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Abstract: We construct backreacted geometries dual to the supersymmetric mass de-
formation of the IKKT matrix model. They are Euclidean type IIB supergravity solutions
given in terms of an electrostatic potential, having SO(7)× SO(3) isometry and 16 super-
symmetries. Quantizing the fluxes, we find that the supergravity solutions are in one-to-one
correspondence with fuzzy sphere vacua of the matrix model.
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1 Introduction

The gauge/gravity duality is our best UV complete model of quantum gravity. It tells
us that some quantum mechanical systems are well described by Einstein gravity in some
regimes, usually involving many strongly coupled degrees of freedom. We would like to find
out what is special about such systems.

In this paper, we study the simplest toy model that has an emergent Einstein gravity
description, namely, a matrix integral. More precisely, we study the polarized IKKT matrix
model [1, 2]. This is a supersymmetric mass deformation of the Ishibashi-Kawai-Kitazawa-
Tsuchiya (IKKT) matrix model [3]. It has vacua1 given by N -dimensional representations
of SU(2). These fuzzy sphere configurations are depicted on the left of Figure 2. For N×N
matrices, the number of such vacua is P (N), the number of integer partitions of N .

The IKKT matrix model was originally proposed as a non-perturbative definition of
(type IIB) string theory. This is similar in spirit to the BFSS conjecture [4, 5], which pro-
poses that the BFSS matrix quantum mechanics provides a non-perturbative definition of
M-theory in flat space. While testing or verifying the BFSS conjecture remains challenging
(see [6, 7] and references therein for recent discussions), the BFSS model was later revisited
from the perspective of standard holography [8, 9], which helped to clarify its relation to
M-theory and sharpen the original conjecture. In contrast, little work has been done on
holography for the IKKT model, with the notable exception of studies of the decoupling
limit of the D-instanton background [10–12]. This was partly due to the absence of observ-
ables that could be computed and compared on both sides. In this paper and a companion
paper [13], we demonstrate a one-to-one correspondence between vacua of the polarized
IKKT matrix integral and the dual backreacted geometries.

More precisely, we identify a family of geometries dual to the polarized IKKT matrix
integral, that are solutions of Euclidean type IIB supergravity with vanishing 5-form flux,
see (3.9). The metric takes the form of a warped product, with a 2-sphere and a 6-sphere
fibered over a 2-dimensional plane parametrized by (ρ, z),

ds2 = R2(ρ, z)
2dΩ2

2 +R6(ρ, z)
2dΩ2

6 +H(ρ, z)2(dρ2 + dz2). (1.1)

The solutions are given in terms of a single function V (ρ, z) that solves the 4 dimensional
axially symmetric Laplace equation,

V ′′ +
2

ρ
V̇ + V̈ = 0 (1.2)

where V ′ ≡ ∂zV and V̇ ≡ ∂ρV . We can think of ρ as the radial coordinate on R3 and z a
coordinate along the orthogonal direction in R4. This allows us to use an electrostatic anal-
ogy, where V is an electrostatic potential. This is similar to the Lin-Maldacena geometries
[14, 15] that describe the vacua of the BMN model [16].

Let us describe the electrostatic analogy in more detail. Boundary conditions are
imposed by considering q conducting disks2 of radius ρs, centered on the z-axis at different

1By vacuum we simply mean a local minimum of the action.
2We use the word disks by analogy with [14] but in our case we have 3D conducting balls in R4.
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ρ

z

S6 → 0

S2 → 0

Σ7

Σ3

Figure 1: Picture of the geometry in the (ρ, z) plane. The 10d geometry is obtained
by fibering an S2 and an S6. The blue lines are defined by V̇ ≡ ∂ρV = 0 and are the
regions where S2 shrinks. The red line is the z-axis ρ = 0 where the S6 shrinks. We can
construct 7-cycles Σ7 as the product of the 6-sphere times a segment on the (ρ, z) plane
whose endpoints have ρ = 0 (where S6 shrinks). Similarly, there are 3-cycles Σ3 given by
the 2-sphere times a segment connecting points where S2 shrinks.

positions zs and of given charges Qs, with s = 1, ..., q. In addition we add a background
potential that grows at infinity, see (3.13), and an infinite grounded disk (or grounded plane)
at z = 0. Those boundary conditions come from requiring that the supergravity solution
is regular. This also determines the size of the disks ρs(Qs, zs) since in general we expect
the electric field to be infinite at the tip of a disk. However, since there is a background
potential, we can choose the size of the disks so that the total electric field vanishes at the
tip. This ensures that we don’t have any singularity there.

These geometries are topologically non-trivial and they have various non-contractible
cycles. This comes from the fact that the 6-sphere collapses on the z-axis and the 2-sphere
collapses on the disks. We can then construct 3-cycles and 7-cycles by considering curves
in the (ρ, z) plane ending on locations where the spheres shrink. The cycles are constructed
by fibering a sphere over such curves, as shown in Figure 1.

The different supergravity fluxes can then be integrated over those cycles. Imposing
the Dirac quantization conditions we find that the charges of the disks and their positions
are quantized. Relating those quantum numbers to the dimensions and degeneracies of the
SU(2) irreducible representations, we find a one-to-one correspondence between the fuzzy
sphere vacua and the supergravity solutions, as depicted in Figure 2.

We also study the system from the perspective of a probe brane. We consider a probe
spherical D1-brane in a supergravity background that has a constant Ramond-Ramond
flux, and compute its size by minimizing the DBI action. We get an exact correspondence
between this radius and the radius of the fuzzy sphere vacua of the matrix model. Further-
more we show that this radius can also be computed in the backreacted geometry as the
geodesic distance between the grounded conducting plane and a disk.

Structure of the paper. In section 2, we review the supersymmetric mass deformation
of the IKKT matrix model. We study the saddle points of the matrix integral and show

– 3 –



Xi =
3Ω

8

J i
N1

. . .

J i
N1

. . .

J i
Nq

. . .

J i
Nq





n
1

n
q

ρ
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z1 = 3πµα′

8 N1 Q1 = π4µ6α′3gs
32 n1

zq = 3πµα′

8 Nq Qq = π4µ6α′3gs
32 nq

Figure 2: Correspondence between the fuzzy sphere vacua of the matrix model and the
dual geometries. For each spin js SU(2) irreducible representation of dimensionNs = 2js+1

we put a disk at position zs ∼ Ns. The number ns of copies of this representation appearing
determines the charge of that disk Qs ∼ ns. Those integers are related to the D1 brane
charge and NS5 brane charge by ND1,s = ns and NNS5,s = Ns −Ns−1.

that they are fuzzy spheres. In section 3, we construct Euclidean type IIB geometries with
SO(3)×SO(7) symmetry and 16 supercharges. We conclude in section 4 with a discussion
of our results. Our appendix A shows how to obtain the Euclidean IIB solution from the
Lorentzian of [17]. In appendix B we show that the geometries we obtained are regular. In
appendix C we review the solution to the electrostatic problem when the disks are widely
separated.

2 The IKKT model and its mass deformation

The (Euclidean) IKKT integral is

ZIKKT =

∫ 10∏
I=1

dXI

16∏
α=1

dψα e
−SIKKT , (2.1)

where3

SIKKT = −Tr

1
4

10∑
I,J=1

[XI , XJ ]
2 +

i

2

32∑
α,β=1

10∑
I=1

ψα(CΓI)αβ[XI , ψβ]

 , (2.2)

3The action has the same convention as [18–20], which is natural from the perspective of dimensionally
reducing 10D N = 1 SYM to a point. This convention is related to that in [2] through a simple redefinition
of the charge conjugation matrix: iChere = Cthere. After Weyl projection to the suitable 16-component
spinors, the actions are the same. The Weyl projection also explains why α only goes up to 16 in the
fermion integral in (2.1). For more details, see [13].
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where XI are N × N traceless and hermitian bosonic matrices, ψα are N × N hermitian
traceless matrices of 10D Euclidean Majorana-Weyl spinors, and ΓI are the SO(10) gamma
matrices, with C the charge conjugation matrix.4

The result of the matrix integral (2.1) was conjectured in [18] and later computed in
[19] up to a group-theoretical prefactor, which was calculated in [22] (see [23] for a review).
The convergence of the partition function has been shown in [24, 25], where they also show
that the correlation functions of matrix polynomials below degree 14 are finite (see [26] for
some explicit correlation function examples). The gravitational dual to the IKKT model
was studied in [10] by extending Maldacena’s decoupling limit [8, 27] to D-instantons, and
the result is flat space with non-vanishing, running dilaton and axion. In this paper we
focus on Euclidean signature. For recent discussions on the Lorentzian IKKT model, see
e.g. [28, 29].

The IKKT matrix model admits a mass deformation that preserves the sixteen dynam-
ical5 supersymmetries [1, App.A]. The action of the mass-deformed IKKT model reads

SΩ = SIKKT + Sdef

Sdef = Tr

3Ω2

43

3∑
i=1

XiXi +
Ω2

43

10∑
p=4

XpXp + i
Ω

3
ϵijkXiXjXk −

Ω

8
ψα(CΓ123)αβψβ

 , (2.3)

where the indices i, j, k ∈ {1, 2, 3}, p ∈ {4, 5, . . . , 10} and α, β ∈ {1, 2, . . . , 32}. Here
Γ123 = Γ1Γ2Γ3. Following [2], we will refer to this model as the polarized IKKT matrix
model. We will also take XI , ψα and Ω to be all dimensionless. In the limit Ω → ∞, SΩ
is dominated by the Gaussian mass terms and so the system is almost free. On the other
hand, Ω → 0 corresponds to the strong coupling limit of the polarized IKKT model.

2.1 Symmetries

The mass deformation terms in (2.3) explicitly break the SO(10) symmetry of the original
IKKT model to SO(3)×SO(7). The matrices XI and ψ transform in the adjoint represen-
tation of SU(N). This is a global symmetry of the matrix model but we will often refer to
it as the gauge symmetry by analogy with higher dimensional models. In addition, there
are 16 supersymmetries acting as{

δXI = −ψα(CΓI)αβϵβ ,

δψα = i
2 [XI , XJ ]Γ

IJ
αβϵβ + 3Ω

8 Xi(Γ
123Γi)αβϵβ + Ω

8Xp(Γ
123Γp)αβϵβ ,

(2.4)

where ϵ is deemed as Grassmann-even and δ is Grassman-odd susy generator.

