Femtoscopy using Lévy-distributed sources at NA61/SHINE

Barnabás Pórfy^{a, $b,*$} for the NA61/SHINE Collaboration

Eötvös Loránd University, Budapest, Hungary HUN-REN Wigner Research Centre for Physics Budapest, Hungary

E-mail: [barnabas.porfy@cern.ch,](mailto:barnabas.porfy@cern.ch) porfy.barnabas@wigner.hun-ren.hu

In the recent years, research studies in high-energy physics have confirmed the creation of the strongly interacting quark-gluon plasma (sQGP) in ultra-relativistic nucleus-nucleus collisions. NA61/SHINE at CERN SPS investigates hadronic matter properties by varying collision energy $(\sqrt{s_{NN}} \approx 5.3, 6.2, 7.7, 8.8, 12, \text{ and } 16.8 \text{ GeV})$ and systems (such as p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb). Utilizing femtoscopic correlations, we can unveil the space-time structure of the hadron emitting source. Our focus is on femtoscopic correlations in small to intermediate systems, comparing measurements with source calculations based on Lévy-distributed sources, to explore the pair transverse mass dependence of the Lévy source parameters. The Lévy exponent α is of particular significance, which characterizes the shape of the source and may be connected to the critical exponent η near the critical point. Our analysis will reveal that the Lévy shape parameter, α , has a slight non-monotonic behaviour as a function of collision energy and that we see a deviation from Gaussian sources. Finally, it will be shown that there is no indication of the critical point at any of the investigated energies.

42nd International Conference on High Energy Physics (ICHEP2024) 18-24 July 2024 Prague, Czech Republic

[∗]Speaker

 \odot Copyright owned by the author(s) under the terms of the Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). <https://pos.sissa.it/>

1. Introduction

The NA61/SHINE experiment, located on the CERN SPS H2 beam line, is a fixed target experiment, using multiple Time Projection Chambers (TPCs) for large-acceptance hadron spec-troscopy [\[1\]](#page-4-0). Its detector setup allows tracking down to $p_T \approx 0$ GeV/*c*. NA61/SHINE primarily aims to explore the phase diagram of strongly interacting matter across various temperatures and baryon-chemical potentials through system and beam energy scans. This work focuses on ⁴⁰Ar+⁴⁵Sc collisions at the three lowest available energies (13, 19, and 30*A* GeV/*c*) at 0–10% centrality, and comparing with previous results [\[2](#page-4-1)[–4\]](#page-4-2) using femtoscopy correlations with spherically symmetric Lévy distributions:

$$
\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 \zeta e^{i\zeta r} e^{-\frac{1}{2}|\zeta R|^{\alpha}}, \qquad (1)
$$

where R is the Lévy scale parameter, α is the Lévy stability index, r is the vector of spatial coordinates. Bose-Einstein momentum correlations are related to the particle source function $S(x)$ via the equation $C(q) \cong 1 + |\tilde{S}(q)|^2$, see Ref. [\[2\]](#page-4-1) for details. The Lévy distribution generalizes Gaussian distributions ($\alpha = 2$) and captures effects like critical fluctuations [\[5\]](#page-4-3). For $\alpha < 2$, the Lévy distribution exhibits a power-law tail ~ $r^{-(1+\alpha)}$. Critical behavior is related to the exponent η , which also follows a power-law tail and has been linked to the 3D Ising model, where $\eta = 0.03631 \pm 0.00003$ [\[6\]](#page-4-4) and to the 3D Ising model with random external field, resulting in $\eta = 0.50 \pm 0.05$ [\[7\]](#page-5-0). Other phenomena could have influences on the source shape, such as QCD jets, anomalous diffusion, and others, as discussed in Refs. [\[8–](#page-5-1)[13\]](#page-5-2). For overview of recent results, see Ref. [\[14\]](#page-5-3).

