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Neural Simulation-Based Inference (NSBI) is a powerful class of machine learning (ML)-based
methods for statistical inference that naturally handles high-dimensional parameter estimation
without the need to bin data into low-dimensional summary histograms. Such methods are
promising for a range of measurements, including at the Large Hadron Collider (LHC), where
no single observable may be optimal to scan over the entire theoretical phase space under
consideration, or where binning data into histograms could result in a loss of sensitivity.
This work develops an NSBI framework for statistical inference, using neural networks to
estimate probability density ratios, which enables the application of NSBI to a full-scale LHC
analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty
coming from finite training statistics, develops a method to construct confidence intervals,
and demonstrates a series of intermediate diagnostic checks that can be performed to validate
the robustness of the method. As an example, the power and feasibility of the method are
demonstrated on simulated data for a simplified version of an off-shell Higgs boson couplings
measurement in the four-leptons final states. This NSBI framework is an extension of the
standard statistical framework used by LHC experiments and can benefit a large number of
physics analyses.
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1 Introduction

The precision measurement of theoretical parameters is a core element of the scientific program of
experiments at the Large Hadron Collider (LHC). Such measurements typically rely on the method of
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maximal likelihood, which assesses the likelihood of the observed data for a range of parameter values [1,
2]. While the likelihood cannot be analytically calculated, high-fidelity simulations of data under varying
parameter values in conjunction with density estimation methods allow for estimation of the likelihood [3].
As the space of observational measurements grows to higher dimensionality, density estimation becomes
very challenging and is often preceded by data reduction, which compresses the relevant information into a
low-dimensional summary statistic, often a single observable, allowing for simple density estimation such
as histogramming [1]. While significant effort goes into both the design of this summary observable and
the choice of histogram binning, these simplifications may nonetheless result in a loss of sensitivity. This
is of particular concern for problems where the kinematic distributions (the differential cross-sections)
of different physics processes have a non-linear dependence on the parameter of interest,1 as opposed
to several signal strength measurements where the parameter of interest simply scales the distributions
of the signal processes linearly. In these non-linear cases, no single observable may contain all the
information required to maximise the sensitivity of the analysis over the full range of the theory parameter
under consideration [4–6]. Examples of analyses for which this can have significant consequences for the
sensitivity include the off-shell Higgs boson production measurements and effective field theory (EFT)
measurements, where quantum interference introduces these non-linearities.

While histograms cannot effectively scale to high dimensions, neural networks have been shown to
perform high-dimensional, unbinned density estimation in the context of parameter estimation at the
LHC [4, 7–10] without the need to collapse information to a single observable. Referred to as neural
simulation-based inference (NSBI), these methods can dramatically enhance sensitivity in analyses where
the histogram-related simplifications are unwarranted. However, for the application of NSBI at a particle
physics experiment, crucial questions remain unanswered. How can a large number of nuisance parameters
be incorporated? How can the uncertainty from limited Monte-Carlo (MC) simulated samples be quantified?
Can neural networks produce robust likelihood ratios and confidence intervals when applied in a realistic
experimental context, and how can their reliability be effectively tested? This note answers these questions
and, therefore, enables the construction of a complete NSBI framework, together with diagnostic tools to
address these questions.

The developed framework is an extension of the established statistical method at the LHC [1, 2], to
an unbinned, multi-dimensional setting, where neural networks are used to estimate likelihood ratios
between hypotheses. It accounts for linear as well as non-linear dependence of physics observables as
a function of theory parameters, which is crucial to building optimal test statistics. The challenge of
model-misspecification in NSBI, where the simulations have systematic differences from real data, is
addressed by the introduction of nuisance parameters representing systematic uncertainties, and by testing
the modelling of these systematic uncertainties themselves, in a similar way to how it is done for traditional
analysis techniques in particle physics [11, 12]. This method can leverage an analytical factorisation of
contributions from different physics processes to the full likelihood, which is possible in a majority of
analyses at the LHC. To demonstrate the power and applicability of the method, an example use case
is shown on samples describing the gluon-gluon fusion processes simulated for the ATLAS off-shell
Higgs boson production measurement in the four leptons final states [13]. The improvement in sensitivity
compared to a histogram-based method, while accounting for systematic uncertainties, comes from the
optimisation of the analysis over the entire range of the theory parameter, which cannot be achieved with
the use of only a single observable for all regions of the theory space, and an additional improvement

1 In particular, there exists no representation of the parameter of interest (such as by taking the square or the square root) under
which the probability densities corresponding to each physics process in the analysis have either a constant or linear dependence
on the parameter of interest.
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comes from the unbinned nature of the method. The robustness tests that are needed to build a reliable
likelihood ratio model using neural networks are also demonstrated.

Since this note builds upon the established statistical methods at the LHC, it focuses on the tools and
concepts necessary to extend this for the high-dimensional and unbinned NSBI analysis. The note is
organised as follows. Section 2 reviews the concepts of neural simulation-based inference as well as
modifications that are developed for a practical application at the LHC. Section 3 introduces the context of
the off-shell Higgs boson production measurement, which is the example analysis used to demonstrate
the developed method. Section 4 then describes the diagnostic tools used to validate the trained models,
Section 5 extends the method to incorporate systematic uncertainties, Section 6 describes how to build
confidence intervals for NSBI, and Sec 7 demonstrates the gain in sensitivity. The conclusion is presented
in Section 8 with a discussion of opportunities and challenges.

2 Neural simulation-based inference

Neural simulation-based inference techniques are of interest to a wide range of scientific fields for parameter
estimation in cases where likelihoods are either intractable or computationally expensive to evaluate. When
high-fidelity simulators can provide samples drawn from these likelihoods, neural networks are capable of
learning the underlying density of these simulated samples and can be used to approximate a likelihood
ratio [7], the likelihood itself [14], or, in the context of Bayesian inference, the posterior [15]. These
techniques have several potential applications in the physical sciences [3, 4] and can be used, for instance,
to study galaxy clustering [16], probe the interior of neutron stars from telescope data [17], or analyse data
from gravitational wave detectors [18].

This section reviews the core principles of classifier-based NSBI and subsequently discusses a framework
in which the method can be made robust and numerically stable. Nuisance parameters will be introduced
to this framework in Section 5.

2.1 Classifiers as probability density ratio estimators

Neural network classifiers can be used to discriminate between two hypotheses 𝜇0 and 𝜇1 by minimizing
the binary cross-entropy loss function,

L[𝑠] = − 1
(∑𝑁

𝑖=1 𝑤𝑖)

𝑁∑︁
𝑖=1

𝑤𝑖 · [𝑦𝑖 log 𝑠(𝑥𝑖) + (1 − 𝑦𝑖) log(1 − 𝑠(𝑥𝑖))] (1)

where the sum is over 𝑁 events 𝑥𝑖 sampled from probability density functions 𝑝(𝑥𝑖 |𝜇0) or 𝑝(𝑥𝑖 |𝜇1) with
weights 𝑤𝑖 and assigned labels 𝑦𝑖 = 0 or 𝑦𝑖 = 1, respectively, and 𝑠(𝑥𝑖) is the classifier decision function.
The event 𝑥𝑖 is described by a vector of observables.

The optimal decision function (in the infinite sample limit, i.e. as 𝑁 → ∞), which minimizes the binary
cross entropy function, is given by [7, 19]

𝑠(𝑥𝑖) =
𝑝(𝑥𝑖 |𝜇1) · 𝜈(𝜇1)

𝑝(𝑥𝑖 |𝜇0) · 𝜈(𝜇0) + 𝑝(𝑥𝑖 |𝜇1) · 𝜈(𝜇1)
, (2)
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where 𝜈(𝜇0) and 𝜈(𝜇1) are the expected number of events for each hypothesis.

