble patches is given by

⟨θ2i ⟩ = θ2i +

(
Hinf

2πfa

)2

. (3.3)

We can further divide into three cases, based on the epoch in which the ALP starts to

oscillate, giving the misalignment mechanism.

• Hosc ≲ Hreh

If the ALP is sufficiently light, it stays at its initial value during reheating and begins

to oscillate afterwards during the radiation dominant universe, at H = Hosc. The

ratio of the ALP energy density (ρa) to the entropy density (s) at the time of the

oscillation is a conserved quantity given by

ρa
s

∣∣∣
osc

=
ρrad
s

∣∣∣
osc

· ρa
ρrad

∣∣∣∣
osc

≃3

4
Tosc

g∗(Tosc)

g∗,s(Tosc)
· ⟨θ

2
i ⟩f2

am
2
a/2

3M2
PH

2
osc

(3.4)
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where ρrad is the radiation energy density and we have used

ρrad
s

=
3

4
T

g∗(T )

g∗,s(T )
, ρa|osc ≃

1

2
⟨θ2i ⟩f2

am
2
a ,

ρrad|osc =
π2

30
g∗(Tosc)T

4
osc ≃ 3M2

PH
2
osc .

(3.5)

As the ratio ρa/s stays constant until the present Universe, we obtain the final ALP

DM abundance as

Ωah
2 =

ρa/s

(ρcrit/s)0
h2 ≃ 0.12⟨θ2i ⟩

(
fa

7× 1016GeV

)2√ ma

10−21 eV
(3.6)

where we used (ρcrit/s)0 ≃ 3.64×10−9h2 GeV [60] and assumed g∗(Tosc) = g∗,s(Tosc) =

106.75 for simplicity.

• Hreh ≲ Hosc ≲ Hinf

In this case, the ALP oscillation starts during reheating. We assume that the equation

of state w ≡ p/ρ with the pressure p and the energy density ρ during the reheating

stage is parameterized by a constant wreh. Then, the ratio ρa/s at the end of the

reheating is given by

ρa
s

∣∣∣
reh

=
ρrad
s

∣∣∣
reh

· ρa
ρϕ

∣∣∣∣
reh

=
ρrad
s

∣∣∣
reh

· ρa
ρϕ

∣∣∣∣
osc

·
(
aosc
areh

)−3wreh

=
9

8
ϵeff

g∗(Treh)

g∗,s(Treh)

⟨θ2i ⟩f2
aH

1/2
inf

M
3/2
P

(
π
√
g∗(Treh)

9
√
10

· ϵ2eff
Hinf

ma

)−2wreh
1+wreh

(3.7)

with ρrad/s|osc, ρa|osc taking the expression from Eq. (3.5), and ρϕ|osc = 3M2
PH

2
osc

denoting the energy density of the inflaton at the period of oscillation. In the case of

wreh = 1/3, there is no distinction between reheating and the subsequent radiation

dominated universe, and Eq. (3.7) reduces to Eq. (3.4).

• Hosc ≳ Hinf

In this case, the ALP field settles down to the potential minimum during the in-

flation, and there is no misalignment. Quantum fluctuations are also exponentially

suppressed.

In the pre-inflationary scenario, the isocurvature perturbation can give a stringent

constraint. The amount of the isocurvature perturbation strongly depends on whether the

radial mode of the U(1) breaking field ρ is identified with the inflaton field or not. We

discuss it in Section 4 and Section 5.

3.2 fa < max{Treh, TdS}: Post-inflationary Scenario

For fa values satisfying this criteria, the U(1) symmetry is restored, thus giving an averaged

initial misalignment value of ⟨θ2i ⟩ = 1
2π

∫ π
−π dθ θ

2 = π2/3.5 We can further specify two

5In fact, a more precise value would depend on the exact shape of the potential at large θ values near

the maximum by having anharmonic corrections. For instance, in the case of a cosine potential like the
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separate cases within this regime, fa ≲ Treh and Treh < fa < TdS. We discuss these cases

in Section 3.2.1 and Section 3.2.2, respectively.

An important consequence of the post-inflationary scenario is the formation of the

cosmic string caused by the spontaneous U(1) breaking [36, 62, 63]. The decay of the

cosmic string produces ALPs which also contribute to the dark matter relic.6 Due to its

large theoretical uncertainties, we parameterize the amount of ALP DM from the decay of

the string network with respect to the ones from misalignment as

Ωstr
a = δdecΩ

mis
a (3.8)

where we will take δdec ∈ [0, 103] and Ωmis
a is the ALP abundance from misalignment with

⟨θ2mis⟩ → π2/3 [76]. The total amount of the dark matter will be the sum of these two:

Ωa = Ωmis
a +Ωstr

a = (1 + δdec)Ω
mis
a .

For the case of very light ALP fields, we can take the results from QCD axion sim-

ulations ranging from order 1 to 103, which still has large uncertainties originating from

the ambiguities of the exact spectrum of instantaneous axion emission. For heavier ALPs,

cosmic strings are also short-lived, so δdec → 0 in this limit.

3.2.1 Case I: fa < Treh

In this case, thermal contributions affect the symmetry breaking. Assuming a thermal

potential of the form VT (Φ) ∼ T 2|Φ|2 with temperature T , the U(1) symmetry is then

restored during reheating.

The U(1) breaking phase transition then occurs at the temperature Tc ≃ fa with the

corresponding Hubble parameter Hc given by Hc = (π2g∗(Tc)/90)
1/2T 2

c /MP . There are

two cases depending on the time of oscillation:

• Hosc ≲ Hc

The ALP coherent oscillation starts after the phase transition, and the ALP DM

abundance is given by Eq. (3.6), with the misalignment angle replaced to the averaged

value ⟨θ2i ⟩ = π2/3.

