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The ATLAS event reconstruction chain is projected to increase dramatically in computational
cost with the upgrade to the HL-LHC. A particularly expensive step in this chain is track
finding, where energy deposits in the inner tracker (ITk) are grouped into subsets of track
candidates, which can then be fitted and provided for downstream tasks. In an effort to reduce
execution times and harness accelerator hardware such as GPUs, for both offline and online
purposes, machine learning approaches are being developed for track finding. A first functional
implementation of a graph neural network-based track pattern reconstruction for ITk has
been developed, with competitive physics performance compared with traditional methods.
This document describes a variety of improvements to the algorithmic implementations and
machine learning models, to significantly decrease execution times from minutes to hundreds
of milliseconds.
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1 Introduction

In preparation for 140–200 pile-up events per bunch crossing in the HL-LHC era, and the significant
resources needed to reconstruct charged particles (tracks) in the new full-silicon Inner Tracker ITk [1, 2],
ATLAS is pursuing several methods to reduce resource consumption, including those based on machine
learning. Charged particles, when traversing the active silicon, leave energy deposits in the channelized
readout. These inputs are clustered to form measurements that can either be used individually (as for the
pixel detector) or grouped by adjacent clusters (in the strip detector) to form space points, in the following
called “hits”. These hits are used to reconstruct the charged particle trajectories. The goal of the Graph
Neural Network (GNN) based pattern reconstruction is to identify the subsets of hits in the data that
correspond to individual charged particles. A first functional implementation of a GNN-based track pattern
reconstruction for ITk was presented in Refs. [3, 4]. Updates for improved reconstruction efficiency were
described in Ref. [5] and the first studies of GNN-produced track parameter fits were shown in Refs. [5,
6].

The algorithms described in this note aim to reconstruct those primary particles from top quark pair
production and soft interactions which have 𝑝𝑇 > 1 GeV, are produced at transverse radius 𝑅 < 26 cm
and |𝜂 | < 4, leave at least 3 hits and that are not electrons, a set of conditions called hereafter target
particles. Electrons are excluded from the target particles due to their special behavior stemming from
bremsstrahlung. For this study, the full Geant4-based ITk simulation is used, with ITk layout version
23-00-03 [7] and pileup of 𝜇 = ⟨200⟩. A general introduction to track finding with the ITk can be found
in Ref. [7]. We describe each stage of the GNN4ITk pipeline in Section 2 along with its computational
optimizations. The results of these optimizations are presented in Section 3. Evaluations are performed on
either one Nvidia A100 40Gb GPU or one core of an AMD EPYC 7763 CPU, directly running PyTorch in
inference mode [8]. We also make use of Numba for compiled CPU operations [9], Pytorch Geometric for
graph scatter operations [10], Scikit-learn [11] and Nvidia RAPIDS [12] for graph partitioning, and FRNN
for fast nearest neighbor search [13]. Data loading and writing times are omitted, as a final implementation
will run in sequence on-device. Unless otherwise mentioned, physics performance is maintained as that
reported in Ref. [6].

2 GNN4ITk Pipeline Optimisations

2.1 Overview

In this section, we describe the nominal GNN4ITk track finding pipeline, as well as computational
optimisations developed since the physics results reported in Ref. [6]. We focus on those improvements
relevant to inference (as opposed to training), which currently runs in the ACORN [14] python codebase,
with the exception of the custom CUDA kernels for graph construction (see Sec 2.2). Hits are provided
from the Athena space point formation algorithm, each of which are composed either of a single cluster
from the pixel sub-detector, or of a stereo pair of clusters from the strip sub-detector. To treat the track
finding problem as a graph segmentation problem, hits are first connected pairwise into a graph structure,
such that each node represents a hit (with its features attached) and each edge connects a doublet of hits
(which may include pair-wise features). If an edge is treated as a hypothesis that the two hits were created
by successive energy deposits by the same particle, then one can apply an edge scoring algorithm to label
edges as either “true” (are indeed successive hits on a particle track) or “fake” (either belong to different
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particles, or are not successive in a particle track). Equipped with a set of edge-wise probabilities for these
labels, the graph can be segmented into collections of nodes that are believed to belong to the same track.
The output of segmentation is a set of lists, with each entry a track candidate.