In high-energy physics, training datasets are usually taken from simulated Monte Carlo (MC) samples
generated according to the two hypotheses. These events are weighted, and the weights may take
negative values. Typically, the weights are scaled to perform the training with balanced samples, i.e.,∑

𝑦=0 𝑤𝑖 =
∑

𝑦=1 𝑤𝑖 , which tends to improve the convergence of the neural network to the optimal classifier.
For the case of training a classifier between two hypotheses, this choice simplifies the optimal classifier
to

𝑠(𝑥𝑖) =
𝑝(𝑥𝑖 |𝜇1)

𝑝(𝑥𝑖 |𝜇0) + 𝑝(𝑥𝑖 |𝜇1)
. (3)

The likelihood-ratio trick [7] can be used to write the probability density ratio between the hypotheses 𝜇0
and 𝜇1 for a single event 𝑥𝑖 as:

𝑟 (𝑥𝑖; 𝜇1, 𝜇0) =
𝑝(𝑥𝑖 |𝜇1)
𝑝(𝑥𝑖 |𝜇0)

=
𝑠(𝑥𝑖)

1 − 𝑠(𝑥𝑖)
. (4)

The estimator 𝑟 (𝑥𝑖; 𝜇1, 𝜇0) is obtained from a neural network estimator 𝑠(𝑥𝑖) of the optimal decision
function. This relation enables the estimation of the probability density ratio between two values of a
parameter(s) of interest for individual events without the need for dimensionality reduction or histograms.
The probability density ratio for the dataset is constructed by taking the product of probability density ratios
for individual events, which can be combined with the total rate information to compute the likelihood ratio
and the likelihood ratio can be used to build a test statistic comparing the two hypotheses 𝜇0 vs 𝜇1. This
trick has, for instance, been used to obtain probability density ratios per event, in data-driven background
estimation [20] and unfolding [21] in the ATLAS experiment.

The task of parameter estimation is a composite hypothesis test, but can be performed by comparing the
likelihood for two values of the parameter at a time. While it may appear that parameter estimation would
require training a separate classifier for each pair of hypotheses being compared, in practice there are more
elegant solutions. A single parameterised network may be trained to learn a conditional decision function
that varies with the hypothesis under consideration (i.e. the different values of the theory parameter) [7,
22]. However, the parametric dependence of a test statistic can often be analytically expressed in terms of
the parameter(s) of interest and a finite number of likelihood ratios estimated from binary classifiers. Such
a formalism eliminates the need for a network to learn the parametric dependence.

For example, consider the case of a search where 𝜇 is the signal strength to be measured, in an analysis
with no interference between the signal and background processes,

𝑝(𝑥𝑖 |𝜇) =
𝜇 · 𝜈𝑆 𝑝(𝑥𝑖 |𝑆) + 𝜈𝐵 𝑝(𝑥𝑖 |𝐵)

𝜇 · 𝜈𝑆 + 𝜈𝐵
, (5)

with 𝑆 representing the signal processes, 𝐵 the background processes, 𝜈𝑆 the total expected signal rate and
𝜈𝐵 the total expected background rate. One can train a classifier to estimate a decision function separating
signal from background events (using balanced class weights),

𝑠(𝑥𝑖) =
𝑝(𝑥𝑖 |𝑆)

𝑝(𝑥𝑖 |𝐵) + 𝑝(𝑥𝑖 |𝑆)
, (6)
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and then compute the per-event probability density ratio,

𝑟 (𝑥𝑖; 𝑆, 𝐵) =
𝑝(𝑥𝑖 |𝑆)
𝑝(𝑥𝑖 |𝐵)

=
𝑠(𝑥𝑖)

1 − 𝑠(𝑥𝑖)
. (7)

This can subsequently be scaled as required to construct the likelihood ratio,

𝑝(𝑥𝑖 |𝜇)
𝑝(𝑥𝑖 |𝜇 = 0) =

𝜇 · 𝜈𝑆 𝑝(𝑥𝑖 |𝑆) + 𝜈𝐵 𝑝(𝑥𝑖 |𝐵)
(𝜇 · 𝜈𝑆 + 𝜈𝐵) 𝑝(𝑥𝑖 |𝐵)

=
1

(𝜇 · 𝜈𝑆 + 𝜈𝐵)

(
𝜇 · 𝜈𝑆 𝑟 (𝑥𝑖; 𝑆, 𝐵) + 𝜈𝐵

)
, (8)

where 𝜈𝑆 and 𝜈𝐵 are estimated from simulation. The output of a single, unparameterised classifier, therefore,
is a sufficient summary statistic, meaning that it contains all the information necessary to perform hypothesis
tests over a range of 𝜇, for problems where 𝜇 linearly scales the distributions. This is guaranteed by the
Neyman-Person lemma, which states that the likelihood ratio is the optimal observable when comparing
two hypotheses. To use this classifier output directly as an estimate of the probability density ratio, stringent
requirements would need to be placed on the quality of this estimation. Alternatively, the output of the
classifier can be treated as a high-level observable particularly sensitive to 𝜇. For this reason, it is often used
as the final observable in histogram-based signal strength measurements. In such analyses, the likelihood
is traditionally computed in each bin of a histogram using an analytically known Poisson probability model,
where the expected number of events is obtained from simulation and the observed number of events from
data [1]. This prescription for the design of a single observable that acts as a sufficient summary statistic
only works for problems linear in 𝜇. The rest of this section develops a more general framework to build a
test statistic that captures information available in the higher-dimensional view of the data, using the output
of a few classifiers. It describes a method to factorise the problem of estimating likelihood ratios into a set
of simpler estimation tasks and improve the robustness of the estimation.

2.2 Factorisation into a search-oriented mixture model

When the hypotheses being tested can be decomposed into several components, the learning task can
be factorised into a series of simpler classification tasks [7]. Further, if the only free parameters to be
measured can be written as coefficients of the mixture model, the individual classifiers no longer need to be
parameterised in the parameter(s) of interest (e.g. a signal strength 𝜇), since the relation is explicitly known.
This reduces the burden of validating the interpolation capabilities of the likelihood ratio estimation from
validating over the entire theory parameter space, to simply validating the performance of the small number
of classifiers. If every classifier is well-trained and well-calibrated, then their combination, too, may be
expected to remain well-behaved, although this must be explicitly verified.

For an LHC analysis, this decomposition can use different physics processes that give rise to the same final
state, each with a coefficient that is some function of the parameter(s) of interest. If the decomposition is
into 𝐶 different components, representing 𝐶 different physics processes, then the probability density is,

𝑝(𝑥𝑖 |𝜇) =
1

𝜈(𝜇)

𝐶∑︁
𝑗

𝑓 𝑗 (𝜇) · 𝜈 𝑗 𝑝 𝑗 (𝑥𝑖), (9)

where 𝑝 𝑗 (𝑥𝑖) is the probability density for the event 𝑥𝑖 corresponding to the process 𝑗 , 𝜈 𝑗 the inclusive
rate for that process with 𝜇 at the Standard Model value, and 𝜈(𝜇) = ∑

𝑓 𝑗 (𝜇) · 𝜈 𝑗 . Here 𝜇 could represent
multiple theory parameters, and this formalism accommodates multiple independent parameters of interest.
For most LHC analyses, the full dependence on 𝜇 can be captured using only the coefficients 𝑓 𝑗 (𝜇) and
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the total rate 𝜈(𝜇), where the coefficients 𝑓 𝑗 (𝜇) are known from theory [4]. If the dependence on the
parameter(s) of interest is not analytically known2, a parameterised network can be trained instead to
directly estimate 𝑝 𝑗 (𝑥𝑖 |𝜇) [7]. This note defines a search-oriented mixture model, which is the probability
density ratio between a hypothesis and a reference,

𝑝(𝑥𝑖 |𝜇)
𝑝ref(𝑥𝑖)

=
1

𝜈(𝜇)

𝐶∑︁
𝑗

𝑓 𝑗 (𝜇) · 𝜈 𝑗

𝑝 𝑗 (𝑥𝑖)
𝑝ref(𝑥𝑖)

, (10)

expressed using only a finite number of 𝜇-independent probability density ratios, 𝑝 𝑗 (𝑥𝑖)/𝑝ref(𝑥𝑖), which
are estimated using classifiers. While there is freedom to make any choice for the reference, this note
defines it as a combination of signal processes,

𝑝ref(𝑥𝑖) =
1∑
𝑘 𝜈𝑘

𝐶signals∑︁
𝑘

𝜈𝑘 𝑝𝑘 (𝑥𝑖), (11)

with 𝐶signals as the number of signal processes. This definition ensures that the denominators in Eq. 10
have support over the entire signal region of an analysis, which is the region that is sensitive to the signal
processes. Here, 𝑝ref is defined to be independent of 𝜇, which allows the construction of the final profile
likelihood ratio that is independent of 𝑝ref (see Section 5). The term 𝑝ref contributes only as a constant
offset towards log 𝑝(𝑥𝑖 |𝜇), which can be ignored in the maximisation of the (log-)likelihood.