The Lévy exponent can be measured utilizing the following femtoscopic correlation function to data:

$$
C_2^0(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}, \qquad (2)
$$

where $C_2^0(q)$ is the correlation function in absence of interaction and λ is the correlation strength, often interpreted through the core-halo model [\[15,](#page-5-4) [16\]](#page-5-5) and is related to the core and halo pion multiplicities (denoted by *N*):

$$
\lambda = (N_{\text{core}}/N_{\text{total}})^2. \tag{3}
$$

We investigate the combination of positive $(\pi^+\pi^+)$ and negative $(\pi^-\pi^-)$ pion pairs, identified via energy loss in the TPCs (dE/dx) and comparison with the Bethe-Bloch curves. Track merging was eliminated with momentum-based two-track distance cuts [\[17\]](#page-5-6). Centrality was selected via forward energy measurements. Pion pairs were grouped into four to eight (energy dependent) K_T bins (0-500 MeV/c). We address Coulomb repulsion effects on like-charged pairs using the correction factor $K_{\text{Coulomb}}(q)$:

$$
K_{\text{Coulomb}}(q) = \frac{C_2^{\text{Coulomb}}(q)}{C_2^0(q)},\tag{4}
$$

where $C_2^{\text{Coulomb}}(q)$ is calculated numerically [\[18,](#page-5-7) [19\]](#page-5-8). We are utilizing a novel method in our analysis for estimating the effect of Coulomb repulsion, presented in Ref. [\[20\]](#page-5-9). The correlation function, corrected for Coulomb interaction, using the Bowler-Sinyukov method [\[21\]](#page-5-10), takes the form:

$$
C_2(q) = N \cdot (1 + \epsilon \cdot q) \cdot \left[1 - \lambda + \lambda \cdot \left(1 + e^{-|qR|^{\alpha}} \right) \cdot K_{\text{Coulomb}}(q) \right],\tag{5}
$$

Figure 1: The fit parameters, for $0-10\%$ central Ar+Sc at all available energies, as a function of m_T . Special cases corresponding to a Gaussian ($\alpha = 2$) or a Cauchy ($\alpha = 1$) source are shown, as well as $\alpha = 0.5$, the conjectured value corresponding to the critical endpoint, while the constant α fit is shown with a solid line. Boxes denote systematic uncertainties, bars represent statistical uncertainties.

where N is introduced as normalization parameter and ε is introduced to describe the residual background in the form of $(1 + \varepsilon \cdot q)$. The Coulomb correction is applied in the pair-center-of-mass system (PCMS), with corrections for the longitudinally co-moving system (LCMS) [\[22\]](#page-5-11).

2. Results

The physical parameters α , R, and λ were measured in bins of pair transverse momentum, K_T , at 13, 19, and 30A GeV/ c by fitting the measured correlation functions using Eq.[\(5\)](#page-1-0). Their dependence on transverse mass $m_T = \sqrt{m^2c^4 + K_T^2c^2}$ was studied and compared to previous NA61/SHINE results, taken from Refs. [\[2–](#page-4-1)[4\]](#page-4-2). The stability exponent α indicates the strength of the source tail, with results ranging from 1.5 to 2.0, with the lowest energy being comparable to $150A$ GeV/ c , implying sources that are closer to Gaussian (Fig. [1\)](#page-2-0). These values are higher than the conjectured value at the critical endpoint ($\alpha \approx 0.5$), with a non-monotonic trend emerging around $\sqrt{s_{NN}} \approx 6-8$ GeV. It is interesting to compare our α values to results from other experiments, see details in Ref. [\[14\]](#page-5-3).

The Lévy scale parameter R is related to the homogeneity scale of the pion source. A slight decrease in R with m_T was observed, compatible with $R \sim 1/\sqrt{m_T}$, consistently with hydrodynamical predictions [\[23,](#page-5-12) [24\]](#page-5-13) for Gaussian sources, based on transverse flow. It is particularly interesting that this results holds for Lévy sources as well. A similar behavior was observed at RHIC and LHC energies [\[25,](#page-5-14) [26\]](#page-5-15) and in simulations as well [\[11\]](#page-5-16).

The correlation strength λ shows a moderate m_T dependence but remains mostly constant, as shown in Fig. [3.](#page-3-0) Our λ values are lower than unity, suggesting a significant fraction of pions are decay products of long-lived resonances. At RHIC, a decrease of λ at low m_T was seen and attributed to in-medium mass modification of η' [\[25,](#page-5-14) [27\]](#page-5-17). We do not see this effect in our results.

Figure 2: The constant fit to α , for 0–20 % central Be+Be at 150*A* GeV/*c* and 0–10% central Ar+Sc at all available energies, as a function of $\sqrt{s_{NN}}$. Special cases corresponding to a Gaussian ($\alpha = 2$) or a Cauchy $(\alpha = 1)$ source are shown, as well as $\alpha = 0.5$, the conjectured value corresponding to the critical endpoint. Boxes denote systematic uncertainties, bars represent statistical uncertainties.