These three stages are sketched in Fig. 1.
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Figure 1: The GNN4ITk track finding inference pipeline, divided in three stages: (1) Graph construction: graphs are
built from hits using either Module Map or Metric Learning method; (2) Edge labelling: graph edges are labeled with
a score inferred by the GNN model, indicating the likelihood of belonging to the same track; (3) Graph segmentation:
track candidates are reconstructed using either only a Connected Component algorithm, or with a combination of
Connected Components and Walkthrough or Junction Removal methods.

2.2 Graph Construction

At ⟨𝜇⟩ = 200, a 𝑡𝑡 event contains 𝑂 (105) hits. A fully-connected graph, though easy to build and
guaranteeing all true connections, would boast 𝑂 (1010) edges and render the pipeline computationally
unfeasible due to GPU memory and time constraints. It is therefore important to control the graph size
to a reasonable level while having as many true edges as possible. To characterize a graph, we use two
quantities throughout the pipeline as performance metrics: the edge efficiency, denoted by 𝜖 , defined as
the ratio of target true edges contained in the graph to all target truth connections, and the edge purity,
denoted by 𝑝, defined as the proportion of target true edges to all edges in the graph excluding true edges
not from target particles. In this language, graph construction must be highly efficient (𝜖 ≈ 100%) to avoid
broken track candidates, and sufficiently pure (𝑝 > 1%) to satisfy GPU memory constraints. We employ
two possible methods to construct graphs: a machine learning model based on Metric Learning [15, 16]
and a data-driven technique called Module Map.

Metric Learning concerns learning the similarity between pairs of data points {x1, x2} in R𝑛 via a distance
function 𝑑 (x1, x2), and, in conjunction with nearest-neighbor methods, allows clustering data based on
a predefined criterion reflected in the choice of 𝑑. Our approach learns a metric function of the form
𝑑 (x1, x2) = 𝑑 ( 𝑓 (x1), 𝑓 (x2)), where 𝑑 is the Euclidean distance and 𝑓 : R𝑛 → R𝑚 is a multi-layer
perceptron (MLP). The network is trained on a contrastive hinge loss defined as

𝑙 (x1, x2) = 𝑦12𝑑 (x1, x2) + (1 − 𝑦12) max{0, 𝑟 − 𝑑 (x1, x2)}. (1)

Minimizing the loss is equivalent to finding a transformation 𝑓 that pulls true hit pairs (𝑦12 = 1) close
together and pushes false hit pairs (𝑦12 = 0) at least a margin 𝑟 away from each other. A k-Nearest-Neighbor
(kNN) search connects a hit to 𝑘 nearest hits in a hypersphere of radius 𝑟 ′ centered on it, yielding a graph.
A second MLP is trained to reduce the graph size, using pairwise geometric features.
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The Module Map approach constructs a look-up table containing all triplets of detector modules that could
be connected by a track candidate. The module map is built along with a set of geometric cuts on doublets
and triplets from 90k simulated 𝑡𝑡 events. Upon inference, all possible triplets present in both the event and
the module map are admitted. Geometric cuts are then applied to eliminate unphysical connections and
yield the desired graph. Since the results reported in Ref. [6], comprehensive algorithmic optimizations
were developed to largely improve the compute time performance of the graph building with the Module
Map method, while keeping the same physics performance (the timing result is reported in Table 1).

The algorithm now utilizes a unified doublet module map in conjunction with a triplet module map. The
unified doublet module map is constructed by collapsing all triplets in the module map to doublets, and
for each doublet geometric cut finding the minima and maxima across all the triplets that it belongs
to. The introduction of the unified doublet module map, as a first screening before the triplet selection,
effectively reduces approximately 90% of the combinatorial complexity associated with hit connections.
The residual connections are filtered through the triplet module map. Furthermore, the entire codebase has
been ported to GPU architecture, incorporating custom CUDA kernels specifically developed for managing
hit connections via the doublet and triplet module maps, as well as for implementing geometric cuts.