The search-oriented mixture model overcomes issues of numerical instability that may arise in alternative
mixture model formulations. Additionally, the pre-selected region for the analysis must be defined to
ensure 𝑝ref(𝑥𝑖) > 0 throughout the region. This definition of 𝑝ref ensures that no signal-sensitive parts of
the phase space need to be removed. Further, this choice of 𝑝ref also aids in the sample-efficient training
of the individual classifiers. Finally, it may be convenient to define 𝑝ref such that it can be represented
using simulated samples with only positive weighted events. This simplifies the procedure to construct
confidence intervals, which will be described in Section 6.

2.3 Robust Estimators with Ensembling

In a traditional analysis where a classifier is employed solely for constructing a sensitive observable and
where probability density estimation is performed with a histogram, an imperfect training leads to a
suboptimal observable and a slightly less sensitive analysis. However, it does not lead to an ill-behaved test
statistic, introduce inaccuracies in the measured confidence intervals or introduce biases in the maximum
likelihood estimate of the parameter(s) of interest. This is because the likelihood of event counts per bin
in a histogram can be computed exactly using the Poisson probability density function. In NSBI, the
probability density ratios are instead estimated using networks, and therefore, ensuring the high quality of
these estimates is imperative. Since an individual classifier may not perfectly estimate the decision function
𝑠(𝑥𝑖), a series of steps is described to ensure that the estimator 𝑠(𝑥𝑖) is well-behaved (as determined by
the diagnostic tests described in Sec. 4). One possibility is to calibrate 𝑠(𝑥𝑖) using simulated samples [7];
however, achieving accurate and continuous calibration in practice can be technically challenging. Instead,
an ensemble of networks may be trained [23] on bootstrapped samples of the training data, and their
average response used to construct a robust estimation of likelihood ratios. The bootstrapping can be

2 Factorising out the dependence on the parameter of interest(s) is possible for signal strength measurements but may not be
possible in certain other instances, such as mass measurement.
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implemented either through resampling or using Poission perturbations to the event weights that correspond
to statistical fluctuations [24]. This approach helps account for the variance between individual networks,
originating from the random initialisation of weights and the finite statistics of the training samples. A
similar method has previously been used for neural-network-based data-driven background estimation [20]
and unfolding of differential cross-sections [21] in ATLAS. Examining classifier and ensemble performance
across different parts of the observable phase space can guide decisions about neural network architecture
optimisation and data pre-processing. Iterative optimisation is essential to achieve a high level of accuracy
in likelihood-ratio estimation. Multiple diagnostic tests help determine whether the level of precision
desired from the ensembles has been achieved, which are discussed in Section 4. Ultimately, the full
framework must be tested on simulated samples at different values of the parameter(s) of interest to ensure
that reliable results with the desired precision are consistently produced over the entire parameter range.
Since the ensembles are trained on bootstrapped samples, it is natural to use the spread in their predictions
to quantify the uncertainty due to the finite training data.

3 Example use case: ggF off-shell Higgs boson production

The developed NSBI framework is demonstrated using a subset of simulated samples originally generated
for an off-shell Higgs boson production measurement in the 𝐻 → 𝑍𝑍 → 4ℓ decay channel. The full
context of the analysis is described in Ref. [13], only the details relevant to NSBI will be summarised
below. Only a subset of the physics processes and systematic uncertainties from the original analysis are
considered for this demonstration.

When the quantum interference between signal and background processes is negligible, a single observable
that optimally separates signal from background contains all the information necessary to perform optimal
hypothesis tests over the full range of signal strength values (see Eq. 6). However, this is no longer true
when the interference cannot be ignored, and therefore does not apply to the off-shell Higgs boson analysis,
where there is considerable destructive interference between the signal and background processes. In this
case, the kinematic distributions change non-linearly with the signal strength 𝜇, and Ref. [5] demonstrates
that the use of NSBI can fully account for these non-linear effects.

The simulated samples used in the study by ATLAS in Ref. [13] include those for the 𝑔𝑔 → 𝐻 → 𝑍𝑍 → 4ℓ
signal-only (S) process, 𝑔𝑔 → 𝑍𝑍 → 4ℓ background-only (B) process, and the combined simulation
including interference effects 𝑔𝑔 → (𝐻) → 𝑍𝑍 → 4ℓ (SBI1, where the subscript indicates that 𝜇 was set
to 1 for the simulation). These samples from the gluon-gluon fusion (ggF) production channel will be
re-used for the demonstrations in this note.The full ggF probability model can be expressed as3

𝑝ggF(𝑥 |𝜇) =
1

𝜈ggF(𝜇)
[
(𝜇 − √

𝜇) 𝜈𝑆 𝑝S(𝑥) +
√
𝜇 𝜈SBI1 𝑝SBI1 (𝑥) + (1 − √

𝜇)𝜈B 𝑝B(𝑥)
]
, (12)

where 𝜈ggF(𝜇) = (𝜇 − √
𝜇) 𝜈𝑆 + √

𝜇 𝜈SBI1 + (1 − √
𝜇)𝜈B. The contribution from the interference (I) is

defined as 𝑝I = 𝑝SBI1 − 𝑝B − 𝑝S, and it is this inference effect that introduces the non-linearity in 𝜇.
This formulation of the probability model follows from Ref. [13]. The terms 𝑝ggF(𝑥 |𝜇) and 𝜈ggF(𝜇) are

3 In principle, a coupling modifier parameter that scales the signal amplitude could be a complex number, which would lead to
a phase contributing to the interference term in the cross-section computation. This would require the measurement of two
independent parameters of interest, which can be done with NSBI. In this analysis however, the modifier √𝜇 is assumed to be a
positive real number, and therefore only the inference of one parameter of interest 𝜇 is required.
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functions of 𝜇 while 𝑝SBI1 (𝑥) and 𝜈SBI1 are terms where 𝜇 is fixed to 1. For simplicity, the ggF subscripts
will be suppressed henceforth. The definition for the reference in Eq. 11 leads to 𝑝ref = 𝑝S for this example,
and the search-oriented mixture model from Eq. 10 becomes

𝑝(𝑥 |𝜇)
𝑝S(𝑥)

=
1

𝜈(𝜇)

[
(𝜇 − √

𝜇) 𝜈𝑆 + √
𝜇 𝜈SBI1

𝑝SBI1 (𝑥)
𝑝S(𝑥)

+ (1 − √
𝜇)𝜈B

𝑝B(𝑥)
𝑝S(𝑥)

]
. (13)

This can be constructed using two ensembles, the first to estimate 𝑝SBI1 (𝑥)/𝑝S(𝑥) and the second
𝑝B(𝑥)/𝑝S(𝑥). The event section strategy follows Ref. [13] and additionally uses a multi-variate-analysis-
based discriminant, similar to the discriminant designed in Ref. [13], used here only to define the signal
and control regions. The control region is a part of the data without sensitivity to the signal which can be
used to validate the background model and potentially fit background-related nuisance parameters. The
rest of this section will describe input features and architecture for the networks trained for these tasks, and
the systematics model considered in this demonstration.

3.1 Input features

With sufficient training statistics, deep neural networks can learn only from low-level input features such as
the four-momenta of all observed final state particles. They can then automatically capture all higher-level
correlations.However, in the regime of limited simulated samples, as is often the case at LHC experiments,
there is a benefit to using a set of physics-motivated high-level observables that completely describe the
observed final state.

The set of observables used in this demonstration to train the networks are described in Table 1. The
Higgs decay to Z bosons is described in the data with seven kinematic observables cos 𝜃∗, cos 𝜃1, cos 𝜃2,
𝜙1, 𝜙, 𝑚𝑍1 and 𝑚𝑍2. These have traditionally been used as inputs to construct a discriminant based on
matrix-element calculations, and are known to contain all relevant information to distinguish the Higgs
boson signal process from the background [25]. Combined with the production kinematic observables 𝑚4ℓ ,
𝑝4ℓ
𝑇

and 𝜂4ℓ , these observables can be used to calculate the four-momenta of all final-state leptons in the
𝑍𝑍 → 4ℓ decay channel. Further details on the observables and event selection can be found in Ref. [13].

Table 1: List of input variables for the neural network. For additional details, see Ref. [13].