Figure 3: The fit parameters, for 0–10% central Ar+Sc at all available energies, as a function of m_T . Boxes denote systematic uncertainties, bars represent statistical uncertainties.

3. Conclusion

In this proceedings, we presented the NA61/SHINE measurements of one-dimensional twopion femtoscopic correlation functions in Ar+Sc collisions at 13, 19, and 30*A* GeV/*c* beam momenta in 0-10% centrality collisions. We fitted these correlation functions based on Lévy-shaped source distributions, and investigated the transverse mass dependence of the source parameters. We furthermore compared them to previous NA61/SHINE results. Additionally, the Lévy scale parameter, R, exhibits a noticeable decrease with m_T . Finally, the correlation strength parameter, λ , shows no

Figure 4: The fit parameters, for 0–10% central Ar+Sc at all available energies, as a function of m_T . Boxes denote systematic uncertainties, bars represent statistical uncertainties.

significant dependence on m_T , unlike RHIC results but consistent with earlier SPS measurements. In future studies, we plan to measure Bose-Einstein correlations in larger systems and at lower energies to further investigate the phase diagram of strongly interacting matter.

Acknowledgments

The author acknowledges support of the DKOP-23 Doctoral Excellence Program of the Ministry for Culture and Innovation, and was furthermore supported by K-138136 and K-138152 grants of the National Research, Development and Innovation Fund.

