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Abstract: Verification is a critical aspect of designing front-end (FE) readout ASICs for High-
Energy Physics (HEP) experiments. These ASICs share several similar functional features, resulting
in similar verification objectives, which can be addressed using comparable verification strategies.
This contribution presents a set of re-usable verification components for addressing common ver-
ification tasks, such as clock generation, reset handling, configuration, as well as hit and fault
injections. The components were developed as part of the CHIPS initiative and they have been
successfully used in the verification of multiple HEP ASICs.
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1 Introduction

ASICs for detector readout developed by the High-Energy Physics (HEP) community can be divided
into two main categories: front-end (FE) readout and concentrator ASICs.

FE readout ASICs are responsible for receiving analog signals from a sensor, converting them
into digital signals, and transmitting the resulting values outside of the ASIC. Typically, a FE
readout ASIC includes multiple readout channels, as well as a data transport layer that combines the
data from all active readout channels and sends it to the detector readout. Each readout channel is a
mixed signal circuit. The digital module carries out functions such as filtering, data compression,
and transmission of the resultant values. FE readout ASICs perform similar functions with minor
variations to meet detector requirements.

Concentrator ASICs are responsible for receiving data from multiple FE readout ASICs, pro-
cessing them, and sending them out on one or more high-speed serial interfaces. The data processing
includes alignment, error detection, zero-suppression, data compression, and re-ordering.

Functional verification of these ASICs is fundamental to implement shift-left strategies to
achieve first-time-silicon success. Given the similarities between HEP ASICs, it can be beneficial
to re-use verification components avoiding duplication of work. This contribution describes a set
of re-usable verification components, developed at CERN under the CHIPS initiative, that allow
bringing up a verification environment in hours instead of weeks.

2 Universal Verification Methodology

The Universal Verification Methodology (UVM) is, de facto, the industry standard for functional
verification. Developed at the beginning of the 2010s, it is now an IEEE standard [1] since 2020.

UVM defines a set of base classes which allow building a comprehensive, reusable, and scalable
verification environment. It provides a standardized framework for developing a testbench which
leverages advanced verification techniques.

• Constrained-random stimuli generation: the stimuli driving the design are not predetermined
but they are instead randomized, inside a pool of valid stimuli.

• Functional coverage analysis: one of the big questions of verification is ”When are we done
verifying?”. The answer to this question lies in the functional coverage. The designer of the
testbench can define functional covergroups and coverpoints. The verification environment
then allows gathering coverage from a set of tests to understand when all the predefined
scenarios have been observed.

• Reusable testbench components: UVM encourages the design of hierarchical and reusable
UVM verification components (UVCs) [2]. Re-usability introduces overhead in early stages
but saves time in the long run.

UVM is widely supported by the major EDA tools. In recent years, support has also been
added to open-source simulators.
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3 UVM verification components

In this contribution, we focus on the description of reusable UVCs. The contribution is meant to be
an overview of the available UVCs, however, it does not replace the integration guide available for
each UVC. The components were developed as part of the verification environment of the ASICs
indicated in section 5 . They are made available to the HEP community via the CERN ASIC
support [3] in the form of GitLab repositories.

The UVCs presented here are wrapped in the form of UVM environments or UVM agents.
The components implement an interface allowing the connection to the DUT and a monitor to
observe and reconstruct the transactions on the interface. They also implement sequencer/driver
pairs and they are complemented by predefined sequences that the user can extend: these will only
be instantiated when the UVC is used as an active component.

3.1 Pin UVC

HEP ASICs are generally designed with several General-Purpose I/O (GPIO) pins that are either
static (e.g. device ID) or dynamic (reset, trigger, sync, monitor, etc.). Pin UVC implements UVM
collaterals to control and monitor these single-ended signals.

To configure this UVC, users need to specify several input parameters: the number of pins to
be managed, the initial state of each pin, and whether the assertion and de-assertion of the signal
should be synchronous or asynchronous.

The UVC is provided with sequences that allow users to toggle the signal or generate a single
pulse for testing purposes. Additionally, it includes randomizable parameters to vary the duration
and the high or low time of the pulse, adding flexibility and enhancing the testing scope.

3.2 Clock UVC

The Clock UVC is intended to generate a set of related clock signals for various elements within a
verification environment, such as DUTs or other UVCs.

This component allows users to configure key clock attributes, such as the period of the fastest
clock and the ratio between the periods of the slowest and fastest clocks, specified as an integer.

It also offers versatile sequence capabilities, allowing for the generation of clock signals that
are integer multiples of the fastest clock period. Additionally, users can opt to generate clocks with
or without jitter, adding flexibility for diverse testing scenarios.

Moreover, the Clock UVC includes randomizable parameters to enable variation in clock
generation. These parameters include the ratio relative to the fastest clock, maximum jitter, and
clock phase, providing robust control for testing needs.

3.3 I2C UVC

The I2C UVC allows controlling an I2C bus [4], enabling various functionalities crucial for test
environments. It is applicable in several key scenarios: configuring the DUT within both top-
level and system-level testbenches and interfacing seamlessly with the UVM Register Access Layer
(RAL). The UVC provides an abstraction layer compatible both with a simplified version of the
UVC (simple mode) or major EDA vendor VIP (VIP mode), although a license is required for the
latter.
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Configuration options allow users to select between a simple mode and VIP mode, define the
DUT device ID, set the address and data lengths, and specify whether a repeated start or stop
condition is required, including a start-on-read option.

This component supports running a full range of I2C sequences on the bus and allows DUT
access through the RAL. Additionally, certain parameters are randomized, including the device ID,
address, data, and access type, allowing for varied and comprehensive test coverage.