4See appendix A of [21] for explicit expressions of the gamma matrices. For the charge conjugation

matrix we choose C =

(
0 −i1
i1 0

)
.

5The IKKT model of U(N) matrices has sixteen dynamical and sixteen kinematical supersymmetries
[3, 30], with the latter describing the center-of-mass degrees of freedom of the D-instantons [3, 18]. Since
we choose to focus on traceless matrices and so the other sixteen kinematical supersymmetries of the IKKT
model are irrelevant here.
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These bosonic and fermionic symmetries are expected to give (a real form of) the
exceptional Lie superalgebra F4, which is also the superconformal algebra in five dimensions.
We will discuss the structure of the supersymmetry algebra in more detail in [13].

2.2 Classical supersymmetric vacua

To find the classical vacuum, we set ψ = 0 and look for the minima of the bosonic potential

VB = Tr

[
−1

4
[XI , XJ ]

2 +
3Ω2

43
XiXi +

Ω2

43
XpXp + i

Ω

3
ϵijkXiXjXk

]
. (2.5)

The equations of motion (EOM) obtained from varying Xi and Xp are, respectively,

1

2
[XI , [XI , Xi]] +

3Ω2

43
Xi +

iΩ

4
ϵijk[Xj , Xk] = 0 , (2.6)

1

2
[XI , [XI , Xp]] +

Ω2

43
Xp = 0 , (2.7)

where I = 1, 2, . . . , 10, i, j, k = 1, 2, 3 and p = 4, . . . , 10. The only solution for Xp is6

Xp = 0 . (2.8)

As for Xi, the solutions can be easily found using the ansatz

Xp = 0 , Xi = αΩJi , [Ji, Jj ] = iϵijkJk , (2.9)

with Ji being the N × N matrix representations of SU(2) Lie algebra (not necessarily
irreducible). In this configuration the bosonic matrices form a 3-dimensional fuzzy sphere
whose radius has the (dimensionless) length scale Ω. Plugging the ansatz into the equation
of motion we get

α3 − 1

2
α2 +

3

64
α = 0 . (2.10)

The roots of this polynomial are

α = 0, α =
1

8
, α =

3

8
. (2.11)

When α = 0 we have the trivial vacuum with XI = 0 and the on-shell action vanishes. At
the non-trivial extrema the potential takes values

VB = α2Ω4Tr

[
α2

4
ϵijkϵijlJkJl +

3

43
JiJi −

α

6
ϵijkJiϵjklJl

]
= α2Ω4

(
α2

2
+

3

43
− α

3

)
TrJiJi

=


5

3×213
Ω4TrJiJi (α = 1

8)

− 9
213

Ω4TrJiJi (α = 3
8)

.

(2.12)

6See [2, Sec.3] for the derivation.
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The solutions with α = 3
8 are dominant since TrJiJi ≥ 0. If Ji is the spin-j irrep (and

N = 2j + 1), then

TrJiJi = Nj(j + 1) = N
N2 − 1

4
. (2.13)

For a general reducible representation, Ji is block diagonal with q types of blocks, each
having multiplicity ns and size Ns ×Ns. Then we have

TrJiJi =

q∑
s=1

nsNsjs(js + 1) =

q∑
s=1

nsNs
N2

s − 1

4
, N =

q∑
s=1

nsNs . (2.14)

It is straightforward to check that TrJiJi is maximized by the spin-N−1
2 irrep. Thus these

solutions are not degenerate and the leading contribution comes from having a single irre-
ducible representation.

Finally we want to see if the saddles preserve supersymmetry. In the background (2.9),
the susy transformation of fermions in (2.4) becomes

δψ =
i

2
(αΩ)2iϵijkJkΓ

ijϵ+
α3Ω2

8
JiΓ

123Γiϵ = −Ω2

2
α

(
α− 3

8

)
iϵijkJkΓ

ijϵ , (2.15)

where we have used

Γ123Γk =
1

2
ϵijkΓ

ij . (2.16)

Therefore, the supersymmetric saddles preserving δψ = 0 are α = 0, the trivial vacuum,
and α = 3

8 , corresponding to the minima of the action.

3 Backreacted geometries

In this section we study Euclidean solutions of type IIB supergravity that are smooth
everywhere, have no horizons and have 16 supersymmetries together with SO(7) × SO(3)

symmetry.
Let us review quickly the basics of type IIB supergravity. The bosonic matter content

consists of two scalars, the dilaton ϕ and the axion χ, and two 3-form field strengths, the
Ramond-Ramond (RR) F3 and the Neveu-Schwarz-Neveu-Schwarz (NSNS)H3. In addition,
there is also a self-dual 5-form but we will set it to zero in this paper. The bosonic part of
the action reads

SIIB =
1

2κ2

∫
d10x

√
g

(
R− 1

2
(∂ϕ)2 − 1

12
e−ϕ(H3)

2 − 1

2
e2ϕ(∂χ)2 − 1

12
eϕ(F3)

2

)
. (3.1)

This is the Lorentzian action. Since we will construct the Euclidean solution by analytic
continuation of a Lorentzian solution, we do not have to use explicitly the Euclidean action.
Our solution will solve the Lorentzian equations of motion but the metric will have Euclidean
signature and the axion and RR 3-form will be purely imaginary. These are the appropriate
reality conditions for Euclidean IIB supergravity [10, 11].
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The field strengths are expressed in terms of 2-forms gauge potentials B2 and C2 as

H3 = dB2, F3 = dC2 − χH3. (3.2)

There are therefore 3 types of charge in this theory, corresponding to the couplings to the
fields χ, B2 and C2. The equations of motion for these fields are

d(e2ϕ ∗ dχ) = −eϕH3 ∧ ∗F3, d(eϕ ∗ F3) = 0, d(e−ϕ ∗H3) = eϕdχ ∧ ∗F3. (3.3)

Therefore, in addition to the closed 3-forms dC2 and dB2, we can also write a closed 9-form

F̃9 = e2ϕ ∗ dχ+ eϕB2 ∧ ∗F3, (3.4)

and closed 7-forms
H̃7 = ∗

(
e−ϕH3 − eϕχF3

)
, F̃7 = ∗eϕF3. (3.5)

The equations of motion then ensure that dF̃9 = dH̃7 = dF̃7 = 0. This allows us to define
conserved “electric” charges by integrating those closed forms (F̃9, H̃7, F̃7) on 9-cycles or
7-cycles. Similarly, “magnetic” charges are defined by integrating the closed 3-forms (dC2,
dB2) on 3-cycles 7.

Lorentzian type IIB supergravity also has internal SL(2,R) symmetry acting on the
scalars and the 3-forms. The latter simply transform as a doublet(

H3

dC2

)
→

(
d −c
−b a

)(
H3

dC2

)
, ad− bc = 1. (3.6)

For the transformation of the axion and dilaton, it is more convenient to group them in the
axi-dilaton τ = χ+ ie−ϕ that transforms as

τ → aτ + b

cτ + d
. (3.7)

When we complexify the fields, SL(2,R) gets promoted to SL(2,C). However, in order
to obey the reality conditions of Euclidean IIB supergravity, only a subset of this SL(2,C)
is allowed.

3.1 Euclidean solution of IIB supergravity with 16 supercharges

Lorentzian solutions of IIB supergravity with 16 supercharges and SO(5, 2)× SO(3) sym-
metry were constructed in [17] and further analysed in [31–33]. They are dual to five-
dimensional superconformal field theories with the exceptional F4 superconformal symme-
try.

We can obtain the Euclidean version with SO(7) × SO(3) isometry by performing
an analytic continuation as we show in appendix A. The resulting Euclidean supergravity
background has vanishing 5-form field strength and consists of the metric, the axion χ, the

7Our solution will not have non-contractible 1-cycles and therefore we do not discuss the “magnetic”
charge of χ, which would measure D7-brane charge.
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dilaton ϕ, the NSNS 3-form H3 and the RR 3-form F3. It can be written in term of a single
function V (ρ, z) that satisfies the equation

V ′′ + V̈ +
2

ρ
V̇ = 0, (3.8)

where V ′ ≡ ∂zV and V̇ ≡ ∂ρV . This is the Laplace equation in a four-dimensional axially
symmetric system, where ρ is the radial coordinate and z is the vertical direction. The
remaining two angular coordinates are not spacetime coordinates.

The Einstein frame solution reads8

ds2 =
8

µ
5
2

(
1

33
∆V̇

(−V ′′)

)1/4 [
(−V ′′)

V̇
(dρ2 + dz2) + 3ρdΩ2

6 +
ρ(−V ′′)V̇

∆
dΩ2

2

]
,

eϕ = −µ3 3V̇ + ρV ′′

ρ
√
3∆V̇ (−V ′′)

,

χ = − i

µ3
3V̇ (V ′ + ρV̇ ′) + ρV ′V ′′

3V̇ + ρV ′′
,

H3 = dB2, B2 = − 8

3µ

(
z − ρV̇ V̇ ′

∆

)
∧ dΩ2

F3 = dC2 − χH3, C2 = i
8

3µ4

(
V − ρ

V̇

∆

(
V ′V̇ ′ + 3V̇ (−V ′′)

))
∧ dΩ2,

∆ ≡ 3V̇ V ′′ + ρ(V̇ ′2 + V ′′2).

(3.9)

The coordinates z, ρ have dimensions of length, µ is a mass parameter and V has dimensions
of inverse length squared. This ansatz solves the equations of motion but we still have
to impose regularity and positivity of the metric components. This leads to additional
constraints on the function V . To identify boundaries in the (ρ, z) plane, we look for
regions where the S2 and/or the S6 shrink. If we write their respective radii as R2 and R6

we note that
R3

6R2 ∝ ρ2V̇ . (3.10)

Looking back at the metric we see that ρ→ 0 corresponds to S6 → 0 and V̇ → 0 corresponds
to S2 → 0. To get a smooth solution we also want to impose boundary conditions so that
the other components of the metric are finite when one of the spheres shrinks.

We start by looking at the coefficients of the metric when S2 shrinks (V̇ → 0 and
ρ ∼ 1). We need V ′′∆1/3 → 0 for the coefficient of dρ2 + dz2 to be finite, and V ′′∆−1 → 0

for S6 to be finite. The solution is then V ′′ → 0 and ∆ ∼ 1. By using the Laplace’s
equation we also get V̈ → 0.