• Hosc ≳ Hc

In this case, the ALP coherent oscillation starts right after the phase transition.

Hence, the ALP abundance is given by

ρa
s

∣∣∣
c
=

⟨θ2i ⟩f2
am

2
a/2

2π2g∗,s(Tc)T 3
c /45

=
15m2

a

4g∗,s(Tc)fa
. (3.9)

QCD axion, ⟨θ2i ⟩ = 1.41 ·π2/3 [52, 61]. Although we take π2/3 as a reference value for simplicity neglecting

the exact form of the potential, we do not expect large deviation from this value.
6The evolution of the cosmic string networks are relevant, and we note that this is currently being

actively investigated [64–75].
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3.2.2 Case II: Treh < fa < TdS

In this regime, the quantum fluctuations of the ALP field during inflation era exceeds the

U(1) breaking scale fa

δa ∼ Hinf

2π
= TdS > fa. (3.10)

This leads to a diffused fluctuation of the Φ field to be centered at zero, effectively restoring

the U(1) symmetry [77, 78]. This again leads to a randomly distributed ALP field value,

with the average misalignment of ⟨θ2mis⟩ = π2/3. Once again, we can further specify

considering the epoch of oscillation.

• Hosc ≲ Hreh: the result is the same as Eq. (3.6), with ⟨θ2mis⟩ = π2/3.

• Hosc ≳ Hreh: the result is the same as Eq. (3.7), with ⟨θ2mis⟩ = π2/3.

4 Generic Inflation

As analyzed in the previous section, the scale of inflation heavily affects the abundance

of these wormhole-induced ALPs. In addition, it will also be crucial whether the radial

mode plays the role of the inflaton field or not. We first investigate possible constraints for

generic inflation cases, with the U(1) scalar being a spectator field in this section. We then

proceed with the case when the U(1) scalar Φ’s radial mode ρ acts as the inflaton with a

non-minimal coupling to gravity in Section 5.

For pre-inflationary ALP DM production scenarios, one of the main constraints comes

from isocurvature perturbations. The null-observation of these perturbations in the CMB

leads to a non-trivial bound.7 The isocurvature fraction βiso from the ALP in the case of

slow-roll inflation and its constraints from Planck observations are given by [81, 82]

βiso =

(
1 +

8π3Asf
2
a ⟨θ2i ⟩

(Ωa/ΩCDM)2H2
inf

)−1

≃
(

Ωa

ΩCDM

)2 H2
inf

8π3Asf2
a ⟨θ2i ⟩

< 0.038 (4.1)

where ΩCDM is the ratio of the total dark matter energy density with respect to the critical

energy density, As ≃ 2.1 × 10−9 [83] is the amplitude of the primordial scalar power

spectrum and we took the constraints on isocurvature from Ref. [83].

Combining the DM abundance formulae Eqs. (3.6), (3.7) and Eq. (4.1), we have bounds

on the Hinf in terms of ma as

Hinf ≲ 1013
(

Ωa

ΩCDM

)− 1
2
(
ΩCDMh2

0.12

) 1
2
(

As

2.1× 10−9

) 1
2
(

βiso
0.038

) 1
2 ( ma

10−21 eV

)− 1
4
GeV ,

(4.2)

7For the QCD axion, it typically provides an upper bound on the scale of the inflation as Hinf ≲
5.7× 108(5 neV/ma)

0.4175 GeV [60, 79, 80].
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for Hosc < Hreh and

Hinf ≲ 1.5 · 104
(ϵeff

1

)−2/5
(

Ωa

ΩCDM

)− 2
5
(
ΩCDMh2

0.12

) 2
5
(

As

2.1× 10−9

) 2
5
(

βiso
0.038

) 2
5

GeV .

(4.3)

for Hreh < Hosc < Hinf where we took wreh = 0 for simplicity in Eq. (4.3). Note that

this is in contrast with the conventional QCD axion bound. By allowing ma and fa to be

independent and ma to be temperature independent, larger values of the Hubble parameter

are still compatible. One thing to mention is that the isocurvature bound only holds when

ma < Hinf , because for larger mass, the quantum fluctuation is suppressed during inflation.

Now that we have all the necessary formulas for the ALP dark matter abundance and

constraints, let us turn to a discussion of the results. We first show the constraints in the

(ma, fa) planes in Figure 2. This is a generic result and independent of the origin of the

ALP mass. We then present the results for the wormhole-induced ALP cases in the (ξ, fa)

planes by using the mass relation Eq. (2.14), in Figure 3 for metric cases and Figure 4

for Palatini cases, respectively. In all cases, we depict the constrained regions taking large

θi = 1 and small θi = 0 for different Hinf = (103, 108, 1013)GeV. Each figure for Hinf value

considers two cases for ϵeff , ϵeff = ϵmax
eff and ϵeff = 10−4.

We start with the model-independent ALP cases in Figure 2. ForHinf = (103 , 108) GeV,

the pre-inflationary scenario exhibits 100% DM abundance for large misalignment values

θi = 1. However, for the case θi = 0, the misalignment production only with quantum fluc-

tuation is insufficient to explain the entirety of dark matter. Additional constraints enter

from isocurvature perturbations, which further restricts all dark matter for ma ≳ 0.1eV

with θi = 1, as shown in the Hinf = 108 GeV, ϵeff = 10−4 case. For Hinf = 1013GeV,

isocurvature fluctuation constraints dominate over DM abundance curves for both θi = 1

and θi = 0 cases, removing the possibility for these ALPs to explain our DM abundance.