Both methods produce graphs of comparable efficiency and purity, in particular, with 𝜖 > 99% and a
number of edges of the order 𝑂 (106) giving a 𝑝 ≈ 3%.

2.3 Edge Classification

A graph neural network (GNN) is trained to discriminate true edges from fake. The architecture comprises
an initial encoding step where node and edge features are encoded into a latent space of dimension 𝐷

using two independent MLPs, one for node features (such as 3D position) and another for edge features
(such as position differences). A full list of these features can be found in Ref. [17]. This is followed by
message-passing steps, which consist of Interaction Network layers [18]. Each edge’s latent representation
is updated by an edge network MLP that integrates its current latent state with the latent states of its
source and destination nodes. Each node’s latent state is then updated by a node network MLP which
incorporates its current state with aggregated incoming and outgoing edge latent features. Each iteration
of the Interaction Network layer propagates information through the graph, enabling the model to learn
complex geometric patterns in particle tracks. The number of these iterations, denoted 𝐿, is referred to as
the level of message passing. The GNN utilizes a non-recurrent architecture for the Interaction Network
layers, meaning each layer has its own set of parameters for node and edge updaters, distinct from those
used in other iterations. In the final step, termed the decode step, the edge features in the latent space,
resulting from the last GNN iteration, are decoded using an edge decoder MLP into an edge classification
score.

The GNN model described in this paper is configured with a latent dimensionality of 𝐷 = 128 and employs
a message-passing depth of 𝐿 = 8. The aggregation function utilized is the sum function. Each multilayer
perceptron (MLP) comprises three linear layers with ReLU activation functions. Batch normalization
layers are incorporated after each linear layer. The GNN model was trained using a binary cross-entropy
loss function on a dataset of 8,000 𝑡𝑡 events over approximately 200 epochs and evaluated on a test set of
1,000 𝑡𝑡 events. The cumulative performance (including that of the first stage) gives an edge-wise efficiency
of approximately 98% and a purity of about 95% [5, 6, 17].

To reduce the network’s runtime during test inference, two optimization techniques were employed. Firstly,
mixed precision was utilized, whereby certain operations use the torch.float32 data type, while others
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employ torch.float16, facilitated by PyTorch’s Automatic Mixed Precision (AMP) tool [8]. Casting to
lower precision enables the usage of the Nvidia GPU’s dedicated half-precision Tensor Cores, as well as
reduces the memory bandwidth requirement. Secondly, the recent PyTorch model compilation method
was applied, which accelerates code execution by JIT-compiling it into optimized kernels and optimizing
the computation graph using the torch.compile method from PyTorch 2.x [19]. This compilation was
performed individually for each MLP within the GNN, excluding other components such as aggregation
functions.

2.4 Graph Segmentation

Given a set of scored edges, there are several solutions for producing a set of track candidates. The simplest
case treats the graph as undirected, applying a score threshold below which edges are removed, and treating
all remaining connected subgraphs as track candidates. This is the “Connected Component” (CC) approach,
and while computationally inexpensive it is prone to merging tracks (when the score threshold is too low)
or splitting tracks (when the score threshold is too high). At the other end of complexity, one can retain
the directedness of the graph, and traverse the edges outward from every source node (i.e. a node with
no incoming edges), forming a track candidate from the longest path constructed for each source node.
This “Walkthrough” method was used to produce the physics results reported in Ref. [6], but at that time
required several minutes per event. The algorithm has five main steps:

• Remove Cycles ensures the directed graph is acyclic.

• Filter Graph removes low-scoring edges.

• Extract Chains finds connected components that are “chain-like” (every node has at most one
incoming edge, one outgoing edge).

• Topological Sort orders nodes such that earlier nodes can visit subsequent nodes if a path exists
between the two.

• Build Paths traverses the graph from each source node, proposing the longest path for each that is
compatible with certain score conditions.

To optimize computational performance, two approaches were implemented: the first is a so-called
“FastWalkthrough”, whereby all previous steps using the slow NetworkX [20] library are replaced with a
combination of Pytorch Geometric [10] operations and Numba [9] JIT-compilation of pure python. These
replacements improve execution time by two orders of magnitude.