References

- [1] N. Abgrall *et al.*, [NA61/SHINE Collab.] *JINST* **9** [\(2014\) P06005,](http://dx.doi.org/10.1088/1748-0221/9/06/P06005) [arXiv:1401.4699](http://arxiv.org/abs/1401.4699) [\[physics.ins-det\]](http://arxiv.org/abs/1401.4699).
- [2] H. Adhikary *et al.*, [NA61/SHINE Collab.] *Eur. Phys. J. C* **83** [no. 10, \(2023\) 919,](http://dx.doi.org/10.1140/epjc/s10052-023-11997-8) [arXiv:2302.04593 \[nucl-ex\]](http://arxiv.org/abs/2302.04593).
- [3] B. Porfy, [NA61/SHINE Collab.] *Universe* **9** [no. 7, \(2023\) 298,](http://dx.doi.org/10.3390/universe9070298) [arXiv:2306.08696](http://arxiv.org/abs/2306.08696) [\[nucl-ex\]](http://arxiv.org/abs/2306.08696).
- [4] B. Porfy, [NA61/SHINE Collab.], "Femtoscopy at NA61/SHINE using symmetric Lévy sources in central ⁴⁰Ar+⁴⁵Sc from 40A GeV/c to 150A GeV/c," in 23rd Zimanyi School *Winter Workshop*. 6, 2024. [arXiv:2406.02242 \[nucl-ex\]](http://arxiv.org/abs/2406.02242).
- [5] T. Csörgő *PoS* **[HIGH-PTLHC08](http://dx.doi.org/10.22323/1.076.0027)** (2008) 027, [arXiv:0903.0669 \[nucl-th\]](http://arxiv.org/abs/0903.0669).
- [6] S. El-Showk *et al. [J. Stat. Phys.](http://dx.doi.org/10.1007/s10955-014-1042-7)* **157** (2014) 869, [arXiv:1403.4545 \[hep-th\]](http://arxiv.org/abs/1403.4545).
- [7] H. Rieger *Physical Review B* **52** [no. 9, \(1995\) 6659.](http://dx.doi.org/10.1103/PhysRevB.52.6659) <http://link.aps.org/doi/10.1103/PhysRevB.52.6659>.
- [8] R. Metzler, E. Barkai, and J. Klafter *Phys. Rev. Lett.* **82** [\(1999\) 3563–3567.](http://dx.doi.org/10.1103/PhysRevLett.82.3563)
- [9] T. Csörgő, S. Hegyi, and W. A. Zajc *[Eur. Phys. J. C](http://dx.doi.org/10.1140/epjc/s2004-01870-9)* **36** (2004) 67–78, [arXiv:nucl-th/0310042](http://arxiv.org/abs/nucl-th/0310042).
- [10] T. Csörgő, S. Hegyi, T. Novak, and W. A. Zajc *Acta Phys. Polon. B* **36** (2005) 329–337.
- [11] D. Kincses, M. Stefaniak, and M. Csanád *Entropy* **24** [no. 3, \(2022\) 308,](http://dx.doi.org/10.3390/e24030308) [arXiv:2201.07962](http://arxiv.org/abs/2201.07962) [\[hep-ph\]](http://arxiv.org/abs/2201.07962).
- [12] B. Kórodi, D. Kincses, and M. Csanád *Phys. Lett. B* **847** [\(2023\) 138295,](http://dx.doi.org/10.1016/j.physletb.2023.138295) [arXiv:2212.02980 \[nucl-th\]](http://arxiv.org/abs/2212.02980).
- [13] D. Kincses, M. Nagy, and M. Csanád arXiv: 2409.10373 [nucl-th].
- [14] M. Csanád and D. Kincses *Universe* **10** [no. 2, \(2024\) 54,](http://dx.doi.org/10.3390/universe10020054) [arXiv:2401.01249 \[hep-ph\]](http://arxiv.org/abs/2401.01249).
- [15] T. Csörgő and B. Lörstad *Phys. Rev. C* **54** [\(1996\) 1390–1403,](http://dx.doi.org/10.1103/PhysRevC.54.1390) [arXiv:hep-ph/9509213](http://arxiv.org/abs/hep-ph/9509213).
- [16] T. Csörgő *[Acta Phys. Hung. A](http://dx.doi.org/10.1556/APH.15.2002.1-2.1)* **15** (2002) 1–80, [arXiv:hep-ph/0001233](http://arxiv.org/abs/hep-ph/0001233).
- [17] T. Czopowicz, [NA61/SHINE Collab.] *PoS* **[CPOD2021](http://dx.doi.org/10.22323/1.400.0039)** (2022) 039.
- [18] D. Kincses, M. I. Nagy, and M. Csanád *Phys. Rev. C* **102** [no. 6, \(2020\) 064912,](http://dx.doi.org/10.1103/PhysRevC.102.064912) [arXiv:1912.01381 \[hep-ph\]](http://arxiv.org/abs/1912.01381).
- [19] M. Csanád, S. Lökös, and M. Nagy *Phys. Part. Nucl.* **51** [no. 3, \(2020\) 238–242,](http://dx.doi.org/10.1134/S1063779620030089) [arXiv:1910.02231 \[hep-ph\]](http://arxiv.org/abs/1910.02231).
- [20] M. Nagy, A. Purzsa, M. Csanád, and D. Kincses *Eur. Phys. J. C* **83** [no. 11, \(2023\) 1015,](http://dx.doi.org/10.1140/epjc/s10052-023-12161-y) [arXiv:2308.10745 \[nucl-th\]](http://arxiv.org/abs/2308.10745).
- [21] Y. Sinyukov *et al. Phys. Lett. B* **432** [\(1998\) 248–257.](http://dx.doi.org/10.1016/S0370-2693(98)00653-4)
- [22] B. Kurgyis, D. Kincses, M. Nagy, and M. Csanád *Universe* **9** [no. 7, \(2023\) 328,](http://dx.doi.org/10.3390/universe9070328) [arXiv:2007.10173 \[nucl-th\]](http://arxiv.org/abs/2007.10173).
- [23] Y. M. Sinyukov *Nucl. Phys. A* **566** [\(1994\) 589C–592C.](http://dx.doi.org/10.1016/0375-9474(94)90700-5)
- [24] Y. M. Sinyukov *Hot Hadronic Matter: Theory and Experiment* (1995) 309–322.
- [25] A. Adare *et al.*, [PHENIX Collab.] *Phys. Rev. C* **97** [no. 6, \(2018\) 064911,](http://dx.doi.org/10.1103/PhysRevC.97.064911) [arXiv:1709.05649 \[nucl-ex\]](http://arxiv.org/abs/1709.05649).
- [26] D. Kincses, [STAR Collab.] *Universe* **10** [no. 3, \(2024\) 102,](http://dx.doi.org/10.3390/universe10030102) [arXiv:2401.11169](http://arxiv.org/abs/2401.11169) [\[nucl-ex\]](http://arxiv.org/abs/2401.11169).
- [27] N. J. Abdulameer *et al.*, [PHENIX Collab.] arXiv: 2407.08586 [nucl-ex].