The constraints also depend on the equation of state during the reheating wreh for ALPs

starting to oscillate during this period, as depicted in the Hinf = 103 GeV, ϵeff = 10−4

case. Post-inflationary scenarios can also explain all dark matter for masses ma ≲ GeV,

with the exact range highly depending on Hinf and ϵeff values.

Using Eq. (2.14) we can translate the results in Figure 2 into the ones for the wormhole-

induced ALP cases, which are shown in the (ξ, fa) planes in Figure 3 for metric cases

and Figure 4 for Palatini cases, respectively. The gray-shaded regions in the bottom-left

corners correspond to the regions of mρ < ma for λΦ = 10−2. For both formalisms in the

pre-inflationary scenario, the dependence in the initial misalignment ⟨θ2mis⟩ implies that

having smaller ⟨θ2mis⟩s shifts overall constraints to heavier masses, consequently smaller ξ

values. Due to the different ⟨θ2mis⟩ dependence for the ALP abundance and the isocurvature

constraints, the most stringent constraint also switches for larger values of Hinf , where in

this case the ALPs induced by wormholes cannot consist the entirety of dark matter.

Therefore, the shaded regions for θi = 1 in Figure 3 and Figure 4 could be allowed if

one considers a smaller θi value, which will shift both DM and isocurvature constraints to

smaller ξ values at different rates. Correspondingly, the βiso constraint for θi = 0 provides

an irreducible lower bound on the ξ value for allowed ALPs. For post-inflationary scenarios

– 12 –



Figure 2. ma − fa contours for DM abundance (solid) and isocurvature constraints (dashed) for

Hinf = 103 GeV (top), Hinf = 108 GeV (middle), Hinf = 1013 GeV (bottom), with ϵeff = ϵmax
eff (left)

and ϵeff = 10−4 (right). Blue regions represent θi = 1, and orange regions correspond to θi = 0,

with the latter irrelevant for Hinf = 103 GeV as it resides in the no misalignment region. The wreh

dependence is explicitly depicted on the top right figure.
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the overall behavior of the constraints are similar between the two formalisms, with a larger

abundance from cosmic string constraining a larger range in the parameter space. For the

metric formalism, the nontrivial ξ − fa dependence near the GS limit also translates over

to the constraints. The region with ξ > M2
P /f

2
a is excluded and corresponds to the hatched

gray area in the top-right of the figures.

The different dependencies on the parameters lead to features in the constraints. Start-

ing with the pre-inflationary scenario, we notice a ξ independent region for the Ωa = ΩDM

contour. This is when the ALP starts to oscillate during the reheating era, with our figures

taking wreh = 0. This removes the ma dependence in Eq. (3.7), ultimately giving a flat

plateau in the ξ − fa plane. This can be seen in the top right panels of the Figures 3 and

4 in both solid and dashed blue curves.

Focusing on the small θi = 0 case, we also notice a fa independence in the DM

abundance and the isocurvature constraints for Hinf = (108, 1013) GeV values apart from

the GS limit. In this regime, the quantum fluctuations dominate the misalignment angle

⟨θ2i ⟩ ≃ (Hinf/(2πfa))
2, now canceling the fa dependence in the constraints.

The post-inflationary DM abundance contours also exhibit different ξ − fa dependen-

cies. Most noticeably there is a kink, which occurs as the ALP abundance from Eq. (3.9)

becomes a more stringent bound than Hosc > Hc, therefore gives a gap between the con-

straints coming from Hosc > Hc cases, and Hosc < Hc cases. Around this kink there is also

a change in the overall proportionality, with the former case the DM constraints have a

fa ∝ m2
a dependence, and the latter having a fa ∝ m

−1/4
a dependence.

5 Radial Mode Inflation

A scalar field with a large non-minimal coupling is widely considered in the context of

inflation which gives a consistent fit to CMB observations. Given that the radial mode ρ

has a non-minimal coupling, it could also take the role of the inflaton, and the consideration

of the isocurvature bound significantly differs from generic inflation cases [82]. To be

consistent with the power spectrum at CMB, As ≃ 2.1× 10−9 [83] with an inflation period

about 60 e-folds, the parameters ξ and λΦ should satisfy [84–86]:

ξ ≃

{
4.9× 104

√
λΦ (metric)

1.4× 1010λΦ (Palatini).
(5.1)

For large ξ, the Jordan frame field value when the perturbations of the CMB pivot

scale leave the horizon and the scale of the inflation Hinf are given by

ρ∗ ≃


(
4Ne

3ξ

)1/2

MP (metric)

2
√

2NeMP (Palatini)

, (5.2)
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Figure 3. Constraints for generic inflation in the metric formalism, with wreh = 0, λΦ = 10−2,

and mass contours (light gray). Colored regions are constrained, with solid lines giving Ωa = ΩDM

and dashed lines βiso = 0.038. Different color schemes for pre-inflation represent different θi cases.

The post-inflationary cases contain both misalignment and cosmic string contributions with Ωtot
a =

(1 + δdec)Ω
mis
a . The gray-shaded regions in the bottom-left corners correspond to the regions of

mρ < ma. – 15 –



Figure 4. Same plot scheme as in Figure 3, but in the Palatini formalism.
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and

Hinf ≃


√
6AsπMP

Ne
≃ 1.4× 1013GeV (metric)

√
AsπMP

Ne
√
ξ

≃ 5.9× 1012√
ξ

GeV (Palatini)

(5.3)

where Ne is the e-folding number during the inflation and we took Ne = 60 for numerical

evaluations. Note that the scale of the inflation is nearly fixed in metric formalism, while

it decreases for large ξ in the Palatini formalism. On the other hand, the inflation ends at

the field values of

ρe ≃


(

4

3ξ2

)1/4

MP (metric)(
8

ξ

)1/4

MP (Palatini)

. (5.4)

in the large ξ limit.