The other approach is to retain the high throughput of the CC algorithm, but with a preprocessing step
to avoid merges at graph junction points. This “Junction Removal” (JR) approach has several possible
heuristics to resolve junctions. The most performant chooses the highest-scoring incoming edge and
outgoing edge for each node, pruning all others from the graph. Combining this pre-processing with CC
gives the new algorithm CC+JR, the execution time of which is reported in the following section.
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3 Execution Time Results

Reported below are per-event running times of various choices of graph construction and graph segmentation
algorithms. In Table 1, execution times from each stage in the pipeline (Fig 1) are reported. Graph
construction may either be Metric Learning or Module Map. Edge scoring is performed with a graph
neural network optimised with Pytorch compilation and mixed precision. The different inference time
for the Edge Classification between the Metric Learning pipeline and Module Map pipeline is from the
different input graph size. The former has about 8 × 105 edges while the latter has about 2 × 106 edges. In
an ablation study with the Module Map pipeline, mixed precision is found to reduce the inference time
of the GNN edge classifier by 40%, torch compilation achieves a 60% reduction, and combining both
techniques leads to a reduction of over 80%. Graph Segmentation (a.k.a. Track building) is performed by
the FastWalkthrough — first removing low-scoring edges then traversing the remaining graph, selecting
the longest path for each source node. Physics performance is that reported previously in Ref. [6].

Stage Pipeline

Metric Learning (ms) Module Map (ms)

1. Graph Construction 505 69
2. Edge Classification 108 323
3. Graph Segmentation 118 118

Sum 731 510

Table 1: Per-event execution times of each stage in the GNN-based ITk track finding pipeline, for both choices of
graph construction technique. Stages 1 and 2 are evaluated on a GPU (40GB Nvidia A100). Stage 3 is evaluated on a
single CPU core (AMD EPYC 7763).

Table 2 reports the overall performance of graph segmentation algorithms, and Figure 2 shows a breakdown
of the timings for the FastWalkthrough algorithm. The discrete steps of the FastWalkthrough algorithm are
described in Section 2.4, with the bottleneck to performance being the sequential traversal of the graph,
even after vectorization and compilation with Numba. In Table 2 a significant improvement can be seen in
execution time over an earlier version of the walkthrough algorithm, which was used to produce the physics
results in Ref. [6], and referred to here as CTD23 Walkthrough. While CC is the fastest, it leads to the
worst efficiency. CC+JR allows for fast inference as well as high track building efficiency.

These results represent a first step towards a GNN-based ITk track finding algorithm that meets the
computational requirements of HL-LHC reconstruction. While straightforward optimisations have now
been made, there remain a number of possible improvements with further use of custom CUDA kernels,
simplification of redundant GNN layers and knowledge distillation, which will continue to target equivalent
high-efficiency physics performance.
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Stage Efficiency (Relative Difference, %) Running Time (ms)

CTD23 Walkthrough —— 42, 000
FastWalkthrough +0.53 120
CC −1.33 6.0
CC+JR +0.93 40

Table 2: Per-event execution times and relative difference in integrated physics efficiencies of the various graph
segmentation techniques available in Stage 3 (graph segmentation). Differences are calculated relative to the baseline
CTD23 Walkthrough as (𝜖𝑖 − 𝜖𝐶𝑇𝐷)/𝜖𝐶𝑇𝐷 . The score cut on CC set to 0.01, with the minimum and additive
thresholds of walkthroughs set to 0.1 and 0.6 respectively. The running times are evaluated on a single CPU core
(AMD EPYC 7763). CTD23 Walkthrough is the same as that used in Ref. [6].

Remove Cycles0.8%
1 ms

Filter Graph
8.5%

10 ± 2 ms

Extract Chains

22.9%
27 ± 13 ms

Topological Sort

7.6%
9 ± 2 ms

Build Paths

60.2%
71 ± 12 ms

Total time: 120 ± 20 msATLAS Simulation Preliminary

FastWalkthrough Execution Time Profile

Figure 2: Per-event execution times of each step within the optimized FastWalkthrough algorithm. Statistical
uncertainties across events are reported, except where they are below precision. Timing is evaluated on a single CPU
core (AMD EPYC 7763).
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