Now we do a similar study in the region where S6 shrinks (ρ → 0). S2 is finite if
∆ ∼ V ′′V̇ 5/3ρ4/3, and the 2-dimensional space is finite if ∆ ∼ V̇ 3

V ′′3 . Taking the ratio to

8The Lorentzian solution was also written in terms of a 4d electrostatic potential in [33]. We thank
Nikolay Bobev,Pieter Bomans and Fridrik Freyr Gautason for pointing this to us.
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eliminate ∆ we find that V̇ → 0, which means, looking at the expression for ∆, that we
also have ∆ → 0.

In summary we find that the metric is smooth if in those regions we satisfy

S2 region : V ′′ → 0, ∆ ∼ 1, V̇ → 0,

S6 region : V̇ → 0, ∆ → 0, ρ→ 0.
(3.11)

The S6 region is just the z axis. For the S2 region we need more information about the
implicit curves defined by V̇ = 0. We can compute the slope of those curves as

m =
∂zV̇

∂ρV̇
=
V̇ ′

V̈
. (3.12)

The denominator vanishes due to the the Laplace equation together with V̇ → 0 and
V ′′ → 0. However the numerator is finite due to ∆ ∼ 1. Therefore the slope in the (ρ, z)

plane is zero and those curves are at constant z. This allows us to use an electrostatic
analogy where ∂ρV = 0 is interpreted as the vanishing of the tangential component of the
electric field on the boundary of a conductor. To respect the axial symmetry of the system,
those conductors need to be 3 dimensional balls that are infinitely thin in the z direction.
They are the higher dimensional analog of the 2d conducting disks from [14] in a 3d axially
symmetric system. In the following we will also refer to the balls as “disks”.

Since the spheres go to zero at different points in the (ρ, z) plane, we can construct
cycles by connecting such points with a curve that passes through a region where the spheres
are finite. In particular we can draw a segment between two disks over which we tensor the
S2, and that defines a 3-cycle Σ3

9. Similarly we draw a curve around a disk with endpoints
on the z axis, and, tensoring the S6, that defines a 7-cycle Σ7. This construction is depicted
on Figure 1.

This is not enough to guarantee that the metric and dilaton are positive everywhere. We
also need boundary conditions at infinity that are set by including a background potential
that grows at infinity. The simplest possibility is to choose a harmonic polynomial. As we
show in the next section, the polynomial that is relevant for the polarized IKKT matrix
model is

Vbg(ρ, z) = −ηzµ3 + µ5

27
(zρ2 − z3) , (3.13)

where the term proportional to the dimensionless parameter η has no effect on the metric
but can affect the different matter fields. We will later see that η is related to a constant
term that can be added to the action of the matrix model. The different positivity conditions
are satisfied in the physical region ρ ≥ 0 and z ≥ 0, as we show in appendix B. Since the
S6 shrinks when ρ = 0, the geometry terminates smoothly there and there is no physical
boundary. Similarly we would like the geometry to stop at z = 0 smoothly, which can be
done by introducing a grounded plane (or infinite disk) at z = 0, making the S2 shrink
there.

9This is similar to a sphere, which is a 2-cycle, that can be defined by tensoring an S1 over a segment,
with the S1 shrinking at the endpoints, that are then the north and south poles of the sphere.
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This concludes the presentation of the supergravity solution. It is determined by choos-
ing a configuration of conducting disks, of respective charges Qs, centered on the z axis
at positions zs. Note that the radii of the disks are not free parameters for the following
reason: We want the metric to be smooth, and therefore the electric field should not diverge
at the tip. This requires the charge density to vanish at the tip, which is a constraint that
is possible to satisfy in a background potential. Physically, assuming Qs ≥ 0, the electric
field produced by the charge of the disk, pushing outward, and the electric field from the
background potential, pushing inward, need to cancel at the tip of the disks. This allows
to solve for the radii Rs in terms of the charges Qs and positions zs, which are then the
only free parameters of the solution.

Once the configuration of disks is chosen, one can solve the four-dimensional Laplace
equation to get the function V (ρ, z), which in turns gives the full supergravity solution.

3.2 Asymptotic region

Here we study the solution in the asymptotic region r → ∞, where r2 ≡ z2 + ρ2. We use a
multipole approximation to solve the electrostatic problem in that limit. Using the method
of images we find that the leading contribution from the disks is a dipole. Together with
the background potential this gives

V (ρ, z) = −ηzµ3 + µ5

27
(zρ2 − z3) +

1

2π2
zP

(z2 + ρ2)2
+

1

4π2

∞∑
l=1

q2l+1
U2l+1 (cos θ)

(z2 + ρ2)l+3/2
, (3.14)

where P = 2
∑q

s=1 zsQs is the dipole moment for a configuration of q conducting disks
of charges Qs and distances zs from the grounded plane. The ql for l ≥ 3 are the higher
multipole moments, Ul are the Chebyshev polynomials of the second kind and cos θ =

z√
z2+ρ2

. We only have odd terms in l because the electrostatic system is antisymmetric

under z → −z. Asymptotically, the solution reads

ds2 = dz2 + dρ2 + z2dΩ2
2 + ρ2dΩ2

6 +O(r−4),

eϕ =
214P

π2µ7r8
+O(r−10),

χ = i
π2µ7r8

214P
+O(r6)

dC2 = −iµ z2dz ∧ dΩ2 +O(r−6), H3 = O(r−6)

(3.15)

Remarkably, the space is asymptotically flat. This is the solution [10, 11] dual to the pure
IKKT matrix model with the addition of dC2 flux. This flux is in fact constant because we
can use (x1, x2, x3) as the Cartesian coordinates associated to the S2 with radius z. Then

dC2 = −iµ dx1 ∧ dx2 ∧ dx3 +O(r−6). (3.16)

Let us make a few comments on the asymptotic form of the solution (3.15). First,
setting the dipole moment P to zero makes the axion diverge. However, this does not
pose a problem to our analysis since, as we will discuss in section 3.4, the dipole moment
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is identified with the size of the matrices which is always nonzero. Second, note that
asymptotically we have iχ = −e−ϕ. This relation is still obeyed by the first subleading
terms in the asymptotic expansion, proportional to q3, q5 and q7. We can measure the first
deviation as

e−ϕ + iχ =
3z2 + ρ2

64
µ2 − η +O(r−2), (3.17)

where we recognize the bosonic mass term of the polarized IKKT model (2.3).

S-duality. Our solutions are in a frame where we only have RR flux and no NSNS flux in
the asymptotic region. We can go to another frame by using SL(2,C) transformations. In
particular the S-duality transformation with a = d = 0 and c = b = i will map H3 → idC2,
and dC2 → iH3, preserving the reality conditions for Euclidean IIB supergravity. In this
new frame, the NSNS flux is purely real, and the RR flux is purely imaginary. Setting
η = 1

2 , we get the solution of the form

eϕ = 1−µ
2

32
(3z2+ρ2)+O(r−2), χ = −ie−ϕ+O(r−8), H3 = −µdx1∧dx2∧dx3+O(r−6).

(3.18)
In this frame, we can set all the multipoles to zero without encountering divergences. Doing
so kills the subleading terms O(r−#) in (3.18) and makes the solution identical to the
recently found “cavity” solution [2]. On the other hand, in our original frame (3.15), setting
multipoles to zero would make the axion diverge10 everywhere. We will comment more on
the comparison between the two frames in section 3.7. Note that taking the asymptotic
limit does not commute with S-duality. One should first take the SL(2,C) transformation
in (3.9) and then expand the solution asymptotically.

3.3 12D uplift

In the analogous case of the BMN matrix model, the asymptotic region is a 11 dimensional
pp-wave, which is not manifest here. However Euclidean IIB supergravity can also be
formulated in 12D [34] using

ds212 = ds210 +Mijdy
idyj , M ≡ eϕ

(
χ2 + e−2ϕ −χ

−χ 1

)
, (3.19)

where ds210 is the 10 dimensional metric of the IIB solution and (y1, y2) are coordinates on
a non-dynamical 2-torus. Using our asymptotic solution (3.15) we get11

ds212 = ds210 − 2idy1dy2 +

(
µ2

32
(3z2 + ρ2)− 2η

)
dy21 +

214P

π2µ7r8
dy22 +O(r−2). (3.20)

The dy22 term that we displayed is the leading contribution for this metric component.
Identifying a time component t = −iy1 all the components of the metric are real. Let us

10The axion diverges also in the cavity solution (3.18) but only at the boundary of the ellipsoid 3z2+ρ2 ≤
32
µ2 .

11The coefficient of dy2
1 comes from the first non zero term in χ2 + e−2ϕ, measured by (3.17). Due to

high degree of cancellations we need to keep many terms in the asymptotic expansion. The final result is
obtained by expanding eϕ up to terms of order r−16 and χ up to terms of order 1.
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now discuss the matter fields. A 10d solution with vanishing 5-form can also be obtained
from a 12d solution with only a 4-form F4 such that

(F4)y1µνρ = (dC2)µνρ, (F4)y2µνρ = (H3)µνρ. (3.21)

We then get
F4 = −µz2idy1 ∧ dz ∧ dΩ2. (3.22)

Hence, writing y ≡ y2, we find that the asymptotic form of our solution is the 12 dimensional
pp-wave background

ds212 = 2dtdy +
3∑

i=1

dxidxi +
10∑
p=4

dxpdxp − 2dt2µ2
(

3

43
xixi +

1

43
xpxp − η

)
,

F4 = µdt ∧ dx1 ∧ dx2 ∧ dx3,

(3.23)

where z2 =
∑3

i=1 x
ixi, and ρ2 =

∑10
p=4 x

pxp. We checked that this indeed satisfies the 12D
Einstein equations12.

We can also write the 12D uplift in general and, using (3.9) and (3.19), we get

ds212 =

(
1

3ρ2∆V̇ (−V ′′)

)1/2
[
−µ3(3V̇ + ρV ′′)dy2 − 2∆̃dtdy − 1

µ3
∆̃− 3ρ2V̇ (−V ′′)∆

3V̇ + ρV ′′
dt2

]
,

+
8

µ
5
2

(
1

33
∆V̇

(−V ′′)

)1/4 [
(−V ′′)

V̇
(dρ2 + dz2) + 3ρdΩ2

6 +
ρ(−V ′′)V̇

∆
dΩ2

2

]
F4 = −idC2 ∧ dt+ dB2 ∧ dy,

B2 = − 8

3µ

(
z − ρV̇ V̇ ′

∆

)
∧ dΩ2, C2 = i

8

3µ4

(
V − ρ

V̇

∆

(
V ′V̇ ′ + 3V̇ (−V ′′)

))
∧ dΩ2,

∆̃ = 3V̇ (V ′ + ρV̇ ′) + ρV ′V ′′, ∆ = 3V̇ V ′′ + ρ(V̇ ′2 + V ′′2).