When identifying the U(1) radial mode as the inflaton, its field value becomes time

dependent and one should be careful which vev value of ρ to choose. For instance, the

isocurvature bound only probes the field values corresponding to the CMB pivot scale

given in Eq. (5.2). On the other hand, DM abundance receives contribution from the

quantum fluctuation in various scale during its field excursion. The largest contribution

comes at the time of the end of inflation with ρ ≃ ρe. Therefore, for DM abundance from

misalignment, we have to take Ωa = Ωa(⟨θ2mis,e⟩) where ⟨θ2mis,e⟩ has the vev of ρ field fa
replaced by ρe, explicitly,

⟨θ2mis,e⟩ = θ2i +

(
Hinf

2πρe

)2

. (5.5)

The isocurvature fraction βiso is determined at the CMB pivot scale where the corre-

sponding field values are given in Eq. (5.2) as

βiso ≃


9ξ

16πN3
e ⟨θ2mis,∗⟩

(
Ωa

ΩCDM

)2

, (metric)

1

64πN3
e ξ⟨θ2mis,∗⟩

(
Ωa

ΩCDM

)2

, (Palatini)

(5.6)

where we have used Eqs. (4.1), (5.2), and (5.3), and ⟨θ2mis,∗⟩ is given by

⟨θ2mis,∗⟩ = θ2i +

(
Hinf

2πρ∗

)2

. (5.7)

We again note that Ωa is given with Eq. (5.5) as discussed above.

Note that the ξ appears in the denominator for Palatini case, which further suppresses

the isocurvature perturbation in Palatini case. Taking those into account, the parameter

regions are depicted in Figure 5. The constraints look schematically similar with general
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Figure 5. Constraints for the radial mode inflation case for the metric formalism (top) and the

Palatini formalism (bottom), with the same color scheme with Figure 3. The different dependencies

of the constraints for θi = 0 originate from the different contributions in the quantum fluctuation

part of ⟨θ2mis,∗⟩ and ⟨θ2mis,e⟩. The figures also incorporate λΦ values compatible with CMB normal-

ization in Eq. (5.1), further widening the mρ < ma constraint region (light gray).

inflation cases, but exhibit several unique features. First, as now m2
a ∼ (1/ρeL

3
w) exp(−Sw)

at the end of the inflation, this slightly alters the no-misalignment region. The region for

mρ < ma also differs, as for radial mode inflation the λΦ value is determined through

Eq. (5.1) following CMB normalization. This makes a more notable change in the Palatini

case as the required λΦ value (hence the corresponding mρ) is significantly smaller for

lower ξ compared to the metric case. The different quantum fluctuation contributions

for ⟨θ2mis,∗⟩ and ⟨θ2mis,e⟩ induce a ξ dependence, which manifests in the θi = 0 case. For

large misalignment angles θi = 1, we can see that the isocurvature constraints are always

less stringent than the DM overabundance. This allows the case for pre-inflationary ALP
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DM even for larger Hinf values, which is in contrast with the general inflation case. For

pre-inflation production the Palatini formalism allows a wider mass range, which is the

opposite for the post-inflation production.

Let us discuss possible implications from the reheating. For a stable ALP, there could

be lower limit on the reheating temperature coming from the relativistic ALP remnant from

the inflaton decay during the reheating stages [87, 88], which could be constrained by the

non-observation of the dark radiation as ∆Neff ≲ 0.3 [83]. For instance, in the case when

the ALP from the decaying radial mode inflaton is light enough to remain relativistic at the

time of CMB or BBN, the reheating temperature Treh should be larger than 4×1013GeV if

ξ ≳ 104 and this lower bound becomes weaker for lower ξ values for the case of fa < MP /ξ

[88]. In the case of massive ALP, there exists further complication of transition to the

non-relativistic dark matter at late times while making the constraints from ∆Neff further

suppressed.

6 Conclusion

In this work we considered the possibility of ALPs with their mass being solely gravi-

tationally induced, and investigated the possibility of these consisting our dark matter.

Non-perturbative gravitational effects on global symmetry contribute with an exponential

dependence on the wormhole action. We obtained analytic results of the ALP wormhole

solution for both metric and Palatini formalism, with both wormhole actions proportional

to
√
ξ for ξ ≫ 1, and the metric formalism having a non-trivial ξ dependence near the

Giddings-Strominger limit. Identifying that the ALPs can take a large range of masses, we

focused on the masses ma ≳ 10−21 eV for dark matter purposes. We computed the ALP

abundance for both pre-inflationary and post-inflationary setups, with the former com-

ing from misalignment taking into account the period of reheating and the latter having

additional contributions from cosmic string decays. We further showed that constraints

from isocurvature fluctuations differ when the radial mode ρ plays the role of the infla-

ton, and overall demonstrated that these ALPs can account for the observed dark matter

density over a broad range of mass and symmetry breaking scales, driven purely by non-

perturbative gravitational effects.

There are several further directions to consider within this scenario. In our analysis, we

restricted the radial mode to be heavier than the ALP in order for it to stabilize at a vev.

Although this region is effectively constrained by ALP overproduction and isocurvature

perturbations, it could be interesting to rigorously consider the case when this relation

breaks down.

We also parameterized the reheating temperature without specifying a concrete exam-

ple on the reheating process. A more concrete setup could also induce interesting conse-

quences. For example, if the complex U(1) scalar field couples to right-handed neutrinos

via −κijΦNiNj , this allows the radial mode inflaton ρ to decay into these right-handed

neutrinos. This setup can then potentially explain the baryon asymmetry of our Universe

through a non-thermal leptogenesis [89–95] as well as neutrino mass through the seesaw

mechanism [96–99]. We leave a solid analysis on this scenario for a future work.