Variable Definition
Production Kinematics

𝑚4ℓ Four-lepton invariant mass
𝑝4ℓ
𝑇

Four-lepton transverse momentum
𝜂4ℓ Four-lepton pseudo-rapidity

Decay Kinematics
𝑚𝑍1 𝑍1 mass
𝑚𝑍2 𝑍2 mass

cos 𝜃∗ Higgs boson decay angle
cos 𝜃1 𝑍1 boson decay angle
cos 𝜃2 𝑍2 boson decay angle
𝜙 Angle between 𝑍1, 𝑍2 bosons decay planes
𝜙1 𝑍1 decay plane angle
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3.2 Network architecture and training

The classifiers trained in this demonstration are all feed-forward dense networks and comprise 5 hidden
layers with 1000 nodes each and a swish activation [26], followed by an output layer with a single node and a
sigmoid activation. The events were split into train and test sets using the 𝑘-fold method with 𝑘 = 10, and a
bootstrapped sample was generated from the training set to train each network in an ensemble. A weighted
binary cross-entropy loss function that accounts for event weights is used to train the networks with the
Nadam optimiser [27] in TensorFlow [28]. The training required large-scale GPU infrastructure [29],
consisting of several hundred Nvidia T4 and Nvidia A100 GPUs. The final networks used in this note,
with 500 networks used in an ensemble, required approximately 4000 GPU hours to train.

3.3 Systematic uncertainties

At the LHC systematic uncertainties on the modelling of physics processes are often considered in terms
of their effect on the shape of distributions and on the expected inclusive rates (overall normalisation).
This convention can be carried forward to NSBI.4 Two systematic uncertainties from the original study in
Ref. [13] are considered to showcase the handling of nuisance parameters that either modify both the shape
𝑝(𝑥 |𝜇) and inclusive rate 𝜈(𝜇) of distributions or only the inclusive rate 𝜈(𝜇). These are:

• ggF higher-order QCD uncertainty: the uncertainty on the missing QCD higher-order corrections
to the ggF processes in perturbation theory, which modifies both the shapes of the kinematic
distributions and the inclusive rates.

• Luminosity uncertainty: the uncertainty on the integrated luminosity measurement of ATLAS.
This affects only the inclusive rates.

This setup is used to demonstrate an NSBI analysis in Section 7.

4 Diagnostics

The precise estimation of likelihood ratios is crucial for a robust final result, and therefore the classifiers
used in the framework described in Section 2 require additional scrutiny compared to classifiers used in
traditional histogram-based analyses. In addition to traditional visualisations of classifier performance,
such as the receiver operating characteristic (ROC) curve and the distribution of the classifier’s output, this
section describes a list of additional diagnostic tools that are essential for the validation of the likelihood
ratio estimation at the level of detail required for NSBI analysis.

4.1 Reweighting closures

If an ensemble has estimated the likelihood ratio between two classes 𝑎 and 𝑏 correctly, it can be used to
reweight samples from one class to another. Since 𝑝(𝑥𝑖 |𝑎) = 𝑝(𝑥𝑖 |𝑏)𝑟 (𝑥𝑖; 𝑎, 𝑏), the distribution of samples

4 Although existing conventions such as the factorisation of systematic effects into shape and inclusive rate have been carried
over to NSBI in this work, any future change in the conventions may also be carried over, as these choices are not fundamental
components of the method.
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Figure 1: One-dimensional reweight closure diagnostic with 𝑚4ℓ and a high-level observable that represents the
squared matrix-element for the 𝑔𝑔 → 𝐻 → 𝑍𝑍 → 4𝑙 process from reconstructed quantities computed using
MCFM [30]. The former is an example diagnostic for an observable directly used in the network training, and the
latter is an example diagnostic of the network’s ability to learn high-level physics observables that are not used
directly for training. The original reference sample (blue, dashed), is reweighted (orange, solid) using the likelihood
ratio estimated with ensembles to match the target (green, dashed). The lower panel shows the ratio between the
reweighted reference sample and the target sample.
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from 𝑏 reweighted as 𝑤𝑖 · 𝑟 (𝑥𝑖; 𝑎, 𝑏), where 𝑤𝑖 indicates the normalised simulation weight of an event
from class 𝑏, should match the distribution of samples from 𝑎,

𝑟 (𝑥𝑖; 𝑎, 𝑏) · 𝑝(𝑥𝑖 |𝑏) ∼ 𝑝(𝑥𝑖 |𝑎). (14)

Any discrepancies indicate a failure of the ensemble to correctly estimate the likelihood ratio in a given part
of the phase space. The normalisation of the weights is necessary to focus on the differences in the shape
of the distributions. These comparisons can be made by taking one- or two-dimensional projections of the
full input phase space. Examples of good reweight closure are shown in Figure 1 to validate the 𝑝SBI1/𝑝𝑆
and 𝑝B/𝑝𝑆 , using a one-dimensional histogram of the 𝑚4ℓ observable. The closure is also shown using
high-level observables that were not explicitly used in the training, in this case, a matrix-element-based
observable that is known to be good summary statistic [31].

An independent classifier (such as a deep neural network or a boosted decision tree) can be trained to
separate events from class 𝑎 and the reweighted events from 𝑏 to identify any high-dimensional mismatches
between the distributions [7]. A perfect reweighting would lead to the failure of this independent classifier,
indicated by an area under the ROC curve (AUC) of 0.5. Such classifier tests have previously been used to
assess the performance of generative models in HEP [32, 33].

A related tool, the normalisation closure,∑︁
𝑖∈𝑎

𝑤𝑖

𝑝𝑏 (𝑥𝑖)
𝑝𝑎 (𝑥𝑖)

=
∑︁
𝑖∈𝑏

𝑤𝑖 , (15)

should also be explicitly verified. This simple test can fail if the numerical precision of the training and
inference are not enough to correctly describe events with 𝑠(𝑥𝑖) ≈ 0 or 𝑠(𝑥𝑖) ≈ 1.

4.2 Calibration closure

Another useful visualisation is the calibration curve. If the predicted relative probability 𝑠(𝑥𝑖) from the
ensembles is binned, then the fraction of events in each bin from the first class provides an empirical
MC estimate of the mean 𝑠(𝑥𝑖) in that bin. In the ideal case, the binned estimate would match the
ensemble estimate in each bin, therefore a well-calibrated classifier produces a diagonal line along 𝑦 = 𝑥.
Figure 2 shows the calibration curves for the estimators of 𝑝SBI1/

(
𝑝𝑆 + 𝑝SBI1

)
and 𝑝SBI1/

(
𝑝𝑆 + 𝑝SBI1

)
using ensemble predictions. The binned estimates are compared to the estimates from neural network
ensembles.

4.3 Spread in ensemble predictions

An ensemble of networks is trained for each classification task, as discussed in Section 2.3. The spread in
their predictions for the same event reveals the type of events for which the limitations of training statistics
come into play, and this can inform the optimisation of the training strategy. Examples of this spread are
shown in Figure 3. A wider spread indicates a larger ensemble uncertainty. The propagation of these
uncertainties on the estimated probability density ratios, however, requires careful consideration of their
correlated impact on the final parameter estimation. This is described in Section 5.3.
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Figure 2: Calibration curve comparing ensemble estimated 𝑠(𝑥𝑖) with the expected value from binned MC simulated
samples, for the validation of the 𝑝SBI1/𝑝ref (left) and 𝑝B/𝑝ref (right) probability density ratio estimations. The
absolute residuals are shown in the bottom panel.
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Figure 3: The distribution of neural network output for example events (in different colours) from an ensemble of
classifiers trained to separate B from S samples, evaluated on seven example events from B (left) and seven example
events from S (right). A wider spread indicates a larger uncertainty on that event from the ensemble.

4.4 Additional diagnostics

Additional diagnostic plots may be used to explore the performance of the method, motivated by analysis-
specific considerations. In addition to validating the individual estimated probability density ratios
𝑝 𝑗 (𝑥𝑖)/𝑝ref(𝑥𝑖) that form the mixture model, the combined probability density ratio 𝑝(𝑥𝑖 |𝜇)/𝑝ref(𝑥𝑖) can
also be validated using the discussed diagnostic tools. The inference can in addition be validated on
independent samples simulated at values of 𝜇 that were not used for training. The response of these
ensembles in data and in MC simulation must also be compared in the control regions. The final performance
of the analysis method can also be verified on simulated datasets across a range of the parameter of interest
to ensure that the correct maximum likelihood estimate is consistently obtained.
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As a cross-check, the analysis method can be tested on samples simulated with a different event generator,
on samples simulated with a shifted value of a nuisance parameter, or with signal injections. In addition,
this method provides interpretable, per-event quantities to examine. These are the estimated probability
density ratios between different theory hypotheses for a given event. These quantities can be studied in
detail as functions of several observables to understand the sub-category of events that influence the overall
test statistic in favour of one hypothesis over another. A few examples are discussed in Section 7.