(3.26)

3.4 Quantization of fluxes

We found geometries parametrized by continuous parameters, the charges of the disks Qs

and their positions zs. On the other hand, as we saw in section 2.2, the polarised IKKT
model has a discrete set of classical vacua. The way to connect the two descriptions is
to impose the Dirac charge quantization condition on the fluxes present in the geometry
[15]. We will see that in practice this will quantize the charges of the disks, as well as

12The normalization for p forms is

S =
1

16πG

∫
ddx

√
g

(
R− 1

2(p+ 1)!
Fµ1...µp+1Fµ1...µp+1

)
, (3.24)

giving the stress energy tensor

Tµν ≡ −16πG
√
g

∂Sm

∂gµν
=

1

12

(
FµabcF

abc
ν − 1

8
gµνFabcdF

abcd

)
. (3.25)

In these conventions the field equations are Rµν − 1
2
Rgµν = Tµν .
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their respective distances, their respective difference of potentials and the leading dipole
moment. At the end the classical supergravity approximation is valid when those quantum
numbers are large. Hence those quantization conditions effectively become invisible, as
we will see explicitly below. Nevertheless we learn how those charges are mapped to the
representations of SU(2) characterizing the classical vacua (2.9) corresponding to saddle
points of the matrix integral.

To quantize the fluxes we study the equations of motion and Bianchi identities to
identify conserved charges, as shown at the beginning of this section. We have closed p-
forms with p = 3, 7, 9. As we explained, the geometries have 3-cycles and 7-cycles. We can
then compute the fluxes of closed 3-forms on Σ3 and of closed 7-forms on Σ7. The flux of
the closed 9-form can be computed on a large S9 in the flat space asymptotic region. We
start with the latter that computes the instanton charge. We recall

F̃9 = e2ϕ ∗ dχ+ eϕB2 ∧ ∗F3 (3.27)

Much like other fundamental Dp-branes, the fundamental instanton has unit charge. Thus,
the integral of F̃9 counts the number of instantons. Evaluating the integral on S9 at infinity,
we find13

N(−1) =
1

(2π)8α′4gs

∫
S9

F̃9 =
27

3π5µ7α′4gs
P. (3.28)

The dipole moment is therefore quantized. Note that this value of N(−1) can also be checked
by matching the coefficient of the dilaton in the D-instanton solution [8].

We now compute the other fluxes. The closed 7-forms are

H̃7 = ∗
(
e−ϕH3 − eϕχF3

)
, F̃7 = ∗eϕF3, (3.29)

and the closed 3-forms are H3 and dC2. Integrating those fluxes counts the number of D1

and D5 branes, as well as the number of F1 fundamental strings and of NS5 fivebranes,
as we see from the quantization conditions

1

(2π)2α′

∫
Σ3

H3 = NNS5,
1

(2π)6α′3gs

∫
Σ7

F̃7 = ND1 ,

1

(2π)2α′gs

∫
Σ3

dC2 = ND5,
1

(2π)6α′3

∫
Σ7

H̃7 = NF1 ,

(3.30)

where the labels of the integers Nlabel refer to the type of brane carrying the charges. The
integral on Σ3 can be done close to the axis at ρ = 0. There we expand

ρ→ 0 : V (ρ, z) = f(z)− f ′′(z)

6
ρ2 +

1

120
f (4)(z)ρ4 + ..., (3.31)

where the terms in the Taylor expansion are set by using Laplace’s equation. If we integrate
H3 we get

4π2α′NNS5 =

∫
Σ3

iH3 =
8

3µ

∫ zs

zs−1

dΩ2dz = Ω2
8

3µ
ds, (3.32)

13The integral on S9 of radius R gives 1
(2π)8α′4gs

∫
S9 F̃9 = 27

3π5µ7α′4gs
P +O(R−6). Sending R → ∞ gives

(3.28).
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where ds ≡ zs − zs−1 is the distance between the disks, that is therefore quantized. To do
the integrals on the 7-cycle Σ7 we can pick a contour close to the disk and expand

z → zs : V (ρ, z) = Vs + g(ρ)(z − zs)−
2ġ(ρ) + ρg̈(ρ)

6ρ
(z − zs)

3 + ... (3.33)

Integrating F̃7 we get

(2π)6α′3gsND1 =

∫
Σ7

iF̃7 =
2560

µ6

∫ ρs

0
dΩ6dρ ρ

3∂ρ
(
∂zV (z+)− ∂zV (z−)

)
=

2560

µ6
Ω6
Qs

Ω2
,

(3.34)
and therefore the charges of the disks are quantized. Here by z+ we mean z + ϵ with ϵ > 0

and similarly z− ≡ z − ϵ. To summarize, we get the following quantization conditions 14

N(−1) =
27

3π5µ7α′4gs
P , NNS5,s =

8

3πµα′ds , ND1,s =
25

π4µ6α′3gs
Qs . (3.35)

Now using P = 2
∑

sQs
∑

t≤s dt, we get that all numerical factors cancel and

N(−1) =
∑
s

ND1,s

∑
t≤s

NNS5,t, (3.36)

which expresses the partitions of N(−1) in the integers
∑

t≤sNNS5,t . We can compare this
with expectations from the polarized IKKT matrix model. The vacua are fuzzy spheres
with 3 matrices in the adjoint of SU(2). Such a matrix can generically be written as

J i =

q⊕
s=1

1ns ⊗ J i
(Ns)

, i = 1, 2, 3 , N =

q∑
s=1

nsNs , (3.37)

where J i
(Ns)

is the Ns = 2js +1 dimensional (spin-js) irrep, and ns are the multiplicities of
those irreps. There are P (N) such configurations. It is then natural to identify

N ↔ N(−1) , ns ↔ ND1,s , Ns ↔
∑
t≤s

NNS5,t . (3.38)

Therefore the gravity solution dual to this vacuum corresponds to a configuration with q

disks at positions zs =
∑

t≤s dt with respective charge Qs, see Figure 2.
Let us now discuss the two quantization conditions that we omitted. The H̃7 integral

yields

(2π)6α′3NF1 =

∫
Σ7

H̃7 =
29

µ9
Ω6

∫
dρ ρ3

(
3ρ(∂z∂ρV )2 − ∂ρ(∂zV )2

) ∣∣z=zs+ϵ

z=zs−ϵ
= 0, (3.39)

and vanishes because the integrand takes identical values above and below the disk. On
the other hand the integral of dC2 gives

4π2α′gsND5 =

∫
Σ3

dC2 =
8

3µ4

∫ zs

zs−1

dΩ2dz∂zV (z, 0) = Ω2
8

3µ4
(Vs − Vs−1). (3.40)

14The “s“ in gs is not a label for the disks, but the standard name for the string coupling constant.
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where Vs gives the (constant) potential of the disk s. This shows that the difference of
potentials between neighboring disks must be quantized in units proportional to gsND5.
This raises an apparent puzzle since the electrostatic problem is already fully determined
and it is unclear that we could impose this additional constraint. A resolution to this puzzle
comes from the fact that the supergravity approximation is valid when gs → 0 and the
quantum number ND5 is large. Thus we can choose the product gsND5 so that Vs − Vs−1

is arbitrarily close to any real number, which is determined by solving the electrostatic
problem. Note that the same comments apply also to quantizations imposed by N−1 and
ND1, both of which come with a factor of gs: strictly speaking, quantizations of these fluxes
do not constrain the parameter space of the solutions in the supergravity limit.

3.5 Validity of the supergravity approximation

To trust the supergravity approximation we need small curvature of the string frame metric
ds2(s) ≡ eϕ/2ds2 to avoid stringy higher curvature corrections, and small string coupling gseϕ

to avoid string loop corrections. To probe the curvature we use the Ricci scalar R of the
string metric in string units, i.e. we study α′R.

Let us first study those quantities in the asymptotic region where we use the expansion
(3.14). We get

r → ∞ : Rα′ ∼ r2√
gsNα′ ∼

r2

α′2µ2
√
λ
, gse

ϕ ∼ g2sNα
′4

r8
∼ µ8α′8λ2

Nr8
, (3.41)

where λ ≡ Ng2YM/µ
4 is the (dimensionless) ’t Hooft coupling. The dilaton decays at

infinity but is finite close to the axis and on the disks. We will estimate the value of the
dilaton in those regions. We also estimate the curvature since the disks should be inside
the trustworthy region. Since we trust the approximation (3.41) from infinity down to
r ∼ max(ρs, zs), we also need to check that the conditions coming from the approximation
near the disks are not weaker than the condition coming from the asymptotics at that point.

At finite distance, we study the case of a single disk (and its image) and write the
potential

V (ρ, z) = Vbg(ρ, z) +
1

4π2ρ

∫ ρs

0
drfs(r)

(
ρ− r

(ρ− r)2 + (z − zs)2
− ρ− r

(ρ− r)2 + (z + zs)2

)
,

(3.42)
where f ′s(r) = −2πrσs(r) with σs(r) the charge density of the s disk. This expression for
V (ρ, z) can be obtained from (C.2) by integrating by parts. Then, we plug this expression in
the equations for the dilaton and the curvature and expand around the regions of interest.
The main input to specify here is the function fs(r). Since only the integral of fs(r) is
needed, we assume an even distribution fs(r) ∼ Qs/ρs and this suffices for our estimations.15

Now we analyze the curvature and the dilaton for different values of the dimensionless
parameter ρs/zs. In fact, to connect with our matrix model discussion in [13], it will be

15More refined analysis is given in [13], where a similar assumption on matrix model side is also discussed.
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z

ρ

zs

ρs

1ξ → 0

ξ → ∞

23

4

5

5

6 7

ρs

zs
∼ {ξ 1

4 , ξ → 0
ξ 1

5 , ξ → ∞

∞

Figure 3: Summary of our analysis of the supergravity regime. We study the scaling of
the string coupling gseϕ and the curvature probed by the Ricci scalar in regions 1○ to 7○.
The scaling behaviors are given in table 1. We find that the strongest conditions come from
infinity and the tip of the disk (region 1○ and 2○).

more convenient to use the parameter

ξ ≡ 35

220π2
Qs

z5sµ
5
=

ns
Ω4N5

s

, (3.43)

which is related to ρs/zs. As we show in [13], we can write ρs
zs

= w(ξ), where w(ξ) ∼ ξ1/5

when ρs/zs ≫ 1 and w(ξ) ∼ ξ1/4 when ρs/zs ≪ 1. We can now study the dilaton and
curvature for different regimes of ξ, in regions close to the axis, the disk, and the conducting
plane. In all these regions, we get

Rα′ ∼ α′µ

ρs
q̃R(ξ) ∼

qR(ξ)

λ1/6
, gse

ϕ ∼
gsq̃ϕ(ξ)

µ2ρ2s
∼ λ2/3

N
qϕ(ξ), (3.44)

where q̃R = ξ1/6qR/w(ξ) (and similarly for q̃ϕ), and the functions qR and qϕ have different
asymptotics in different regions, see Table 1. We get the stronger conditions from the tip
of the disks where

(ρ, z) → (ρs, zs) : qR(ξ) ≈

{
ξ−2/15 if ξ ≫ 1

ξ−1/12 if ξ ≪ 1
, qϕ(ξ) ≈

{
ξ−4/15 if ξ ≫ 1

ξ1/12 if ξ ≪ 1
.