– 19 –



Acknowledgments

The authors thank Guillermo Ballesteros, Heejoo Kim, and Chang Sub Shin for insightful

discussions. The authors further acknowledge the Workshop on Physics of Dark Cosmos

held in Busan, Korea in 2022 where this project was initiated. This work was supported

by the National Research Foundation of Korea (NRF) grant funded by the Korea gov-

ernment (MSIT) (RS-2024-00340153) [DYC, SCP]. This work was supported by JSPS

KAKENHI Grant Numbers 24H02244 (KH), 24K07041 (KH). The work of SML was sup-

ported by Samsung Science Technology Foundation under Project Number SSTF-BA2302-

05 and the National Research Foundation of Korea (NRF) Grant RS-2023-00211732 and

2012K1A3A2A0105178151. The work of N.N. was supported in part by the Grant-in-Aid

for Young Scientists (No. 21K13916). The work of SCP was further supported by the Na-

tional Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT)(RS-

2023-00283129) and Yonsei internal grant for Mega-science (2023-22-048).

References

[1] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev.

Lett. 38 (1977) 1440.

[2] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of

Instantons, Phys. Rev. D 16 (1977) 1791.

[3] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev.

Lett. 40 (1978) 279.

[4] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223.

[5] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120

(1983) 127.

[6] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120

(1983) 133.

[7] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137.

[8] R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys.

Rev. D 52 (1995) 912 [hep-th/9502069].

[9] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D

83 (2011) 084019 [1011.5120].

[10] E. Witten, Symmetry and Emergence, Nature Phys. 14 (2018) 116 [1710.01791].

[11] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122

(2019) 191601 [1810.05337].

[12] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity,

Commun. Math. Phys. 383 (2021) 1669 [1810.05338].

[13] K.-M. Lee, Wormholes and Goldstone Bosons, Phys. Rev. Lett. 61 (1988) 263.

[14] S.B. Giddings and A. Strominger, STRING WORMHOLES, Phys. Lett. B 230 (1989) 46.

[15] L.F. Abbott and M.B. Wise, Wormholes and Global Symmetries, Nucl. Phys. B 325 (1989)

687.

– 20 –

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevD.52.912
https://doi.org/10.1103/PhysRevD.52.912
https://arxiv.org/abs/hep-th/9502069
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://doi.org/10.1038/nphys4348
https://arxiv.org/abs/1710.01791
https://doi.org/10.1103/PhysRevLett.122.191601
https://doi.org/10.1103/PhysRevLett.122.191601
https://arxiv.org/abs/1810.05337
https://doi.org/10.1007/s00220-021-04040-y
https://arxiv.org/abs/1810.05338
https://doi.org/10.1103/PhysRevLett.61.263
https://doi.org/10.1016/0370-2693(89)91651-1
https://doi.org/10.1016/0550-3213(89)90503-8
https://doi.org/10.1016/0550-3213(89)90503-8


[16] S.R. Coleman and K.-M. Lee, WORMHOLES MADE WITHOUT MASSLESS MATTER

FIELDS, Nucl. Phys. B 329 (1990) 387.

[17] A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can Gravitational Instantons

Really Constrain Axion Inflation?, JHEP 02 (2017) 097 [1607.06814].

[18] R. Alonso and A. Urbano, Wormholes and masses for Goldstone bosons, JHEP 02 (2019)

136 [1706.07415].

[19] T. Hertog, B. Truijen and T. Van Riet, Euclidean axion wormholes have multiple negative

modes, Phys. Rev. Lett. 123 (2019) 081302 [1811.12690].

[20] A. Hebecker, T. Mikhail and P. Soler, Euclidean wormholes, baby universes, and their impact

on particle physics and cosmology, Front. Astron. Space Sci. 5 (2018) 35 [1807.00824].

[21] G.J. Loges, G. Shiu and N. Sudhir, Complex saddles and Euclidean wormholes in the

Lorentzian path integral, JHEP 08 (2022) 064 [2203.01956].

[22] S. Andriolo, G. Shiu, P. Soler and T. Van Riet, Axion wormholes with massive dilaton, Class.

Quant. Grav. 39 (2022) 215014 [2205.01119].

[23] G.J. Loges, G. Shiu and T. Van Riet, A 10d construction of Euclidean axion wormholes in

flat and AdS space, JHEP 06 (2023) 079 [2302.03688].

[24] C. Jonas, G. Lavrelashvili and J.-L. Lehners, Zoo of axionic wormholes, Phys. Rev. D 108

(2023) 066012 [2306.11129].

[25] Y. Kanazawa, Axionic wormholes with R2 correction in metric and Palatini formulations,

Phys. Rev. D 109 (2024) 076009 [2310.14641].

[26] L. Martucci, N. Risso, A. Valenti and L. Vecchi, Wormholes in the axiverse, and the species

scale, JHEP 07 (2024) 240 [2404.14489].

[27] T. Hertog, S. Maenaut, B. Missoni, R. Tielemans and T. Van Riet, Stability of Axion-Saxion

wormholes, 2405.02072.

[28] M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273

(1986) 109.

[29] M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn

mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003].

[30] S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992)

539.

[31] R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions

to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132

[hep-ph/9203206].

[32] S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B

283 (1992) 278.

[33] J. Alvey and M. Escudero, The axion quality problem: global symmetry breaking and

wormholes, JHEP 01 (2021) 032 [2009.03917].

[34] P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982)

1156.

[35] A. Vilenkin, Cosmic Strings and Domain Walls, Phys. Rept. 121 (1985) 263.

[36] R.L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225.