5 Systematic uncertainties

A major challenge in applying NSBI to LHC data has been addressing systematic uncertainties. In a
traditional histogram-based analysis, these are typically parameterised by nuisance parameters denoted
collectively as a vector 𝛼 and the nominal point as a vector 𝛼0. Each individual nuisance parameter is
represented by 𝛼𝑘 (where 𝑘 spans all the nuisance parameters in an analysis), their nominal values 𝛼0

𝑘
.

These values may be constrained by an auxiliary measurement, providing, in addition, an uncertainty 𝛿𝑘 on
the nominal value.

In principle, classifiers can be conditioned on nuisance parameters in an analysis to propagate uncertainties
through to the final inference step [7, 34], but in practice, this is not feasible for all nuisance parameters in
an analysis. First, due to computational costs, samples are typically generated by varying a single nuisance
parameter at a time, with no training samples available where multiple parameters vary simultaneously.
Second, only three sets of samples are typically available per nuisance parameter: one at the nominal value
𝛼0
𝑘

and the others at variations 𝛼−
𝑘
= 𝛼0

𝑘
− 𝛿𝑘 and 𝛼+

𝑘
= 𝛼0

𝑘
+ 𝛿𝑘 . These sets are insufficient for a network

to learn the full parametric dependence. Finally, validating the interpolation capabilities of a classifier
across all regions of this high-dimensional space of nuisance parameters would be challenging even if the
classifier were parameterised on all of them.

Instead, this note extends the systematics framework already in place for histogram-based analyses to an
unbinned multi-dimensional setting, and incorporates it into NSBI. While in a histogram-based analysis the
impact of a nuisance parameter is estimated per bin, for NSBI it is estimated per event, and the interpolation
between nuisance parameter values is also performed using traditional methods, rather than relying on the
networks to learn it. Moreover, the impact of systematic uncertainties from independent sources is treated
independently, following the standard practice at the LHC.

5.1 Nuisance parameters in the likelihood ratio function

In a histogram-based analysis at the LHC, the impact of systematic uncertainties is typically propagated
into the likelihood using vertical interpolation [2]. Here the impacts of different nuisance parameters on
the measured cross-section are considered to be independent and also to be independent of the parameter(s)
of interest,

𝜈 𝑗 (𝛼) = 𝜈 𝑗 (𝛼0)
𝑁syst∏
𝑘

𝐺 𝑗 (𝛼𝑘) (16)

for 𝑁syst nuisance parameters with 𝐺 𝑗 (𝛼𝑘) = 𝜈 𝑗 (𝛼𝑘)/𝜈 𝑗 (𝛼0
𝑘
). The functions 𝑔 𝑗 (𝛼𝑘) are chosen to smoothly

interpolate between their three known values at the points 𝛼−
𝑘

, 𝛼0
𝑘

and 𝛼+
𝑘
, which are determined from the
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available simulations [2]. The choice of a differentiable interpolation function facilitates the computation
of pulls and impacts, detailed in Section 5.4.

Extending this formalism and the corresponding assumptions to a per-event approach, Eq. 10 can be
updated to incorporate nuisance parameters as

𝑝(𝑥𝑖 |𝜇, 𝛼)
𝑝ref(𝑥𝑖)

=
1

𝜈(𝜇, 𝛼)

𝐶∑︁
𝑗

𝑓 𝑗 (𝜇) · 𝜈 𝑗

𝑝 𝑗 (𝑥𝑖)
𝑝ref(𝑥𝑖)

𝑁syst∏
𝑘

𝐺 𝑗 (𝛼𝑘) 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) (17)

with 𝜈(𝜇, 𝛼) = ∑𝐶
𝑗 𝑓 𝑗 (𝜇) · 𝜈 𝑗 ·

∏𝑁syst
𝑘

·𝐺 𝑗 (𝛼𝑘). The contribution to the per-event probability density ratio
from each nuisance parameter comes from 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) = 𝑝 𝑗 (𝑥𝑖 , 𝛼𝑘)/𝑝 𝑗 (𝑥𝑖), where 𝑝 𝑗 (𝑥𝑖), 𝑓 𝑗 (𝜇), 𝜈 𝑗 and
𝑝ref(𝑥𝑖) are defined at 𝛼0.

As with the functions 𝐺 𝑗 (𝛼𝑘), the functions 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) are chosen to interpolate between the three
known values at 𝛼0

𝑘
and 𝛼±

𝑘
for each event, using the same interpolation strategy. For the nominal case

𝑔 𝑗 (𝑥𝑖 , 𝛼0
𝑘
) = 1, and for 𝛼±

𝑘
, the probability density ratios 𝑔 𝑗 (𝑥𝑖 , 𝛼±

𝑘
) are estimated per event by training

ensembles of classifiers. These classifiers are trained to separate nominal samples 𝑝 𝑗 (𝑥𝑖) from systematic
variation samples 𝑝 𝑗 (𝑥, 𝛼±

𝑘
), with one ensemble per physics process, per nuisance parameter, and per

variation. Once the functions 𝑔 𝑗 (𝑥𝑖 , 𝛼±
𝑘
) are determined, these can even be used to replace the alternative

simulations altogether in an analysis [13]. The diagnostic tests described in Section 4 are also useful tools
to validate these networks, although they can be less illuminating if the systematic variation is very small
(leading to 𝑠(𝑥𝑖) ≈ 0.5).

NSBI not only constructs a more sensitive analysis in the entire phase space of 𝜇, but also in the space of
𝛼 [34]. As with histogram analyses, it is important to ensure that an NSBI analysis does not overconstrain a
nuisance parameter. This might indicate that the modelling of the systematic uncertainty is oversimplified
or the fit is exploiting aspects of the systematic uncertainty model that are not known well, for instance
in the case of two-point theory uncertainties [35]. An analysis of the pulls on the nuisance parameters
and impacts (described further in Section 5.4), and the use of alternative modelling of the systematic
uncertainties (such as splitting the nuisance parameter into independent sub-components) can reveal such
issues, or the use of more recently developed methods to analyse the effect of systematic uncertainties [36].
Further, LHC experiments often quantify the uncertainties on the systematic uncertainties themselves,
and on models of correlation between different components of systematic uncertainties [11, 12]. Such
challenges are often discussed in the context of model misspecification in ML literature.

5.2 The profile log-likelihood ratio

The full test statistic based on a profile log-likelihood ratio [37] can be constructed from Eq. 17 by
considering all events in the observed data, adding a Poisson term corresponding to the total rate and
Gaussian constraint factors for the nuisance parameters. If 𝑁data is the number of events in observed data
D,

𝐿full(𝜇, 𝛼 |D)
𝐿ref(D) = Pois(𝑁data |𝜈(𝜇, 𝛼))

𝑁data∏
𝑖

𝑝(𝑥𝑖 |𝜇, 𝛼)
𝑝ref(𝑥𝑖)

∏
𝑘

Gaus(𝑎𝑘 |𝛼𝑘 , 𝛿𝑘), (18)

15



where the global observables 𝑎𝑘 and 𝛿𝑘 are the values of the auxiliary measurements and their associated
uncertainty, which are used to constrain the source of systematic uncertainty associated with the nuisance
parameter 𝛼𝑘 . 𝐿ref(D) = ∏𝑁data

𝑖
𝑝ref(𝑥𝑖).

If the nuisance parameter is unconstrained, the corresponding constraint factor is suppressed. An important
case of unconstrained nuisance parameters is data-driven normalisation parameters.

The profiling step involves an unconditional and a conditional maximum likelihood estimation of Eq. 18
(keeping the dependence on D implicit),

(𝜇, 𝛼̂) = argmax
𝜇,𝛼

𝐿full(𝜇, 𝛼)
𝐿ref̂̂𝛼(𝜇) = argmax

𝛼

𝐿full(𝜇, 𝛼)
𝐿ref

.