(3.45)
In fact when ξ ≫ 1 we get the same conditions in the other regions as well. However
when ξ ≪ 1 we get larger powers in the other regions. For example on the axis we have
qϕ ∼ ξ4/3 which is much less than ξ1/12 when ξ is small. We also find that those conditions
are stronger than imposing small string coupling in (3.41) at r ∼ max(ρs, zs). However the
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Regions in Fig.3
qR(ξ) qϕ(ξ)

ξ ≫ 1 ξ ≪ 1 ξ ≫ 1 ξ ≪ 1

1○ ξ1/15 ξ−1/3 ξ−4/15 ξ4/3

2○, 4○ ξ−2/15 ξ−1/12 ξ−4/15 ξ1/12

3○ ξ−2/15 ξ−1/12 ξ−4/15 ξ1/6

5○, 6○, 7○ ξ−2/15 ξ2/3 ξ−4/15 ξ4/3

Table 1: Asymptotic behavior of the scalar curvature and the dilation in different regions
in figure 3. For region 1○ we have used (3.41) with r2 = ρ2s + z2s . The relevant entries that
lead to the final result (3.46) are from regions 1○ and 2○.

asymptotic curvature gives a stronger condition, where we find qR ∼ ξ1/15 when ξ ≫ 1 and
qR ∼ ξ−1/3 when ξ ≪ 1. For the former, it turns our that the condition is automatic when
ξ ≫ 1. However for the latter we get an extra constraint.

In terms of the parameters (x(s), ns, Ns), where x(s) = 1
2πµα′ ρs [13], the supergravity

approximation is valid for{
ns ≫ Ns(x

(s))2 if x(s) ≫ Ns

ns ≫ (x(s))3 ≫ Nsx
(s) if Ns ≫ x(s) or Ns ∼ x(s)

. (3.46)

In particular, the irreducible vacuum with ns = 1 is not well described by supergravity.
It is interesting to compare these conditions with the ones obtained in [13] for the

derivation of the electrostatic problem from the exact localization computation. There, we
needed

ns ≫ (x(s))2 log x(s) ≫ 1 , (3.47)

which is a weaker condition than the second line of (3.46) but can be slightly stronger
than the first line 16. Perhaps, a more careful 1-loop computation in supergravity could
lead to the extra log x(s) needed to strengthen the conditions for validity of the classical
approximation in the first line of (3.46).

3.6 Free energy

With the geometries at hand, we want to compute the on-shell action associated to each
solution. This is expected to match the free energy of the matrix model in the large N
limit.

As shown in [35] (see also [36] for a similar computation), in type IIB supergravity with
vanishing 5-form flux the on-shell action is the boundary term

SE =
1

2κ2

∫
d

(
−1

4
MijCi

2 ∧ ∗F j
3

)
, (3.48)

16In fact it is stronger when log x(s) > Ns
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where

Mij = eϕ

(
χ2 + e−2ϕ −χ

−χ 1

)
, C2 =

(
B2

C2

)
, F3 = dC2. (3.49)

This integral gets contributions from the different cycles in the geometry. This can be
understood as follows. Pick the contour going around the disks and along the z axis, as
shown on Figure 4. The interior is a patch covering the entire spacetime minus some part
of measure zero. However all the cycles in that patch are contractible. We can therefore
integrate over that patch and use Stokes theorem to evaluate the on-shell action. We find
that the integrand vanishes on the z axis. Therefore we are left with the contributions from
going around the disks, which give

2κ2SE = −5120

3µ10
Ω6Ω2

∑
disks s

∫
dρ

(
ρ3VsV̇

′ − 1

2
zsρ

3∂ρ(V
′2)

)
(3.50)

where the domain of integration is above and below the disk. The second term vanishes
since V ′2 is continuous across the disk. Evaluating and using 2κ2 ≡ 16πG

(10)
N = (2π)7α′4g2s

we get the answer

SE =
27

3π4g2sα
′4µ10

q∑
s=1

QsVs. (3.51)

We then find that the free energy of the supergravity solution corresponds to the electro-
static energy of the disk configuration17.

ρ

z

Figure 4: Integration contour for the on-shell action. The interior is a patch covering the
entire spacetime minus regions of measure zero. All cycles in that patch are contractible.

The explicit expression of the gravitational on-shell action requires computing the po-
tentials Vs by solving an electrostatic problem. Let us focus on the particular limit when
ds ≫ 1. In this case we can consider only one disk at a time in the background potential. Its
charge density can be computed explicitly as we show in appendix C. Using the constraint
that it vanishes at the tip we find

Vs = −µ5 z
3
s

27
+O(

√
Qszs), (3.52)

17This is not entirely exact because of the presence of the background electric field.
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which is just the contribution from the background potential evaluated at the center of
the disk. Inserting all the factors, together with g2YM = gs

(2π)3α′2 the gravitational on-shell
action gives

SE = − µ4

g2YM

9

217

∑
s

nsN
3
s +O(

√
nsNs) . (3.53)

It is enlightening to compare this result to expectations from the matrix model. Because
of the identification (3.38), the limit ds ≫ 1 corresponds to the scenario in the matrix model
side where the saddle points (3.37) consist of SU(2) irreducible representations with large
matrix dimension and small degeneracy. This is the limit where the fuzzy spheres become
almost classical and the quantum fluctuations are expected to be negligible.18 Taking only
the contributions from the saddles, we find that the value of the action is

Ssaddle
Ω = −Ω4 9

215

q∑
s=1

nsNs(N
2
s − 1), (3.54)

where ns is the quantized charge Qs and Ns is the quantized height zs. We see that the
functional forms of (3.53) and (3.54) are identical (at large Ns).

There is still a leftover piece in the evaluation of the on-shell action, namely the contri-
bution from the asymptotic boundary of spacetime. This gives both a divergent term and
a finite term. The finite term comes from the octopole of the electrostatic configuration q3.
To see this, we expand

V (ρ, z) = −ηµ3z + µ5

27
(zρ2 − z3) +

P

2π2
z

(z2 + ρ2)2
+
q3
π2
z(z2 − ρ2)

(z2 + ρ2)4
+ ... (3.55)

and evaluate the contribution from the arc at ρ2 + z2 = R2:

2κ2S
(∞)
E = Ω2Ω6

24

µ5

(
PR2

π
+

5q3
3π

)
+O(R−2). (3.56)

Since we are considering this spacetime boundary we should also add the Gibbons-Hawking
term, for which we get

κ2S(GH) = −
∫
∂M

√
hK = Ω2Ω6

(
45πR8

256
− 36PR2

πµ5
− 4

q3
πµ5

)
+O(R−2). (3.57)

As can be seen from these expressions, the Gibbons-Hawking term alone cannot remove
the diverging terms. This indicates that one needs to supplement it with suitable counter
terms. This procedure will in principle change the finite term. We leave for the future the
determination of the counter terms and the precise match with the matrix model side.

For now, note that in the limit ds ≫ 1, we can compute the octopole q3 as shown in
appendix C, where we find

q3 = 2
∑
s

Qsd
3
s +O

(√
Nsn3s

)
. (3.58)

18In the companion paper [13] we show that, using supersymmetry localization, the full free energy of
the matrix integral has exactly the same expression as (3.54) in the same limit, despite the computation
being highly non-trivial.
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The finite pieces of the contributions (3.56) and (3.57) are then

S
(∞)
finite =

µ4

g2YM

3

213

∑
s

nsN
3
s+O

(√
Nsn3s

)
, S

(GH)
finite = − µ4

g2YM

9

5 · 214
∑
s

nsN
3
s+O

(√
Nsn3s

)
,

(3.59)
and we see that they again take the expected functional form in terms of ni and Ni. Adding
those contributions together with the bulk term (3.53) does not reproduce the numerical
prefactor of (3.54) under the identification of parameters (3.77) that we discuss in the next
section, suggesting that the counterterms modify the finite contributions.

Scaling of the free energy. The on-shell action depends on 3 parameters: the positions
of the disks zs, their charges Qs and the parameter µ. To consider dimensionless quantities
we write S = S(Qs, µzs, µ

√
α′). We will use two symmetries. Firstly, notice that

S(Qs, µzs, µ
√
α′) = λ−8

1 S(Qs, µzs, λ
−1
1 µ

√
α′) . (3.60)

This follows from the transformation

(ρ, z) → (λ1ρ, λ1z), µ→ λ−1
1 µ, (3.61)

which implies V → λ−2
1 V and Qs remains fixed. Secondly, notice that if we rescale µ →

λ
1/5
2 µ and Qs → λ2Qs keeping zs fixed, then V → λ2V . This leads to

S(λ2Qs, λ
1/5
2 µzs, λ

1/5
2 µ

√
α′) = S(Qs, µzs, µ

√
α′) . (3.62)

Note that both transformations leave invariant the quantity19

ξ ≡ 35

220π2
Qs

z5sµ
5
=

ns
Ω4N5

s

. (3.63)

Using the symmetries above we have the scaling relation

S(Qs, µzs, µ
√
α′) = λ−8

1 S(Qs, µzs, λ
−1
1 µ

√
α′) = λ−8

1 S
(
λ2Qs, λ

1/5
2 µzs, λ

1/5
2 λ−1

1 µ
√
α′
)
.

