Author(s)
|
Barbero, Mario Sacristán (CERN ; IES, Montpellier) ; Slipukhin, Ivan (CERN ; IES, Montpellier) ; Cecchetto, Matteo (CERN) ; Prelipcean, Daniel (CERN) ; Aguiar, Ygor (CERN) ; Bilko, Kacper (CERN) ; Emriskova, Natalia (CERN) ; Waets, Andreas (CERN) ; Coronetti, Andrea (CERN) ; Kastriotou, Maria (Rutherford Appleton Laboratory) ; Cazzaniga, Carlo (Rutherford Appleton Laboratory) ; Dodd, Torran (Rutherford Appleton Laboratory) ; Saigné, Frédéric (IES, Montpellier) ; Pouget, Vincent (IES, Montpellier) ; García Alía, Rubén (CERN) |
Abstract
| Ultrahigh-energy (UHE) (>5 GeV/n) heavy ion beams exhibit different properties when compared to standard and high-energy ion beams. Most notably, fragmentation is a fundamental feature of the beam that may have important implications for electronics testing given the ultrahigh energies and, hence, ranges, preserved by the fragments. In this work, both the primary lead ion beam, available in the Conseil Européen pour la Recherche Nucléaire (CERN) north area (NA), and its fragments are characterized by means of solid-state detectors. This input is later used to improve the measurements of single-event effects (SEEs) in commercial components with this beam. Moreover, the energy deposition distribution in the solid-state detectors is compared to that obtained with Monte Carlo simulations. |