Note that since 𝐿ref has been defined without any dependence on 𝜇 or 𝛼, it does not affect the position
of the maxima. The test statistic is constructed by taking the ratio of Eq. 18 at these two points. The
dependency on 𝐿ref cancels out and the traditional profile log-likelihood ratio is recovered,

𝑡𝜇 = −2 ln

(
𝐿full(𝜇, ̂̂𝛼(𝜇))
𝐿full(𝜇, 𝛼̂)

)
. (19)

Further, the use of likelihood ratios instead of likelihoods does not prevent the combination of NSBI and
histogram-based analyses. The combination can be written as

𝐿comb(𝜇, 𝛼)
𝐿ref

=
𝐿full(𝜇, 𝛼)

𝐿ref
𝐿hist(𝜇, 𝛼). (20)

The test statistic is again independent of 𝐿ref, which appears as a constant offset in the log-likelihood.

5.3 Effects from finite Monte Carlo samples

When likelihood ratios are estimated with neural networks, an uncertainty may be introduced to account not
only for the limited number of simulated training samples, but also for the stochastic nature of the training
algorithm. Training ensembles on bootstrapped versions of the training data, as described in Section 2.3
provides a natural way to describe both of these effects.

Since the estimator for the density ratio is computed as the mean5 prediction from an ensemble of
networks, the variance of that mean can be estimated using the bootstrapping technique. The mean of each
bootstrapped ensemble is used to estimate a best-fit value of the parameter(s) of interest 𝜇̂, and the standard
deviation of these estimates determines the variation of the mean Δ𝜇̂ due the finite number of events in the
training sample. The variance can be determined at different values of 𝜇 using different Asimov datasets.6
Such datasets at any value of the parameter(s) of interest can often be constructed from a set of simulations
at few basis points in this parameter, using various morphing techniques [8, 38]. The estimated Δ𝜇̂ is an
uncertainty on the modelling of the expected probability density of the physics processes, and therefore,
5 The median, known to be unbiased and robust to outliers, could also be used.
6 An Asimov dataset is one for which the application of any unbiased estimator for all parameters will provide the true values [37].

In practice, an approximation of such a dataset can be constructed using a sufficiently large number of simulated samples with
appropriate event weights.
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it can be introduced as a systematic uncertainty following the spurious signal approach [39] frequently
employed in unbinned LHC analyses. The nuisance parameter 𝛼stat with a Gaus(0, 1) constraint term is
introduced to Eq. 17 with the modification

𝑓 𝑗 (𝜇) → 𝑓 𝑗 (𝜇 + 𝛼stat · Δ𝜇̂(𝜇)). (21)

5.4 Calculation of pulls and impacts

While the unbinned nature of NSBI poses computational challenges to traditional statistical tools for
evaluating and analysing the profile likelihood ratio, this framework enables the direct application of
modern computational tools that simplify calculations. The full likelihood ratio (Eq. 18) and the test
statistic (Eq. 19) are differentiable functions. Their dependence on the parameters of interest 𝜇 and nuisance
parameters 𝛼 is introduced through differentiable functions, and the probability density ratios are built
from neural networks which are themselves differentiable. It is natural to leverage auto-differentiation
techniques [40] to perform the profiling and to calculate the Hessian matrix of 𝐿full(𝜇, 𝛼).

The estimation of pulls and impacts relies on the calculation of the covariance matrix (we identify the
parameter of interest with index 0 to simplify the notation),

𝐶𝑛𝑚 =

[
1
2

𝜕2𝜆

𝜕𝛼𝑛𝜕𝛼𝑚

(𝜇, 𝛼̂)
]−1

, (22)

using the inverse of the Hessian matrix at the maximum likelihood estimate (𝜇, 𝛼̂), and where 𝜆(𝜇, 𝛼) =
−2 ln(𝐿full(𝜇, 𝛼)/𝐿ref). The calculation of the Hessian matrix can be parallelised on computing clusters [41].
The pull of the NP 𝛼 is calculated as

𝛼̂𝑘 − 𝛼0
𝑘√

𝐶𝑘𝑘

. (23)

This is the definition often adopted in histogram-based analysis with the MINOS procedure [42–44], which
defines pulls based on approximate profile likelihood ratio confidence intervals, with the exact computation
reserved only for pathological cases.

The impact of a nuisance parameter on a measurement is traditionally computed by re-running the entire
likelihood minimisation after fixing the nuisance parameter at a few values. This calculation is more
expensive since it requires multiple minimisations of the log-likelihood ratio. Here, the maximum likelihood
estimate of 𝜇 is re-computed for different fixed values of 𝛼𝑘 to estimate ΓNP

𝑘
= 𝜇(𝛼̂𝑘 ±

√
𝐶𝑘𝑘) − 𝜇(𝛼̂𝑘).

With auto-differentiation, a local estimate of the post-fit impact can be estimated as

ΓNP
𝑘 =

𝜕𝜇

𝜕𝛼𝑘

·
√︁
𝐶𝑘𝑘 =

[
𝜕2𝜆

𝜕2𝜇
(𝜇, 𝛼̂)

]−1
𝜕2𝜆

𝜕𝜇𝜕𝛼𝑘

(𝜇, 𝛼̂) ·
√︁
𝐶𝑘𝑘 , (24)

considerably simplifying the analysis of the profile likelihood ratio, and reserving the finite-difference
estimate to pathological cases. The pre-fit impact can be calculated by replacing (𝜇, 𝛼̂ 𝑗) → (𝜇0, 𝛼

0
𝑗
) and√

𝐶𝑘𝑘 → 𝛿𝑘 . A similar definition, but based on variations of global observables 𝑎𝑘 , has been suggested
for a consistent separation between statistical and systematic uncertainties in Ref. [36]. In this case, the
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impact is estimated without fixing any nuisance parameter, but calculating ΓGO
𝑘

= 𝜇(𝑎𝑘 ± 𝛿𝑘) − 𝜇(𝑎𝑘).
The local estimate of the variation based on global observables, given simply by ΓGO

𝑘
= 𝐶0𝑘 (𝜇, 𝛼̂) (where

the covariance matrix is defined in Eq. 22), can also be calculated using auto-differentiation. The local
definition also avoids ambiguities that exist in models with multiple local minima. Further details about
these calculations for NSBI using auto-differentiation techniques are described in Ref. [41].

6 Neyman construction

In frequentist statistics, a confidence interval derived from a measurement is expected to cover the true
value with a specified probability (e.g., in 68% or 95% of experiments). The procedure for building such
confidence intervals, referred to as the Neyman construction, involves the inversion of the hypothesis tests
with the help of a large number of pseudo-experiments generated based on simulated samples [45]. This
step is crucial when the test statistic cannot be assumed to follow a chi-squared distribution, such as when
the analysis has few pre-selected data events (e.g. low-background searches) and non-linear problems
(e.g. due to quantum-interference effects) [37]. In the case of NSBI, any residual bias in the estimated
probability density ratios may produce a test statistic that does not follow a chi-squared distribution, making
this procedure all the more crucial.

The procedure for producing such pseudo-experiments, often referred to as throwing toys, is well
established for histogram-based analyses, where the probability density can be sampled as individual
Poisson distributions in each bin. This approach can be extended to an unbinned, multi-dimensional NSBI
analysis.

6.1 Generating pseudo-experiments

Similar to events measured in an actual experiment, pseudo-experiments consist of unweighted events.
These can be generated by sampling simulated events with replacement, with the probability of sampling an
event determined by its original weight in the Asimov dataset, 𝑤Asimov

𝑖
. Since the same simulated event can

be chosen multiple times in a pseudo-experiment, this count can be represented by a new whole-number
event weight, 𝑤toy

𝑖
.7 For a computationally efficient generation of these pseudo-experiments, each simulated

event is assigned a 𝑤
toy
𝑖

sampled from a Poisson random number generator with a mean corresponding to
the Asimov weight of the event,

𝑤Asimov
𝑖 → 𝑤

toy
𝑖

= Poisson(𝑤Asimov
𝑖 ). (25)

The generated weights 𝑤
toy
𝑖

are whole numbers by construction. Since 𝑤Asimov
𝑖

represents fractional
weights (on the order of O(10−3) for the example described in Section 3), the majority of events are
assigned a weight of zero, and a smaller subset is assigned integer weights. A very small fraction of
events may be represented multiple times in a single pseudo-experiment (𝑤toy

𝑖
≥ 2), similar to the case of

generating samples via bootstrapping. To generate such pseudo-experiments from a simulated sample, the
original number of simulated samples needs to be much larger than the number of events in an individual
pseudo-experiment.