(3.64)
Using λ1 =

√
α′µQ

−1/5
s and λ2 = Q−1

s we get

S(Qs, µzs, µ
√
α′) =

Q
8/5
s

α′4µ8
S
(
1, zsµQ

−1/5
s , 1

)
=

Q
8/5
s

α′4µ8
S
(
1, ξ−1/5, 1

)
. (3.65)

Using the relations (3.35) we get

Q
8/5
s

α′4µ8
∝ ξ4/15N4/3Ω8/3, (3.66)

such that

S(Qs, µzs, µ
√
α′) =

N2

λ2/3
H(ξ), (3.67)

where λ ≡ N/Ω4 = Ng2YM/µ
4 is the dimensionless ’t Hooft coupling. This is the predicted

scaling that has been discussed from scaling similarity [37–39].
19In principle we should have a different ξ for each disk, i.e. ξ = ξs, but the scaling argument follows

through.
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3.7 Polarized probe D1 brane

Here we study the system from a probe brane perspective. Starting from a stack of N
Dp branes, its non-abelian DBI action contains couplings to higher form gauge fields with
respect to which a single Dp brane is neutral. In the particular case of p = 0, a 4-form RR
flux polarizes the D0 branes into a D2 brane, which is known as the Myers effect [40]. See
[41] for an analysis of this effect in the BMN model. Here we study a similar system where
N D-instantons polarize into a D1 brane under the effect of an external constant RR flux.
A similar analysis with an external NSNS flux was conducted in [2].

The DBI action for a single D1 brane reads

SD1 = − 1

2πα′gs

∫
d2σe−ϕ

√
−det

(
g
(s)
αβ +Bαβ + 2πα′Fαβ

)
+

1

2πα′gs

∫ (
χ
(
B2 + 2πα′F2

)
− C2

)
,

(3.68)

where g,B2, χ and C2 are respectively the pullbacks of the string frame metric g(s) ≡ eϕ/2g,
NSNS potential, axion and RR potential, while F2 is the worldvolume U(1) field strength.
For a bound state of N D-instantons it is given by F2 =

N
2 dΩ2 [2, 40]. This is the Lorentzian

action evaluated with purely imaginary RR fields and a metric with Euclidean signature.
We get a real Euclidean action by sending S → iS.

Following our physical picture, we would like to start with D-instantons in flat space,
and add a flux, which would define the background fields. However, flat space and constant
flux is not a supergravity solution unless we also add a non-trivial axi-dilaton. We can
study what this solution can be by using our backreacted geometries and take a probe limit
where the backreaction goes to zero. Therefore we expand

V (ρ, z) = −ηzµ3 + µ5

27
(zρ2 − z3) + ϵf(ρ, z), (3.69)

and we take the limit ϵ→ 0. We find

ds2 = dz2 + dρ2 + z2dΩ2
2 + ρ2dΩ2

6 +O(ϵ),

C2 = −iµ
3
z3 ∧ dΩ2 +O(ϵ), B2 = O(ϵ)

iτ̄ ≡ e−ϕ + iχ =
µ2

64
(3z2 + ρ2)− η +O(ϵ),

(3.70)

where we only displayed a particular combination of the axion and dilaton that we will
shortly justify. Individually we find that the eϕ goes to zero and the axion diverges, leaving
this configuration finite, whereas the other combination iτ ≡ e−ϕ − iχ ∼ 1

ϵ diverges. We
also note again that 3z2+ρ2 is exactly the bosonic part of the mass-deformed IKKT matrix
model.

Let us now go back to the DBI action. We will evaluate it in the constant RR flux
background (3.70) first without specifying the axi-dilaton. The embedding of the D1 is
chosen to be localized in the S2, at ρ = 0 and spherically symmetric with radius r. Since
everything is spherically symmetric we can integrate over the angles and we get

SD1 =
2

gsα′ e
−ϕ
√
π2α′2N2 + eϕr4 +

2πN

gs
(iχ) +

2r3µ

3α′gs
. (3.71)
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At large N we get

SD1 =
2πN

gs

(
e−ϕ + iχ

)
+

r4

gsπα′2N
− 2r3µ

3α′gs
+O(N−2), (3.72)

where we see the relevant axi-dilaton appearing. We can now plug in our background (3.70)
and we get

SD1 =
r4

Ngsπα′2 − 2r3µ

3α′gs
+

3Nπr2µ2

32gs
− 2πNη

gs
+O(N−2). (3.73)

The allowed configurations of theD1 are found by looking at extrema of the action S′
D1(r) =

0. We get the solutions

r = 0, r =
1

8
Nπµα′, r =

3

8
Nπµα′, (3.74)

which are the same roots as the ones for the fuzzy sphere saddles of the polarized IKKT
integral (2.11). The global minimum occurs for the third solution, and the on-shell action
reads

SD1 = −2πNη

gs
− 9

215
N3 µ4

g2YM

=
2πiNτ̄(r = 0)

gs
− 9

215
N3 µ4

g2YM

. (3.75)

In the second equality, we used the relation iτ̄(r = 0) = iχ+ e−ϕ|r=0 = −η, obtained from
(3.70).

The first term in (3.75) can be identified with the on-shell action of N D-instantons at
r = 0 (cf. [42]). As discussed in [2, Sec.4.3], this can be reproduced on the matrix model
side by adding a constant term 2πτ̄(r=0)

gs
Tr(1) to the action. On the other hand, the second

term is a contribution from polarizing D-instantons into D1 and is dominant when N ≫ 1.
This second term should be compared with the (irrep.) fuzzy sphere on-shell action on the
matrix model

Sfuzzy sphere
Ω = − 9

215
N3Ω4. (3.76)

The comparison leads to a matching of the parameters on both sides,

Ω =
µ

√
gYM

. (3.77)

To further test the correspondence between the matrix model side and the gravity side,
we consider the size of the (irrep.) fuzzy spheres on the matrix side using

r2fuzzy sphere = (2πα′)2
gYM

N
TrX2 = (2πα′)2gYM

32

82
Ω2N

2 − 1

4
≃
(
3

8
πα′√gYMΩN

)2

.

(3.78)
This exactly matches the radius of the probe D1 brane

rD1 =
3

8
Nπµα′, (3.79)

if we again use the matching conditions (3.77). We can also look for an analog in the
backreacted geometries. There we can compute the height of the disk using the asymptotic
flat metric. That gives

rdisk =

∫ d

0

√
gzzdz = d =

3

8
Nπµα′, (3.80)
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again matching the previous results. We thus find a perfect match among the three com-
putations,

rfuzzy sphere = rD1 = rdisk . (3.81)

Comparison with the probe brane analysis in [2]. Our identification of parameters
(3.77) differs from the one obtained in [2] by a factor of 2. However the physical systems
we analysed are different, hence it is not a direct contradiction. As we explained in 3.2, our
background (3.70) is related to their background (3.18) by S-duality. However we are both
studying a D1 brane in our respective backgrounds, whose S-dual is an F1 string. Hence
the two systems are not equivalent and correspond to different physics.

Let us argue for our choice. We will give two reasons. First, studying the polarization
of Dp branes due to an external RR flux (rather than NSNS) seemed more natural in view
of previous works [40, 41]. Second, and more importantly, in our backreacted geometries
we could measure the number of F1 strings (3.39) and found zero. Therefore, even if it is
perfectly fine to study the dynamics of a probe F1 on this background, we cannot argue
that the backreacted geometry corresponds to the backreaction of this F1 string. If we
S-dualize (3.9) so that the asymptotic background (3.18) is identical to the one considered
in [2], we find that the number of D1 branes is zero. Thus it is more natural to consider a
probe F1 string as opposed to a probe D1 brane as was done in [2].

4 Discussion

Summary and main results. In this paper we studied Euclidean type IIB geometries
dual to the mass-deformed IKKT matrix model, which are closely related to Lin-Maldacena
geometries. Indeed they are smooth and without horizons, and can be formulated in terms
of a four-dimensional electrostatic potential V (ρ, z). Asymptotically the metric describes
flat Euclidean space (in the Einstein frame) with an axi-dilaton corresponding to the D-
instanton solution [10, 11]. In addition there is a constant 3-form Ramond-Ramond flux.
This is consistent with the picture that those geometries correspond to the backreaction
of N D-instantons polarizing into a D1 brane [2]. Those geometries are in one-to-one
correspondence with the fuzzy sphere vacua of the polarized IKKT matrix model, as we
showed explicitly by quantizing the different fluxes and relating their quantum numbers to
the dimensions and degeneracies of the SU(2) irreducible representations.

In the companion paper [13] we compute the partition function and some correlation
functions of the polarized IKKT model using supersymmetric localization. Our preliminary
results suggest that, in the large N limit, the localization equations are identical to the
electrostatic problem that determines the supergravity solution, similar to the case for
the BMN model [43]. In particular we can write the partition function in terms of the
electrostatic variables, where it also receives two contributions, one from the electrostatic
energy QsVs, and one from the octopole q3, matching respectively the bulk term and the
boundary term of the supergravity on-shell action. The detailed comparison with the
supergravity answer is in progress and we hope to report it soon.
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Future directions.

• In this paper, we constructed backreacted geometries but did not evaluate their on-
shell actions. As discussed in section 3.6, doing so requires determining the boundary
counterterms. This can be determined by requiring supersymmetry to be restored,
see e.g. [44].

• As mentioned above, the supersymmetric localization allows us to compute certain
correlation functions as well. As in the usual holography, operators in the matrix
model should be dual to some asymptotic behaviour of the supergravity fields. It
would be enlightening to derive the dictionary carefully and perform quantitative
comparison of correlation functions on both sides.

• In this paper, we focused on solutions without D7-brane charges. It would be in-
teresting to generalize our construction to include D7-branes (i.e. nontrivial SL(2,C)
monodromies). Similar solutions dual to five-dimensional superconformal field theo-
ries were constructed in [45] and it should be possible to perform suitable analytic
continuation to obtain geometries with SO(7)× SO(3) isometry.

• A closely related question would be to identify the matrix-model counterparts of
geometries with D7-branes. One possibility may be to look for mass deformation of
the D(−1)/D7 matrix models discussed recently in [46–48] that preserve exceptional
F4 superalgebra.