– 21 –

https://doi.org/10.1016/0550-3213(90)90149-8
https://doi.org/10.1007/JHEP02(2017)097
https://arxiv.org/abs/1607.06814
https://doi.org/10.1007/JHEP02(2019)136
https://doi.org/10.1007/JHEP02(2019)136
https://arxiv.org/abs/1706.07415
https://doi.org/10.1103/PhysRevLett.123.081302
https://arxiv.org/abs/1811.12690
https://doi.org/10.3389/fspas.2018.00035
https://arxiv.org/abs/1807.00824
https://doi.org/10.1007/JHEP08(2022)064
https://arxiv.org/abs/2203.01956
https://doi.org/10.1088/1361-6382/ac8fdc
https://doi.org/10.1088/1361-6382/ac8fdc
https://arxiv.org/abs/2205.01119
https://doi.org/10.1007/JHEP06(2023)079
https://arxiv.org/abs/2302.03688
https://doi.org/10.1103/PhysRevD.108.066012
https://doi.org/10.1103/PhysRevD.108.066012
https://arxiv.org/abs/2306.11129
https://doi.org/10.1103/PhysRevD.109.076009
https://arxiv.org/abs/2310.14641
https://doi.org/10.1007/JHEP07(2024)240
https://arxiv.org/abs/2404.14489
https://arxiv.org/abs/2405.02072
https://doi.org/10.1016/0550-3213(86)90043-X
https://doi.org/10.1016/0550-3213(86)90043-X
https://doi.org/10.1016/0370-2693(92)90492-M
https://arxiv.org/abs/hep-th/9202003
https://doi.org/10.1103/PhysRevD.46.539
https://doi.org/10.1103/PhysRevD.46.539
https://doi.org/10.1016/0370-2693(92)90491-L
https://arxiv.org/abs/hep-ph/9203206
https://doi.org/10.1016/0370-2693(92)90019-Z
https://doi.org/10.1016/0370-2693(92)90019-Z
https://doi.org/10.1007/JHEP01(2021)032
https://arxiv.org/abs/2009.03917
https://doi.org/10.1103/PhysRevLett.48.1156
https://doi.org/10.1103/PhysRevLett.48.1156
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1016/0370-2693(86)90300-X


[37] G.R. Vincent, M. Hindmarsh and M. Sakellariadou, Scaling and small scale structure in

cosmic string networks, Phys. Rev. D 56 (1997) 637 [astro-ph/9612135].

[38] M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects,

Phys. Rev. D 91 (2015) 065014 [1412.0789].

[39] A. Vilenkin and T. Vachaspati, Radiation of Goldstone Bosons From Cosmic Strings, Phys.

Rev. D 35 (1987) 1138.

[40] K. Hamaguchi, Y. Kanazawa and N. Nagata, Axion quality problem alleviated by nonminimal

coupling to gravity, Phys. Rev. D 105 (2022) 076008 [2108.13245].

[41] D.Y. Cheong, K. Hamaguchi, Y. Kanazawa, S.M. Lee, N. Nagata and S.C. Park, Axion

quality problem and nonminimal gravitational coupling in the Palatini formulation, Phys.

Rev. D 108 (2023) 015007 [2210.11330].

[42] D.Y. Cheong, S.C. Park and C.S. Shin, Effective theory approach for axion wormholes, JHEP

07 (2024) 039 [2310.11260].

[43] S.B. Giddings and A. Strominger, Axion Induced Topology Change in Quantum Gravity and

String Theory, Nucl. Phys. B 306 (1988) 890.

[44] A. Einstein, Einheitliche feldtheorie von gravitation und elektrizität, Verlag der

Koeniglich-Preussichen Akademie der Wissenschaften 22 (July, 1925) 414.

[45] M. Ferraris, M. Francaviglia and C. Reina, Variational formulation of general relativity from

1915 to 1925 “palatini’s method” discovered by einstein in 1925, General Relativity and

Gravitation 14 no. 3 (Mar, 1982) 243.

[46] M. Ferraris, M. Francaviglia and I. Volovich, The Universality of vacuum Einstein equations

with cosmological constant, Class. Quant. Grav. 11 (1994) 1505 [gr-qc/9303007].

[47] G. Magnano and L.M. Sokolowski, On physical equivalence between nonlinear gravity theories

and a general relativistic selfgravitating scalar field, Phys. Rev. D 50 (1994) 5039

[gr-qc/9312008].

[48] J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev.

Lett. 28 (1972) 1082.

[49] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752.

[50] E.G.M. Ferreira, Ultra-light dark matter, Astron. Astrophys. Rev. 29 (2021) 7 [2005.03254].

[51] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022)

083C01.

[52] C.A.J. O’Hare, Cosmology of axion dark matter, PoS COSMICWISPers (2024) 040

[2403.17697].

[53] C. O’Hare, “cajohare/axionlimits: Axionlimits.”

https://cajohare.github.io/AxionLimits/, July, 2020. 10.5281/zenodo.3932430.

[54] M.J. Stott and D.J.E. Marsh, Black hole spin constraints on the mass spectrum and number

of axionlike fields, Phys. Rev. D 98 (2018) 083006 [1805.02016].

[55] M. Baryakhtar, M. Galanis, R. Lasenby and O. Simon, Black hole superradiance of

self-interacting scalar fields, Phys. Rev. D 103 (2021) 095019 [2011.11646].