7 While the whole-number weights 𝑤toy
𝑖

are used for convenience, the constructed pseudo-experiment still behaves effectively
like an unweighted dataset.
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6.2 Overcoming negative weights

The above prescription for generating unweighted pseudo-experiments requires the original weights of
the simulated events to be non-negative, 𝑤Asimov

𝑖
≥ 0, since the Poisson distribution is only defined for

non-negative values. When the MC simulation sample at a given value of the parameter(s) of interest
includes events with negative weights, an alternate sample may be used which consists only of positive
weights and covers the support of the original sample. The alternate sample, henceforth referred to as
the reweight reference sample, will have to first be reweighted to the desired value of the parameter(s)
of interest. The samples corresponding to the reference defined in Sec 2 may be a convenient choice
for the reweight reference sample because it already covers the entire pre-selection region and can be
defined to comprise only positive-weighted events. Since the reference sample does not need to correspond
to a physical process, a very large sample can be simulated at leading-order in perturbation theory and,
therefore, without negative weights. A large reference sample is not only ideal for the network training but
also to allow the generation of large number of pseudo-experiments following the methods described here.
The reweight reference can be reweighted to the desired value of the theory parameter (using Eq. 10) as

𝑤rwt-ref
𝑖 → 𝑤Asimov

𝑖 (𝜇) = 𝜈(𝜇)
𝜈rwt-ref

· 𝑝(𝑥𝑖 |𝜇)
𝑝rwt-ref(𝑥𝑖)

· 𝑤rwt-ref
𝑖 , (26)

where 𝑝rwt-ref(𝑥𝑖) is the probability density and 𝜈rwt-ref the rate for the reweight-reference sample. The
probability density ratio 𝑝(𝑥𝑖 |𝜇)/𝑝rwt-ref(𝑥𝑖) can be obtained from ensembles specifically trained for the
reweighting procedure, following the same prescription as the networks used for inference. The estimation
can be validated using the same diagnostics described in Section 4, and the new samples are thereby
verified to have the same asymptotic properties as the original MC simulation samples. There are also
certain other methods that could be explored to handle negative weighted events [46–48].

6.3 Confidence intervals

Once the pseudo-experiments are generated, the confidence intervals can be constructed following the
standard method [45]. For the analysis described in Section 3, the distribution of 𝑝(𝑡𝜇 |𝜇), representing the
test statistic 𝑡𝜇 for pseudo-experiments generated at a fixed value of 𝜇, is used to determine the one and two
standard-deviation confidence intervals as functions of 𝜇. In the presence of systematic uncertainties, the
values of the global observables 𝑎𝑘 can be sampled from the constraint density. The distribution of test
statistics over many pseudo-experiments is shown in Figure 4 with a 𝜇 of 1. This procedure is repeated
over the range of 𝜇 to construct complete confidence bands as shown in Fig 5. The shapes of these bands
deviate slightly from the asymptotic 𝜒2 distribution because of the non-linear parameterisation used in the
off-shell Higgs boson production measurement [13], and are not specifically a feature of NSBI.

The formalism discussed in this section lends itself to further tests for robustness on toy samples generated
by shifting multiple nuisance parameters simultaneously and verifying that the confidence bands remain
well-behaved in such scenarios. Such samples can be generated by a reweighting procedure similar to the
one described in Section 6.2, this time using the probability density ratio that includes nuisance parameters
(Eq. 17),

𝑤rwt-ref
𝑖 → 𝑤Asimov

𝑖 (𝜇, 𝛼) = 𝜈(𝜇, 𝛼)
𝜈rwt-ref

· 𝑝(𝑥𝑖 |𝜇, 𝛼)
𝑝rwt-ref(𝑥𝑖)

· 𝑤rwt-ref
𝑖 . (27)
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Figure 4: Distribution of the test statistic for pseudo-experiments with a 𝜇 of 0 (left) and 1 (right). The 1𝜎 and 2𝜎
confidence intervals are built using a Neyman construction by integrating up to 68.27% (yellow vertical dashed line)
and 95.45% (red vertical dashed line) of the 15,000 pseudo-experiments, respectively.

7 Comparison of sensitivity

This section demonstrates the sensitivity of the NSBI method and the impact of systematic uncertainties
on the result. The demonstration is performed for a simplified version of an off-shell Higgs boson signal
strength measurement on simulated samples and considers a subset of the physics processes and systematic
uncertainties that are releveant to a full physics analysis.

7.1 Comparison to histogram-based methods

The NSBI method is compared to two histogram-based analysis strategies on a simulated Asimov dataset,
to demonstrate the gains coming from the parameterised and unbinned nature of the method. The first
histogram method employs a single observable, a signal vs. full process discriminant, that is commonly
used for LHC analyses with quantum interference,

Ofixed = log
𝑝S(𝑥𝑖)
𝑝SBI(𝑥𝑖)

. (28)

Since this ratio is already estimated with ensembles for the NSBI method, no additional networks need to
be trained. This observable is subsequently used to construct a histogram (with 15 bins), and a Poisson
likelihood fit is performed with it, analogous to what would be done in traditional analysis. The likelihood
ratio is used as the test statistic. This serves as the baseline for comparison of sensitivities to a traditional
analysis using the same data. The improvement from NSBI can be seen in Figure 5.

To demonstrate the power of the parameterisation nature of NSBI, it is also compared to a parameterised
but binned method, which may not always be practical to use in analysis but is useful for this demonstration.
The second method uses an observable that is parameterised in 𝜇,

O𝜇 =
𝑝(𝑥𝑖 |𝜇)

𝑝(𝑥𝑖 |𝜇 = 1) , (29)
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Figure 5: A comparison of expected sensitivity of NSBI to a typical histogram-based analysis, not including systematic
uncertainties. The evaluation is performed on an Asimov dataset generated with 𝜇 = 1. The test statistic, the
log-likelihood ratio 𝑡𝜇, is shown as a function of signal strength 𝜇. The 1𝜎 and 2𝜎 confidence bands in grey are
determined for NSBI using the Neyman construction procedure outlined in Section 6.

which is subsequently binned and used to perform a Poisson likelihood fit. The log-likelihood ratio is
computed for each value of 𝜇 using a histogram of the corresponding version of O𝜇, similar to the method
described in Ref. [22]. The improvement shown in Figure 6 for O𝜇 over Ofixed illustrates the power of a
parameterised method. The traditional analysis (with the fixed observable) exhibits two prominent minima,
which is typical in analyses with non-linear effects from, for example, quantum interference. However, the
minimum at the incorrect value of 𝜇 is far less prominent for the analysis using a parameterised observable.
Since the observable is optimised for each value of the parameter of interest, the method is able to more
confidently reject the incorrect values of 𝜇. The further improvement coming from NSBI is due to the
unbinned nature of the method. As the number of bins increases, O𝜇 can approach the sensitivity of NSBI;
however, this may introduce numerical instability, requiring careful bin width optimisation, and make
sufficiently fine binning untenable across the full range of 𝜇. If the number of bins in a histogram-based
analysis is limited by statistics, then leveraging the power of unbinned fits may be desirable.