• In the limit Ω → 0, one could derive an effective action for the diagonal modes
by explicitly integrating out the off-diagonal modes. This has been done for the
IKKT model in [49]. For the BMN model, the effective Hamiltonian resulting from
similar computation reduces to decoupled supersymmetric harmonic oscillators and its
spectrum reproduces that of 11D (linearized) supergravity on the pp-wave background
to the leading order [7]. However, it turns out to be significantly more difficult when
one tries to compute subleading corrections to the BMN effective Hamiltonian, which
is a key for understanding how backreacted geometry forms through interactions of
graviton gas. With the simpler matrix model one can perhaps make more progress.

• In the case of the BFSS and BMN models, studying backreacted geometries [8, 15]
was important for understanding the precise relationship to M-theory and sharpening
the original BFSS conjecture [4, 5]. Therefore it would be interesting to revisit the
IKKT conjecture in the light of our analysis, understand the relation to holography
discussed in this paper, and possibly make the conjecture more precise. It would
also be interesting to make contact with recent discussions on the (nonrelativistic)
decoupling limits of string theory e.g. [50–53]. More generally it would be interesting
if we can use matrix integrals to get a microscopic description of F-theory [54] and
extract non-perturbative observables.
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A Analytic continuation of the IIB Lorentzian solution

In this appendix, we explain how to find the geometry (3.9) through analytic continuation.
Our starting point is the Lorentzian solution constructed in [17], which takes the form of
a warped product AdS6 × S2 × Σ2. The 5-form field strength vanishes, while the axion χ,
dilaton ϕ, NSNS flux H3 = dB2 and RR flux F3 = dC2 − χB2 are written in terms of a
complex scalar B and complex 3-form F3 as

B =
1 + iτ

1− iτ
, τ = χ+ ie−ϕ, F3 = H3 + idC2. (A.1)

The full supergravity solution depends on only two holomorphic functions A±(w) and reads

ds2 = f26 (w, w̄)ds
2
AdS6

+ f22 (w, w̄)dΩ
2
2 +H2(w, w̄)dwdw̄,

F3 = dC ∧ volS2 , C =
4i

9

(
∂̄Ā−∂G
κ2

− 2R
∂̄Ā−∂G + ∂A+∂̄G

(R+ 1)κ2
− Ā− − 2A+

)
,

B =
∂A+∂̄G −R∂̄Ā−∂G
R∂̄Ā+∂G − ∂A−∂̄G

,

(A.2)

where the metric functions are

f26 =
√

6GfR, f22 =
1

9

√
6G
f3R
, H2 = 4κ2

√
fR
6G
, fR ≡ 1 +R

1−R
, (A.3)

where

G ≡ |A+|2− |A−|2+B+ B̄, κ2 ≡ −|∂A+|2+ |∂A−|2, f2R = 1+
2

3

|∂G|2

(−∂∂̄G)G
, (A.4)

with the function B defined up to a constant through

∂B ≡ A+∂A− −A−∂A+. (A.5)

This solution can be analytic continued to a Euclidean solution by the replacement20

ds2AdS6
→ −dΩ2

6. (A.7)

We get a Euclidean solution but the metric has imaginary components. To make them real
we define new coordinates (w′, w̄′) and new functions G′, κ′2 and f ′R as

w = e−iαw′, w̄ = e−iαw̄′, G = eiαGG′, κ = eiακκ′, fR = eiαRf ′R, (A.8)
20This means that the metric

ds2 = −f2
6 (w, w̄)dΩ2

6 + f2
2 (w, w̄)dΩ2

2 +H2(w, w̄)dwdw̄ (A.6)

solves the equations of motion. Indeed one can check that the corresponding changes of signs in the Ricci
tensor when AdS6 is replaced by S6 are compensated by changes of signs of the time component when we
go to Euclidean signature. This ensures that the Einstein equation is still satisfied. Then one can check
that all the other equations do not depend on the sign of f2

6 and are then invariant. See [32] for an explicit
form of all equations of motion.
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and we solve for α, αG, ακ and αR so that each component of the metric is real when G′,
κ′ and f ′R are real. We find

α =
π

2
, αG =

3π

2
, ακ =

3π

4
, αR =

π

2
. (A.9)

This solution manages to change the sign of f26 by going to the second sheet of the square
root in (A.3). We therefore have the solution

ds2 = R2
6dΩ

2
6 +R2

2dΩ
2
2 +H2dw′dw̄′, (A.10)

where

R2
6 =

√
6G′f ′R, R2

2 =
1

9

√
6G′

f ′3R
, H2 = 4κ′2

√
f ′R
6G′ . (A.11)

We write the w′-holomorphic functions g±(w′) ≡ A±(w(w
′)) and h(w′) ≡ B(w(w′)). Note

that A±(w(w
′)) and Ā±(w̄(w̄

′)) are no longer complex conjugate of each other (and similarly
for B and B̄). Instead, we have Ā±(w̄(w̄

′)) = (A±(−w(w′)))∗21. However, for g±(w′) and
h(w′) we want to keep the bar to mean complex conjugation. To this end we identify

g±(w
′) ≡ A±(w(w

′)) , ḡ±(w
′) ≡ Ā±(−w̄(w̄′)) , ḡ±(w̄

′) = (g±(w
′))∗ , (A.13)

and similarly for h(w′). Now in terms of these holomorphic functions, the metric functions
are

κ′2 = −i
[
−∂w′g+(w

′)∂w̄′ ḡ+(−w̄′) + ∂w′g−(w
′)∂̄w̄′ ḡ−(−w̄′)

]
G′ = i

[
g+(w

′)ḡ+(−w̄′)− g−(w
′)ḡ−(−w̄′) + h(w′) + h̄(−w̄′)

]
∂w′h(w′) ≡ g+(w

′)∂w′g−(w
′)− g−(w

′)∂w′g+(w
′),

(A.14)

and the defining equation for f ′R is

f ′2R + 1 =
2

3

∂G′∂̄G′

κ′2G′ . (A.15)

Also note that ∂∂̄G′ = κ′2, so the reality condition for the metric boils down to the con-
struction of the real function G′ given in (A.14).

The simplest solution is to have

e−iβg−(−w′) = g+(w
′) ≡ g(w′) , (A.16)

with β a real constant, such that

(g+(w
′)ḡ+(−w̄′))∗ = ḡ+(w̄

′)g+(−w′)
!
= g−(w

′)ḡ−(−w̄′) . (A.17)

21We can see this by looking at complex conjugation of the Laurent series

Ā(w̄) =
∑
n

a∗
n(w̄ − w̄0)

n =
∑
n

a∗
n(−iw̄′ − w̄0)

n =

(∑
n

an(−(−iw′)− w0)
n

)∗

= (A(−w))∗ (A.12)
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From (A.16) we get automatically that h(w′) + h̄(−w̄′) is imaginary (up to an inessential
constant): With this identification ∂w′h is an even function in w′

(∂w′h)(w′) =eiβ
[
g+(w

′)∂w′(g+(−w′))− g+(−w′)∂w′(g+(w
′))
]

=eiβ
[
−g+(w′)(∂w′g+)(−w′)− g+(−w′)(∂w′g+)(w

′)
]
= (∂w′h)(−w′) ,

(A.18)

and thus h(w′) = −h(−w′) + const., and similarly for h̄(w̄′). Therefore,

h(w′) + h̄(−w̄′) = h(w′)− h̄(w̄′) + const. = 2iImh(w′) + const. (A.19)

Then, renaming h→ heiβ , we get

κ′2 = −2 Im ∂w′g(w′)∂w̄′ ḡ(−w̄′)

G′ = −2 Im g(w′)ḡ(−w̄′)− 2 Im eiβh(w′) + const.

∂w′h(w′) = g(w′)∂w′g(−w′)− g(−w′)∂w′g(w′) .

(A.20)

We can furthermore redefine g → e−iβ/2g and the β dependence above disappears.
To make the expressions dependent only on {w′, w̄′} but not {−w′,−w̄′}, we write

g(w′) = gS(w
′)+ gA(w

′) where gS and gA are respectively symmetric and antisymmetric22.
Then we get

κ′2 = 4 Im ∂w′gS ∂w̄′ ḡA

G′ = 4 Im

[
gS ḡA − 1

2
h

]
+ const., ∂w′h = 2gA∂w′gS − 2gS∂w′gA.

(A.21)

Since nothing depends explicitly on the coordinates w′, we can make a holomorphic trans-
formation and treat gA as the new coordinate. We note that all dependence on ∂w′gA
disappears in the chain rule. Let us see this in more detail. First we have

κ′2 = 4 Im ∂w′gS ∂w̄′ ḡA
∂w′gA
∂w′gA

= 4|∂w′gA|2 Im
∂w′gS
∂w′gA

,

G′ = 4 Im(gS ḡA − h

2
) + const.,

∂w′h

∂w′gA
= 2gA

∂w′gS
∂w′gA

− 2gS .

(A.22)

Next using the chain rule we have

∂w′gS
∂w′gA

=
∂gS
∂gA

≡ ∂AgS ,
∂w′h

∂w′gA
=

∂h

∂gA
≡ ∂Ah. (A.23)

There is still the dependence on |∂w′gA| in κ′2. However, the only appearances of κ′2 are in
f ′R as ∂G′∂̄G′/κ′2 and the factors cancel using the chain rule, and in the metric as

ds2Σ ∼ κ′2dw′dw̄′ ∼ ∂w′gAdw
′∂w̄′ ḡAdw̄

′ = dgAdḡA (A.24)

and they also cancel. Therefore, the solution does not depend on ∂w′gA. We will now
simplify the notation as

gA ≡ z + iρ, gS(gA) → f(z + iρ), ∂A → ∂, |∂gA|2κ′2 → κ′2 (A.25)
22This is always possible since g(w′) = 1

2
(g(w′) + g(−w′)) + 1

2
(g(w′)− g(−w′)).
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and similarly for the barred quantities. Now we can write h more explicitly in terms of the
primitive of f . We have

h =

∫
dgA ∂Ah = 2

∫
dgA (gA∂Af − f) = 2gAf − 4

∫
f. (A.26)

Plugging this result in G′ we get

κ′2 = 4 Im ∂f = ∂∂̄G′, G′ = −8

(
ρRe f − Im

∫
f

)
, (A.27)

where the constant in G′ is absorbed in the integral.
Let us pause and summarize our chain of redefinitions and record the relation between

the original functions A± and the new ones. We have23

A+(w) = g(w′) = gS(w
′) + gA(w

′) = f(z, ρ) + z + iρ,

Ā+(w̄) = ḡ(−w̄′) = ḡS(w̄
′)− ḡA(w̄

′) = f̄(z, ρ)− z + iρ,

A−(w) = g(−w′) = gS(w
′)− gA(w

′) = f(z, ρ)− z − iρ,

Ā−(w̄) = ḡ(w̄′) = ḡS(w̄
′) + ḡA(w̄

′) = f̄(z, ρ) + z − iρ.