3.4 Wishbone UVC

The Wishbone UVC is designed to manage and test Wishbone bus operations effectively within a
UVM environment. This component is applicable for several primary use cases: configuring the
DUT in module-level testbenches, verifying the operations of the Wishbone master, and integrating
seamlessly with the UVM Register Abstraction Layer (RAL).

For configuration, the UVC accepts inputs that allow users to define its operation as either a
master or slave on the bus, along with setting address and data lengths. The component supports
a variety of Wishbone sequences, which can be run directly on the bus, and enables DUT access
through the RAL. Additionally, the UVC includes randomizable parameters for address, data, and
access, enhancing test coverage through variability in simulation runs.

3.5 Hit UVC

The Hit UVC is designed to facilitate the simulation of particle hits within a pixel-like readout
chip. Its primary use cases include providing a structured methodology for injecting particle hits
into front-end readout chips and verifying the operation of these chips under simulated particle
interactions.

The component accepts several key user inputs, such as the level of integration effort and the
matrix dimensions, defined by 𝑥-size and 𝑦-size, which shape the spatial framework for the hit
locations. It supports sequences for hit injection, either by reading predefined hit patterns from an
external file or by generating random hits.

In terms of customization, the UVC offers randomizable parameters, allowing users to vary the
hit location (specified in 𝑥 and 𝑦 coordinates), the charge associated with each hit, and the timing
between successive hits. This flexibility enables diverse test scenarios, enhancing the thoroughness
of the verification process for the front-end readout chip.

3.6 SEE UVC

The SEE UVC is designed to simulate and evaluate the impact of Single Event Effects (SEEs),
including both Single Event Upsets (SEUs) and Single Event Transients (SETs), on digital designs.
This component primarily facilitates three use cases: it provides a structured methodology for
injecting SEEs, allows for the exploration of design susceptibility to these events, and enables
verification of the system’s functionality under SEE conditions.

To operate, the UVC requires specific user inputs, including integration scripts, a list of nodes
where faults may be introduced, and a strategy for filtering these nodes to focus on relevant areas.

The UVC follows a defined sequence of operations: initiating the fault injection, stopping it as
required, and re-starting the injection if necessary to support different phases of testing. Moreover,
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the UVC offers randomizable parameters, allowing users to vary the fault type (selecting from SET,
SEU, or generic SEE), the specific node affected, and the duration of the fault, to create diverse test
scenarios and thoroughly examine design robustness.

4 Integration example

In this section, we’re describing a simple DUT, the event recorder, in figure 1a, as an example of
how the aforementioned UVCs can be used to bring up the verification environment for the DUT.

The DUT emulates a 4-channels front-end ASIC with Time of Arrival (TOA) and Time over
Threshold (TOT) measurement of the input signal event_i. The DUT receives two synchronous
clocks: a slow (40𝑀𝐻𝑧) and a fast (320𝑀𝐻𝑧) one. Two different resets are available: an asyn-
chronous hard reset (resetting the whole DUT) and a 40𝑀𝐻𝑧-synchronous soft reset (not affecting
the configuration registers). The DUT user configuration can be achieved using the I2C protocol.
The device ID on the I2C bus is configured by four dedicated pins, that need to be stable over the
operation of the DUT.

The corresponding testbench for the DUT, in figure 1b. Most of the UVCs above can be used
to steer the inputs of the DUT:

• The clock UVC can be used to provide two synchronous clocks at the required frequencies.
The two clocks will be synchronous by design. The effect of the input clock jitter can be
modeled simply by constraining the maximum jitter in the UVC configuration.

• The Pin UVC can be used to control three different interfaces: the two resets and the I2C
device ID. Two different instances of the Pin UVC will control the resets. These can be
configured to be toggled asynchronously, for the hard reset, or synchronously to the 40𝑀𝐻𝑧

clock, for the soft reset. The resets can be toggled using the provided sequences. An
additional instance of the Pin UVC can be used to statically drive the I2C device ID. This
instance will not make use of sequences to steer the value of the GPIO, but its value can be
randomized during the configuration of the UVC.

• The I2C bus can be driven using the I2C UVC. The device ID of the DUT can be constrained
to match the value provided via the Pin UVC. The verification engineer can provide a RAL
and bind it to the I2C UVC via the provided adapter. This will allow testing randomized
configurations of the DUT.

• In order to inject particle hits data into the DUT, the Hit UVC can be used. The user will have
to properly constrain the hierarchical path to the node where to inject (force and release) the
hit. The verification engineer must provide a sequence to inject the single hits. This depends
on the expected rate of events to be observed by the ASIC. The UVC will also provide a
transaction item which can be used in the reference model of the DUT.

• Finally the SEE UVC can be used, once the verification framework is in place to inject SEEs
into the DUT. This allows verifying resilience to SEUs in the DUT triplicated RTL, and to
SEEs in the gate-level netlist of the implemented DUT. Some examples of potential fault
injection campaigns are described here [5].
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The verification engineer is left with the task of designing only the readout UVC and the DUT
reference model and scoreboard.
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Figure 1: Example of DUT (a) and testbench with the UVCs connected to the DUT (b).

5 Conclusions

The UVCs presented in this contribution have been successfully used in the verification of multiple
ASICs: ATLAS HGTD ALTIROC [6], ATLAS/CMS RD53 [7], CMS HGCAL ECON-D and
ECON-T [8], and EXP28 [9]. Moreover, they are currently being used in the verification of the
following ASICs: ALICE ITS MOSAIX [10], LHCb RICH Fastrich [11], and in the LA-Picopix 2.
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