An additional tool to interpret the results is shown in Figure 7, where the the per-event contribution to
the test statsitic, −2 log(𝑝(𝑥𝑖 |𝜇′)/𝑝(𝑥𝑖 | 𝜇̂)), is shown as a function of 𝑚4ℓ for two different hypotheses
𝜇′ and the maximum likelihood estimate 𝜇̂ = 1 on an Asimov dataset generated at 𝜇 = 1. Events in
regions with this term greater than zero indicate a better compatibility with a 𝜇 = 𝜇′ hypthesis over a
𝜇 = 𝜇̂ hypothesis, while regions with this term less than zero indicate less compatibility. However, these
one-dimensional distributions marginalise over the rest of the high-dimensional phase space, and compare
only two hypotheses at a time. Therefore, a single distribution is not sufficient to draw conclusions about
the phase space responsible for the enhanced sensitivity of this high-dimensional analysis.
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Figure 6: A comparison of expected sensitivity from various analysis strategies using the log-likelihood ratio test
statistic 𝑡𝜇, as a function of 𝜇. The evaluation is performed on an Asimov dataset generated with 𝜇 = 1. The
red curve represents NSBI. The green curve represents a typical histogram analysis that uses a fixed observable,
log 𝑝𝑠/𝑝(𝑥 |𝜇 = 1), as a discriminant, with 15 bins. The markers show the sensitivity for various histogram analyses
that use specific discriminants, 𝑝(𝑥𝑖 |𝜇)/𝑝(𝑥𝑖 |𝜇 = 1), for specific values of 𝜇(= 0.0, 0.05, 0.15, 1.9), with 15 (green
pluses), 20 (yellow crosses), 30 (orange stars) or 90 (red dots) bins. The improved sensitivity of the green dots over
the green curve (both using 15 bins) is due to the use of a parameterised observable.
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Figure 7: The sum of log density-ratios −2 log(𝑝(𝑥𝑖 |𝜇′)/𝑝(𝑥𝑖 | 𝜇̂)) for events in bins of 𝑚4ℓ , for a hypothesis 𝜇′ = 0.5
(left) or a hypothesis 𝜇′ = 1.5 (right), with 𝜇̂ = 1 as the maximum likelihood estimate on an Asimov dataset generated
at 𝜇 = 1. This represents the per-event contribution to the test statistic for a given hypothesis, as a function of 𝑚4ℓ .
Events in regions with a sum greater than zero are collectively more consistent with a 𝜇 = 𝜇′ hypthesis over a 𝜇 = 𝜇̂

hypothesis, while regions with a sum less than zero are collectively less consistent. The very high mass region
(𝑚4ℓ > 1000 GeV) is equally consistent with both hypotheses and provides no additional sensitivity.
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7.2 Impact of systematic uncertainties

The systematic uncertainties considered in this demonstration are described in Section 3.3, and their impact
is taken into account following the formalism developed in Section 5. The 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) term in Eq. 17
accounts for the impact on the shape of the distributions and the 𝐺 𝑗 (𝛼𝑘) term accounts for the impact on the
inclusive rate. The interpolation functions used are described in Appendix A. In the case of uncertainties
that affect the inclusive rate, but not the shape of distributions, the term 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) in Eq. 17 is fixed to
1 over the full range of 𝛼𝑘 . This way, the impact of the nuisance parameter on the test statistic pertains
only to the overall yields but not to the per-event probability density ratios. The profile (log-)likelihood
is shown in Figure 8 and compared to a histogram analysis using the Ofixed observable. The systematic
uncertainties reduce the sensitivity of the measurement, as is expected.

0.0 0.5 1.0 1.5 2.0 2.5

2

4

6

8t ATLAS Simulation Preliminary

Unbinned NSBI Stat+Syst
Unbinned NSBI Stat Only
Binned log [pS / p(1.0)] Stat Only
Binned log [pS / p(1.0)] Stat+Syst

Figure 8: The log-likelihood ratio as a function of signal strength 𝜇, representing only statistical uncertainties (solid
red for NSBI, dashed green for histogram analysis), compared to the profile log-likelihood ratio, representing both
statistical and systematic uncertainties (dotted red for NSBI, dotted green for histogram analysis), evaluated on
Asimov data generated with 𝜇 = 1. The histogram analysis is performed with a fixed observable, log 𝑝𝑠/𝑝(𝑥 |𝜇 = 1).
The two nuisance parameters in this study are described in Section 3.3.

8 Conclusion and outlook

While neural simulation-based inference methods have drawn interest for their potential to dramatically
improve the sensitivity of key analyses at the LHC [4, 7], several open questions have remained regarding
their application in a full-scale LHC analysis. This work develops the necessary tools and concepts required
to have a complete statistical framework for NSBI at the LHC and addresses these open questions. The
power and feasibility of the method is demonstrated through an example use case: the measurement of the
off-shell Higgs boson couplings in the four-lepton final states. This is an analysis with destructive quantum
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interference between the signal and background processes, which makes the likelihood model non-linear in
the signal strength parameter and, therefore, benefits from the power of NSBI methods [5]. Comparisons
with two histogram-based methods illustrate the gains from the unbinned and parameterised nature of the
NSBI method. Since this demonstration was performed on a simplified version of the analysis that does
not include all the relevant physics processes and systematic uncertainties, the expected sensitivity shown
does not reflect the expected sensitivity of a full physics result.

The framework extends the standard statistical methodology employed at the LHC, transitioning to an
unbinned, multi-dimensional setting, capable of accommodating a large number of systematic uncertainties.
The note also provides a list of diagnostics that can be used to understand and validate the performance of
the neural network classifiers and describes a method to build a robust test statistic needed for hypothesis
tests. It also describes the procedure to construct confidence intervals for unbinned analyses such as those
using NSBI. Computational challenges in evaluating and analysing the test statistic are overcome with the
use of auto-differentiation techniques, which facilitate profiling and computing of pulls and impacts [29].
This setup is also conducive to analysing the effect of systematic uncertainties using more recently proposed
methods [36].

This method can be applied for parameter estimation in various particle physics analyses, making optimal
use of both the available data and simulated samples. It is particularly advantageous for analyses with
non-linear likelihood models, large quantum interference, or limited statistics in the observed data, or those
requiring complex analysis observables. While “optimal observables” have previously been used to measure
theory parameters in EFT analyses [49], these observables are close to optimal only for small regions of the
parameter space, and often optimised for regions near the Standard Model. They typically do not account
for detector effects. In contrast, NSBI is designed to achieve close to optimal sensitivity throughout the
phase space under consideration, accounting for detector effects and systematic uncertainties. The ATLAS
experiment has also demonstrated the ability to unfold differential cross-sections in a high-dimensions and
without binning [21] and this technique [50] also relies on the ability of classifiers to estimate probability
density ratios. The goals of unfolding are different from parameter estimation from experimental data, and
the two approaches are complementary.

Since this method inherits formalisms from the standard statistical methods used in LHC experiments,
it also inherits the challenges. These include the challenge of model misspecification, for instance, if
the simulation has systematic differences from data and the systematic uncertainties have not been well
modelled. These issues can be diagnosed by looking at pulls, impacts and other diagnostics described in
Section 5.4 in the same manner as in traditional histogram-based analyses. This method can also be used in
conjunction with data-driven background estimation when the background simulations are not reliable and
incorporate other techniques used in traditional analyses to mitigate systematic uncertainties. One potential
technical challenge to an NSBI analysis over a histogram-based one is the need for sufficient training data
to optimise precise probability density ratio estimators. These could be overcome by pre-training the
networks first on larger datasets such as fast simulated samples [51]. Another technical challenge lies in the
computational cost of training such a large number of neural networks; however, the increasing availability
of large scientific computing facilities may mitigate this concern in the near future.
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Appendix

A Interpolation Function

Section 5 discusses the use of interpolation methods for systematic uncertainties. A common choice for the
interpolation function to parameterise the impact of nuisance parameters at the LHC is [2]

𝐺 𝑗 (𝛼𝑘) =



(
𝜈 𝑗 (𝛼+

𝑘
)

𝜈 𝑗 (𝛼0
𝑘
)

)𝛼𝑘

𝛼𝑘 > 1

1 + ∑6
𝑛=1 𝑐𝑛𝛼

𝑛
𝑘

−1 ≤ 𝛼𝑘 ≤ 1(
𝜈 𝑗 (𝛼−

𝑘
)

𝜈 𝑗 (𝛼0
𝑘
)

)−𝛼𝑘

𝛼𝑘 < −1

, (30)

where the six coefficients 𝑐𝑛 of the polynomial in 𝛼𝑘 are determined uniquely from the requirements
that 𝐺 𝑗 (𝛼𝑘) be continuous and its first and second derivatives be continuous at 𝛼𝑘 = ±1. The same
interpolation strategy and continuity requirements can be used to interpolate 𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘),

𝑔 𝑗 (𝑥𝑖 , 𝛼𝑘) =



(
𝑔 𝑗 (𝑥𝑖 , 𝛼+

𝑘)
)𝛼𝑘 𝛼𝑘 > 1

1 +
6∑︁

𝑛=1
𝑐𝑛𝛼

𝑛
𝑘 −1 ≤ 𝛼𝑘 ≤ 1(

𝑔 𝑗 (𝑥𝑖 , 𝛼−
𝑘 )

)−𝛼𝑘 𝛼𝑘 < −1

. (31)
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