– 22 –

https://doi.org/10.1103/PhysRevD.56.637
https://arxiv.org/abs/astro-ph/9612135
https://doi.org/10.1103/PhysRevD.91.065014
https://arxiv.org/abs/1412.0789
https://doi.org/10.1103/PhysRevD.35.1138
https://doi.org/10.1103/PhysRevD.35.1138
https://doi.org/10.1103/PhysRevD.105.076008
https://arxiv.org/abs/2108.13245
https://doi.org/10.1103/PhysRevD.108.015007
https://doi.org/10.1103/PhysRevD.108.015007
https://arxiv.org/abs/2210.11330
https://doi.org/10.1007/JHEP07(2024)039
https://doi.org/10.1007/JHEP07(2024)039
https://arxiv.org/abs/2310.11260
https://doi.org/10.1016/0550-3213(88)90446-4
https://doi.org/10.1007/BF00756060
https://doi.org/10.1007/BF00756060
https://doi.org/10.1088/0264-9381/11/6/015
https://arxiv.org/abs/gr-qc/9303007
https://doi.org/10.1103/PhysRevD.50.5039
https://arxiv.org/abs/gr-qc/9312008
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1007/s00159-021-00135-6
https://arxiv.org/abs/2005.03254
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.22323/1.454.0040
https://arxiv.org/abs/2403.17697
https://cajohare.github.io/AxionLimits/
https://doi.org/10.1103/PhysRevD.98.083006
https://arxiv.org/abs/1805.02016
https://doi.org/10.1103/PhysRevD.103.095019
https://arxiv.org/abs/2011.11646


[56] S. Hoof, D.J.E. Marsh, J. Sisk-Reynés, J.H. Matthews and C. Reynolds, Getting More Out of

Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints,

2406.10337.

[57] M. Kamionkowski and A.G. Riess, The Hubble Tension and Early Dark Energy, Ann. Rev.

Nucl. Part. Sci. 73 (2023) 153 [2211.04492].

[58] E. Komatsu, New physics from the polarized light of the cosmic microwave background,

Nature Rev. Phys. 4 (2022) 452 [2202.13919].

[59] DESI collaboration, DESI 2024 VI: Cosmological Constraints from the Measurements of

Baryon Acoustic Oscillations, 2404.03002.

[60] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 110 (2024)

030001.

[61] G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely,

JHEP 01 (2016) 034 [1511.02867].

[62] D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys.

Lett. B 195 (1987) 361.

[63] D.H. Lyth, Estimates of the cosmological axion density, Phys. Lett. B 275 (1992) 279.

[64] V.B. Klaer and G.D. Moore, How to simulate global cosmic strings with large string tension,

JCAP 10 (2017) 043 [1707.05566].

[65] M. Gorghetto, E. Hardy and G. Villadoro, Axions from Strings: the Attractive Solution,

JHEP 07 (2018) 151 [1806.04677].

[66] M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, Long-term dynamics of

cosmological axion strings, PTEP 2018 (2018) 091E01 [1806.05566].

[67] C.J.A.P. Martins, Scaling properties of cosmological axion strings, Phys. Lett. B 788 (2019)

147 [1811.12678].

[68] M. Buschmann, J.W. Foster and B.R. Safdi, Early-Universe Simulations of the Cosmological

Axion, Phys. Rev. Lett. 124 (2020) 161103 [1906.00967].

[69] M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren and J. Urrestilla, Scaling Density of Axion

Strings, Phys. Rev. Lett. 124 (2020) 021301 [1908.03522].

[70] A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004

[1812.02669].

[71] J.N. Benabou, M. Buschmann, S. Kumar, Y. Park and B.R. Safdi, Signatures of primordial

energy injection from axion strings, Phys. Rev. D 109 (2024) 055005 [2308.01334].

[72] A. Drew, T. Kinowski and E.P.S. Shellard, Axion string source modeling, Phys. Rev. D 110

(2024) 043513 [2312.07701].

[73] J.N. Benabou, Q. Bonnefoy, M. Buschmann, S. Kumar and B.R. Safdi, Cosmological

dynamics of string theory axion strings, Phys. Rev. D 110 (2024) 035021 [2312.08425].

[74] K. Saikawa, J. Redondo, A. Vaquero and M. Kaltschmidt, Spectrum of global string networks

and the axion dark matter mass, JCAP 10 (2024) 043 [2401.17253].

[75] H. Kim, J. Park and M. Son, Axion dark matter from cosmic string network, JHEP 07

(2024) 150 [2402.00741].

[76] D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [1510.07633].

– 23 –

https://arxiv.org/abs/2406.10337
https://doi.org/10.1146/annurev-nucl-111422-024107
https://doi.org/10.1146/annurev-nucl-111422-024107
https://arxiv.org/abs/2211.04492
https://doi.org/10.1038/s42254-022-00452-4
https://arxiv.org/abs/2202.13919
https://arxiv.org/abs/2404.03002
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1007/JHEP01(2016)034
https://arxiv.org/abs/1511.02867
https://doi.org/10.1016/0370-2693(87)90032-3
https://doi.org/10.1016/0370-2693(87)90032-3
https://doi.org/10.1016/0370-2693(92)91590-6
https://doi.org/10.1088/1475-7516/2017/10/043
https://arxiv.org/abs/1707.05566
https://doi.org/10.1007/JHEP07(2018)151
https://arxiv.org/abs/1806.04677
https://doi.org/10.1093/ptep/pty098
https://arxiv.org/abs/1806.05566
https://doi.org/10.1016/j.physletb.2018.11.031
https://doi.org/10.1016/j.physletb.2018.11.031
https://arxiv.org/abs/1811.12678
https://doi.org/10.1103/PhysRevLett.124.161103
https://arxiv.org/abs/1906.00967
https://doi.org/10.1103/PhysRevLett.124.021301
https://arxiv.org/abs/1908.03522
https://arxiv.org/abs/1812.02669
https://doi.org/10.1103/PhysRevD.109.055005
https://arxiv.org/abs/2308.01334
https://doi.org/10.1103/PhysRevD.110.043513
https://doi.org/10.1103/PhysRevD.110.043513
https://arxiv.org/abs/2312.07701
https://doi.org/10.1103/PhysRevD.110.035021
https://arxiv.org/abs/2312.08425
https://doi.org/10.1088/1475-7516/2024/10/043
https://arxiv.org/abs/2401.17253
https://doi.org/10.1007/JHEP07(2024)150
https://doi.org/10.1007/JHEP07(2024)150
https://arxiv.org/abs/2402.00741
https://doi.org/10.1016/j.physrep.2016.06.005
https://arxiv.org/abs/1510.07633


[77] M. Kawasaki and K. Nakayama, Axions: Theory and Cosmological Role, Ann. Rev. Nucl.