(A.28)

Combining this with (A.4) and (A.5) quickly leads to (A.27). Now the metric reads

ds2 =
√
6G′

(
f
′1/2
R dΩ2

6 +
1

9f
′3/2
R

dΩ2
2

)
+ 4κ′2

√
f ′R
6G′ (dz

2 + dρ2). (A.29)

Now the geometry can be compactly described in the two-dimensional (ρ, z) plane. We
want to identify the boundaries in this plane where the spheres S2 and S6 shrink to zero.24

For this notice that
R3

6R2 ∝ G′2 (A.30)

and therefore we identify the boundary as the region where G′ = 0. Writing the holomorphic
function

∫
f = U + iW , we have that W is a harmonic function and

1

8
G′ =W − ρ∂ρW. (A.31)

We can now introduce V through W = −ρV . The harmonic condition becomes

∇2W = 0 =⇒ ∂2zV +
2

ρ
∂ρV + ∂2ρV = 0, (A.32)

and therefore V is a harmonic function of a four-dimensional axially symmetric system,
where ρ is the radial variable and z the height of the cylinder. The boundary condition
becomes

1

8
G′ = ρ2∂ρV = 0, (A.33)

23Here we set β = 0 since we saw that it can be eliminated by further redefinitions.
24The boundaries in (ρ, z) plane do not correspond to actual boundaries of physical spacetime. For

example, consider a solid cylinder described by coordinates (r cos θ, r sin θ, z). The axis r = 0 is the boundary
in (r, z) plane where the S1 shrinks but it is not the boundary of the cylinder.
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and has a form suitable for the electrostatic analogy, as we derive carefully in the main text.
Expressing all the supergravity fields in terms of V , changing coordinates and redefining V
according to

(ρ, z) → 2

µ
(ρ, z), V → 2

µ4
V , (A.34)

we get a solution similar to (3.9), although with the wrong reality conditions. Namely the
RR flux is real and the NSNS flux is imaginary. Also, following the logic of appendix B, we
find that the dilaton needs to be everywhere negative. Thus the final step leading to (3.9)
is to use the SL(2,C) transformation on the axi-dilaton τ in (A.1) and the 3-forms

τ → aτ + b

cτ + d
,

(
H3

dC2

)
→

(
d −c
−b a

)(
H3

dC2

)
, (A.35)

with a = −d = i and b = c = 0 to get the correct reality conditions and change the sign of
the dilaton.

B Regularity of the geometries

In this appendix we study in detail the regularity conditions for the solutions (3.9). We
want to show that the metric and the exponential of the dilaton are positive and smooth
everywhere, provided that we add a suitable background potential.

The metric is positive definite if

V̇ > 0, V ′′ < 0, ∆ > 0, (B.1)

and eϕ is positive if in addition
3V̇ + ρV ′′ < 0 , (B.2)

is satisfied everywhere.
To show these conditions we use properties of harmonic functions. We have that V is

harmonic in 4D
V ′′ + V̈ +

2

ρ
V̇ = 0, (B.3)

and asymptotes to

V (ρ, z) ≃
r→∞

−ηz + µ5

27
(zρ2 − z3). (B.4)

We start with −V ′′, which is also harmonic in 4D. We recall the expansion near the disks
and near the z axis

ρ→ 0 : V (ρ, z) = f(z)− f ′′(z)

6
ρ2 +

1

120
f (4)(z)ρ4 + ...,

z → zs : V (ρ, z) = Vs + g(ρ)(z − zs)−
2ġ(ρ) + ρg̈(ρ)

6ρ
(z − zs)

3 + ...

(B.5)

We find
−V ′′ ≃

r→∞

3z

64
µ5, −V ′′ ≃

ρ→0
−f ′′(z), −V ′′ ≃

z→zs
0 (B.6)
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It is zero on the disks, regular on the z axis, and is positive at infinity. Since no local
minima can exist between the disks and infinity, it needs to be positive everywhere.

We can study V̇ similarly. Since ρ > 0 it is equivalent to study the positivity of V̇ /ρ,
which is harmonic in 5D. We get

V̇

ρ
≃

r→∞

z

64
µ5,

V̇

ρ
≃

ρ→0
−7

6
f ′′(z),

V̇

ρ
≃

z→zs
0 (B.7)

Again we find that the function is positive at infinity, vanishes on the disks and is regular
on the z-axis. In fact on the z axis we have V̇ /ρ ∼ −V ′′ > 0. Therefore we find that the
function is positive everywhere.

To conclude with the positivity of the metric we want to check that ∆ > 0. Using
Laplace’s equation we can write

∆ = (ρV̈ − V̇ )(−V ′′) + ρV̇ ′2. (B.8)

Therefore it is sufficient to show ρV̈ − V̇ = ρ2∂ρ(V̇ /ρ) > 0. Since the function V̇ /ρ is
harmonic and growing at infinity, its derivative is positive. Therefore ∆ > 0. We conclude
that the metric is positive everywhere in the region z ≥ 0 and ρ ≥ 0.

For the dilaton, we can use the Laplace’s equation to write

−ρV ′′ − 3V̇ = ρV̈ − V̇ , (B.9)

which is the same function that we studied in the previous paragraph. Therefore we conclude
that eϕ > 0.

Having determined that the metric and dilaton are positive everywhere, we still have
to study in detail the smoothness of the solution. The dangerous regions are the z−axis
and the disks, where again we can expand with (B.5) to look at the expressions of all
supergravity fields. Near the z-axis we find, up to terms of order ρ or higher,

ds2 ≃
ρ→0

(
212

45µ10(5f ′′′2 − 3f ′′f (4))3

)1/4 [
(5f ′′′3 − 3f ′′f (4))(dz2 + dρ2) + 5f ′′2ρdΩ2

2

]
,

eϕ ≃
ρ→0

µ3√
5

f (4)

f ′′
(
5f ′′′2 − 3f ′′f (4)

)1/2 , χ ≃
ρ→0

i

µ3
f ′′
(
5f ′′′2 − 3f ′′f (4)

)1/2
f (4)

B2 ≃
ρ→0

− 8

3µ

(
z +

5f ′′f ′′′

3f ′′f (4) − 5f ′′′3

)
dΩ2, C2 ≃

ρ→0

8i

3µ4

(
f +

5(f ′f ′′f ′′′ − 3f ′′3)

3f ′′f (4) − 5f ′′′3

)
dΩ2,

(B.10)

and we see that nothing diverges. Similarly near the disks we find at the leading order in
(z − zs)

ds2 ≃
z→zs

(
212ρ2ġ3

33µ10(2ġ + ρg̈)

)1/4 [
2ġ + ρg̈

ρf ′
(dz2 + dρ2) + 3ρdΩ2

6

]
,

eϕ ≃
z→zs

−µ3 ġ − ρg̈
√
3ρ (2ġ4 + ρġ3g̈)1/2

, χ ≃
z→zs

− i

µ3

(
g +

3ρġ2

ġ − ρg̈

)
B2 ≃

z→zs
− 8

3µ
zsdΩ2, C2 ≃

z→zs

8iVs
3µ4

dΩ2,

(B.11)
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and again everything stays finite when z → zs. Therefore we determined that the solution
is regular everywhere, even near ρ = 0 and the disks.

C Electrostatics with a high disk

In this appendix we solve the electrostatic problem in the limit where we have only one
conducting disk at zs = d ≫ 125. Our goal is to compute the constant potential on that
disk and the octopole of the asymptotic electrostatic potential.

The potential of a ball of radius a and charge density σ(ρ) is

V (ρ, z) =
1

4π2

∫
dΩ2

∫ a

0
u2du

σ(u)

(z − d)2 + ρ2 + u2 − 2uρ cos θ
. (C.1)

Integrating over the angles we get

V (ρ, z) =
1

4πρ

∫ a

0
du uσ(u) log

(
1 +

4ρu

(ρ− u)2 + (z − d)2

)
. (C.2)

In particular

V (ρ, d) =
1

2πρ

∫ a

0
du uσ(u) log

∣∣∣∣ρ+ u

ρ− u

∣∣∣∣ . (C.3)

So we want to solve for V0 in

1

2πρ

∫ a

0
du uσ(u) log

∣∣∣∣ρ+ u

ρ− u

∣∣∣∣ = V0 − Vbg − Vother disks ≡
1

2πρ
f(ρ), r < a, (C.4)

where Vbg(ρ) = α(ρ2d − d3) is the background potential at z = d. The solution to that
integral equation is [56]

ρσ(ρ) =
1

π2
p.v.

∫ a

−a
du

√
a2 − u2

a2 − ρ2
f ′(u)

ρ− u
. (C.5)

In the limit d→ ∞ we can neglect the contributions from the image disk since it decays as
d−2. Requiring that σ(a) = 0 we get the radius

a =

√
2(αd3 + V0)

3αd
. (C.6)

We still have to determine V0 which can be done by computing Q = 4π
∫ a
0 ρ

2σ(ρ). Using
the result for a we get

Q = 2π2
(αd3 + V0)

2

3dα
, (C.7)

which allows to solve for V0 simply by inverting

V0 = −αd3 + 1

π

√
3

2
Qdα. (C.8)

25See [55] for a solution in usual D = 3 electrostatics.
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We also compute the first terms in the multipole expansion, taking into account the image
disk. The distance between the two disks is 2d. With the asymptotic expansion (3.14) we
get the first terms

V (ρ, z) =
P

2π2
z

(z2 + ρ2)2
+
q3
π2
z(z2 − ρ2)

(z2 + ρ2)4
+ ...

P = 2Qd, q3 = 2Qd3 − 8πd

∫ a

0
du u4σ(u).

(C.9)

Using our result for σ(ρ) in the limit d≫ 1, we can then compute

q3 = 2Qd3 +

√
2dQ3

3α
+ ... (C.10)
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