Part. Sci. 63 (2013) 69 [1301.1123].

[78] L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models,

Phys. Rept. 870 (2020) 1 [2003.01100].

[79] M.P. Hertzberg, M. Tegmark and F. Wilczek, Axion Cosmology and the Energy Scale of

Inflation, Phys. Rev. D 78 (2008) 083507 [0807.1726].

[80] J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Isocurvature forecast in the

anthropic axion window, JCAP 06 (2009) 022 [0904.0647].

[81] M. Beltran, J. Garcia-Bellido and J. Lesgourgues, Isocurvature bounds on axions revisited,

Phys. Rev. D 75 (2007) 103507 [hep-ph/0606107].

[82] M. Fairbairn, R. Hogan and D.J.E. Marsh, Unifying inflation and dark matter with the

Peccei-Quinn field: observable axions and observable tensors, Phys. Rev. D 91 (2015) 023509

[1410.1752].

[83] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.

641 (2020) A10 [1807.06211].

[84] F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.

Lett. B 659 (2008) 703 [0710.3755].

[85] F. Bauer and D.A. Demir, Inflation with Non-Minimal Coupling: Metric versus Palatini

Formulations, Phys. Lett. B 665 (2008) 222 [0803.2664].

[86] D.Y. Cheong, S.M. Lee and S.C. Park, Reheating in models with non-minimal coupling in

metric and Palatini formalisms, JCAP 02 (2022) 029 [2111.00825].

[87] A. Mazumdar, S. Qutub and K. Saikawa, Nonthermal axion dark radiation and constraints,

Phys. Rev. D 94 (2016) 065030 [1607.06958].

[88] K. Kaneta, S.M. Lee, K.-y. Oda and T. Takahashi, Pseudo-Nambu-Goldstone Boson

Production from Inflaton Coupling during Reheating, 2406.09045.

[89] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174

(1986) 45.

[90] G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258

(1991) 305.

[91] K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R

invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337].

[92] G. Lazarides, Leptogenesis in supersymmetric hybrid inflation, Springer Tracts Mod. Phys.

163 (2000) 227 [hep-ph/9904428].

[93] G.F. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at

preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242].

[94] T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay,

Phys. Lett. B 464 (1999) 12 [hep-ph/9906366].

[95] T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary

universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559].

[96] P. Minkowski, µ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977)

421.

– 24 –

https://doi.org/10.1146/annurev-nucl-102212-170536
https://doi.org/10.1146/annurev-nucl-102212-170536
https://arxiv.org/abs/1301.1123
https://doi.org/10.1016/j.physrep.2020.06.002
https://arxiv.org/abs/2003.01100
https://doi.org/10.1103/PhysRevD.78.083507
https://arxiv.org/abs/0807.1726
https://doi.org/10.1088/1475-7516/2009/06/022
https://arxiv.org/abs/0904.0647
https://doi.org/10.1103/PhysRevD.75.103507
https://arxiv.org/abs/hep-ph/0606107
https://doi.org/10.1103/PhysRevD.91.023509
https://arxiv.org/abs/1410.1752
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://arxiv.org/abs/0710.3755
https://doi.org/10.1016/j.physletb.2008.06.014
https://arxiv.org/abs/0803.2664
https://doi.org/10.1088/1475-7516/2022/02/029
https://arxiv.org/abs/2111.00825
https://doi.org/10.1103/PhysRevD.94.065030
https://arxiv.org/abs/1607.06958
https://arxiv.org/abs/2406.09045
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(91)91090-I
https://doi.org/10.1016/0370-2693(91)91090-I
https://doi.org/10.1143/PTP.92.437
https://arxiv.org/abs/hep-ph/9405337
https://arxiv.org/abs/hep-ph/9904428
https://doi.org/10.1088/1126-6708/1999/08/014
https://arxiv.org/abs/hep-ph/9905242
https://doi.org/10.1016/S0370-2693(99)01020-5
https://arxiv.org/abs/hep-ph/9906366
https://doi.org/10.1103/PhysRevD.61.083512
https://arxiv.org/abs/hep-ph/9907559
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0370-2693(77)90435-X


[97] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131

(1979) 95.

[98] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf.

Proc. C 790927 (1979) 315 [1306.4669].

[99] R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity

Nonconservation, Phys. Rev. Lett. 44 (1980) 912.

– 25 –

https://arxiv.org/abs/1306.4669
https://doi.org/10.1103/PhysRevLett.44.912

	Introduction
	 ALP Mass from the Wormhole Solution
	Non-minimally Coupled U(1) Scalar
	Wormhole Solution 
	ALP Mass

	ALP Dark Matter Abundance
	fa > { Treh, TdS }: Pre-inflationary Scenario
	fa < { Treh, TdS }: Post-inflationary Scenario
	Case I: fa < Treh
	Case II: Treh < fa < TdS


	Generic Inflation
	Radial Mode Inflation
	Conclusion

